

May 26, 2025 – 06:10 AM EDT

PDB ID	:	$9COP / pdb_00009cop$
EMDB ID	:	EMD-45788
Title	:	Yeast RAVE bound to V-ATPase V1 complex
Authors	:	Wang, H.; Rubinstein, J.L.
Deposited on	:	2024-07-17
Resolution	:	2.70 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev118
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4-5-2 with Phenix2.0rc1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.43.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures
Clashscoro	$\frac{1}{210402}$	15764
	210492	10704
Ramachandran outliers	207382	10835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Qua	lity of chair	1
1	А	1071	49%	7%	44%
1	Е	1071	45%	9%	45%
2	В	517	80%		10% • 9%
2	F	517	74%		15% • 10%
3	Ι	233	78%		12% • 9%
3	K	233	73%		12% 15%
4	J	114	72%		16% 12%
4	L	114	66%		10% 25%

Conti		i previous	paye	
Mol	Chain	Length	Quality of chain	
5	М	256	73% 10%	17%
6	Ν	117	87%	11% •
			i	
7	Р	478	89%	• 9%
8	Х	1357	75% 13%	12%
9	У	351	68% • 31%	
10	Z	194	55% 10% • 35%	

2 Entry composition (i)

There are 12 unique types of molecules in this entry. The entry contains 70017 atoms, of which 33522 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called V-type proton ATPase catalytic subunit A.

Mol	Chain	Residues			AltConf	Trace				
1	Δ	596	Total	С	Н	Ν	0	S	0	0
1 11	11	000	9129	2916	4530	763	900	20	0	0
1	F	597	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
1		301	8981	2869	4461	751	882	18	0	0

• Molecule 2 is a protein called V-type proton ATPase subunit B.

Mol	Chain	Residues			AltConf	Trace				
2	В	471	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
2	D	711	7396	2340	3698	634	712	12	0	0
2	F	467	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
	Ľ	407	7313	2318	3649	627	707	12	0	0

• Molecule 3 is a protein called V-type proton ATPase subunit E.

Mol	Chain	Residues				AltConf	Trace			
2	т	010	Total	С	Η	Ν	0	\mathbf{S}	0	0
3	1	212	3435	1058	1748	289	336	4	0	
2	K	107	Total	С	Η	Ν	0	S	0	0
ა	17	197	3056	953	1537	263	299	4		

• Molecule 4 is a protein called V-type proton ATPase subunit G.

Mol	Chain	Residues		Α	toms	AltConf	Trace		
4	Т	100	Total	С	Η	Ν	Ο	0	0
4 0	100	1483	461	748	130	144	0	0	
4	т	96	Total	С	Η	Ν	Ο	0	0
4	L	80	1026	341	475	97	113	0	0

• Molecule 5 is a protein called V-type proton ATPase subunit D.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
5	М	213	Total 2896	C 939	Н 1386	N 280	O 287	$\frac{S}{4}$	0	0

• Molecule 6 is a protein called V-type proton ATPase subunit F.

Mol	Chain	Residues		Α	toms	AltConf	Trace		
6	Ν	115	Total 1466	C 499	Н 671	N 148	0 148	0	0

• Molecule 7 is a protein called V-type proton ATPase subunit H.

Mol	Chain	Residues		A	AltConf	Trace			
7	Р	436	Total 3168	C 1315	Н 981	N 436	O 436	0	0

• Molecule 8 is a protein called Regulator of V-ATPase in vacuolar membrane protein 1.

Mol	Chain	Residues		Atoms						Trace
8	x	1192	Total 17086	C 5701	Н 8239	N 1540	O 1571	${ m S} { m 35}$	0	0

• Molecule 9 is a protein called Regulator of V-ATPase in vacuolar membrane protein 2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
9	У	242	Total 1779	C 735	Н 560	N 242	O 242	0	0

• Molecule 10 is a protein called Suppressor of kinetochore protein 1.

Mol	Chain	Residues		Atoms					AltConf	Trace
10	Z	127	Total 1723	C 571	Н 815	N 168	0 166	${ m S} { m 3}$	0	0

• Molecule 11 is MAGNESIUM ION (CCD ID: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
11	А	1	Total Mg 1 1	0
11	Е	1	Total Mg 1 1	0

• Molecule 12 is ADENOSINE-5'-DIPHOSPHATE (CCD ID: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms					AltConf	
10	Λ	1	Total	С	Η	Ν	Ο	Р	0
	A	L	39	10	12	5	10	2	0
10	F	1	Total	С	Η	Ν	Ο	Р	0
	Ľ	L	39	10	12	5	10	2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: V-type proton ATPase catalytic subunit A

• Molecule 1: V-type proton ATPase catalytic subunit A

• Molecule 2: V-type proton ATPase subunit B

Chain F:	74%	15%	• 10%
MET VAL LEU ASP SER SER SER ASP CVS CVS CVS CVS CVS CVS CLVS CLVS CLVS	170 697 6114 6114 6114 1120 1145 1120 1145 7146 7153 7153	q168 K169 1170	S174 S175 S176 S176 G192 R198 K198 K198 ASP
HIS ASP GLU GLU 2006 2006 110 1230 1235 1235 1235 1235 1235 1235 1235 1235	7255 7256 7256 7259 1260 7270 7271 7276 1276 1276 1276 727 1277 1277	M308 Y308 T310 D311	1314 1315 1315 1315 1318 1328 1328 1329
1330 0331 1332 1332 1335 1346 1346 1346 1346 1346 1346 1346 1346	M381 M381 K411 L425 L425 A420 K430 L431 C446 C447 C446 C447 X449 X449 X449 X449 X449 X449 K449 C447 X449 K446 C447 K410 C446 C447 C446 C446 C446 C446 C446 C446	Y468 P469 M472	R475 R487 ALA ALA ARG ASP ASP ASP ASP ASP
ASP GLU GLU GLU ASP ASP ASP ASP ASP LIYS CLY LIYS ALA ALA ALA ALA CLU GLU SER CLU SER CLU	HE H		
• Molecule 3: V-type proton A	ATPase subunit E		
Chain I:	78%	12%	• 9%
MET SER SER ALA ALA TILE TILE THR THR ALA CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	E29 E42 F43 K47 F62 F62 F62 C66 C73 C73 C73 C73 C73 C73 C73 C73 C73 C73	L121 Q122 S123 L124 L125	A128 L148 1156 L169 E170 E171
V190 8191 M192 M193 A193 A193 A193 P216 P216 R229 K229 K229 K229 K229			
• Molecule 3: V-type proton A	ATPase subunit E		
Chain K:	73%	12%	15%
MET SER SER SER ALA ALA THE THE THE THE CALA ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	PHE ILLE LYS ARG GLU GLU GLU GLU GLU GLU MS MS MS MS MS MS	F62 K63 q74	K// V88 196 L107 R114 R114 B115 F116
A128 L130 L130 L130 L136 L146 L146 L146 L146 L172 L207 L207 L200 L200 L200 L200 L200 L2	1218 F232 ASP		
• Molecule 4: V-type proton A	ATPase subunit G		
Chain J:	72%	16%	12%
MET SER GLN LYS ASN CLY LY ALA ALA ALA ALA ALA ALA ALA ALA AL	143 144 845 845 845 146 148 148 049 149 197 197 197 197 197 199 197 197 197 19	L114	
• Molecule 4: V-type proton A	ATPase subunit G		
Chain L:	36% 10%	25	5%
MET SER LLYS ALSN ALSN ALSN ALSA ALLA ALLA ALLA ALL		<mark>8 8 4</mark>	
	LYS TYR TYR TYR ARG A33 A40 C2 A33 A40 C2 C5 A33 A40 C2 C5 A33 A40 C2 C5 A33 C2 C5 A33 C2 C5 A1 A C2 C2 C5 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2		

Chain M:	73%	10% 17%	2
MET SER G3 63 86 13 7 12 13 9 12 13 9 12 13 9 12 13 13 14 13	147 147 466 455 456 456 456 456 456 8103 8103 8103 8103 8103 7104 7104 7105 7105	5151 1163	ASP ALA GLU MET LYS LVS LEU LYS ARG
ASP ARG ALA GLU GLU ASP ALA ALA ALA ASP ASP	GLU PRO GLU PRO GLV GLV GLV CLU THR CLU ALA ASP ASP ASP ASP VAL ALA ASP VAL CLU ASP PHE PHE		
• Molecule 6: V-t	type proton ATPase subunit F		
Chain N:	87%	119	6 •
ALA E3 K4 K5 164 166 166 166 166 167 177	185 188 194 194 194 110 1106 1110 1110 1111 1111 1111 1111		
• Molecule 7: V-t	type proton ATPase subunit H		
Chain P:	89%		9%
MET ALA THR THR R32 E34 E34 E54	ASN ASN GLY CLE CLY CLE SER SER SER ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	SER GLN LEU LEU ALE ALE VAL ALA ALA ASN SER ASN SER ASN SER ASN	P372 P373 K388 K388 Y392 N412
A413 K414 1438 1441 1441 0442 6446 6446 6446 6446	111 117 117 117 117 117 117 117 117 117		
• Molecule 8: Reg	gulator of V-ATPase in vacuolar n	membrane protein 1	
Chain x:	75%	13% 12	?%
M1 82 153 153 151 127 127 127 127 128 128 128 128	137 149 149 149 149 169 169 172 176 172 176 172 176 176 176 176 176 176 176 176 176 176	H107 1121 1122 1122 1127 1127 1127 1127 1	L158 1159 V160 D166 L171 W172
1187 M188 M188 L189 P190 1195 M200 Q206 V207 S208	1212 1212 1212 1223 1233 1235 1235 1235	L330 V349 L352 L364 L364 L364 L374 L374 V389 Q390 Q390	T404 L426 Q427 T464 ASN
ARG LYS GLU ASP ASP SER SER CLU CL 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1544 1544 1563 1566 1566 1566 1566 1613 1614 1615 1613 1615 1614 1615 1614 1615 1616 1617 1616 1617 1617 1618 1618 1618	L633 E634 E634 1645 1646 7666 8650 V655 8650 1660 1660	Y674 A693 I699 I699
V711 V712 A713 A713 5714 G715 1720 P730 F731	L742 1769 1776 1776 1776 1776 1776 1776 1781 1781	L844 1851 1855 1853 1853 1854 1854 1854 1864 1864 1864	E874 N880 6881 V882 R883 F884
L885 L886 L892 M908 M908 M908 M908 M908 M908 F950 E951	K955 F958 5959 5959 5959 5959 1961 1981 1981 1981 1985 1985 1985 1985 198	V1 033 11 038 11 038 V1 042 01 051 M1 055 C1 062 C1 063	V1064 L1076 L1076 L1077 M1081
A1110 L1112 L1112 L1118 E1119 N1120 V1125 V1125	A1141 L1177 L1172 L1177 L1176 D1177 M1196 M1196 A110 A1198 A11777 A11777 A11777 A11777 A11777 A11777 A11777 A11777 A11777 A117	LFEU SER PRO THR LTYS ASP ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	MET ALA SER GLU PRO ILE SER THR

LEU LEU ASP ASP PHE VAL

• Molecule 9: Regulator of V-ATPase in vacuolar membrane protein 2

Chain y:	68%	• 31%	-
MET MET VAL ASP PHE PRO PRO ASN ASP ASN ASP ASS ASS ASS ASS ASS ASS ASS ASS ASS	ASP ASP LYR ASP ASP ASP ASP ASP ASP ASP ASP ASP C V35 V35 V35 V35 V35 V35 V35 V35 V35 P22 P20 P20 P20 P20 P20 P20 P20 P20 P20	SER SER ASN CLY CLY FRO ASN ASN ASN ASN ASP ASP CLN ASP ASP ASP ASP ASP ASP ASP CLN ASP ASP ASP 115 F115 F115 F115 F115 F115 F120	D191
CYS GLU ILE ASP ASP SER LLYS LLYS CLY ASP PHE CYS ASP	GLN TILE ARG GLN CLN CLN ASN ASN ASN CLY SER LEU SER LEU LEU	SER ASN CLY CLY CLY CLY CLY CLY CLN CLN ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	ALA ILE THR LEU PRO GLU

• Molecule 10: Suppressor of kinetochore protein 1

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	71341	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	42	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2300	Depositor
Magnification	Not provided	
Image detector	FEI FALCON IV $(4k \ge 4k)$	Depositor
Maximum map value	5.183	Depositor
Minimum map value	-2.780	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.096	Depositor
Recommended contour level	0.1	Depositor
Map size (Å)	401.69998, 401.69998, 401.69998	wwPDB
Map dimensions	390, 390, 390	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.03, 1.03, 1.03	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ADP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	B	ond angles
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.33	2/4698~(0.0%)	0.49	4/6368~(0.1%)
1	Е	0.62	5/4618~(0.1%)	0.85	5/6263~(0.1%)
2	В	0.54	3/3767~(0.1%)	0.77	7/5103~(0.1%)
2	F	0.67	1/3733~(0.0%)	0.97	11/5059~(0.2%)
3	Ι	0.35	1/1700~(0.1%)	0.58	2/2279~(0.1%)
3	K	0.15	0/1531	0.35	0/2058
4	J	0.26	0/737	0.51	0/983
4	L	0.30	0/552	0.47	0/750
5	М	0.30	0/1523	0.52	1/2058~(0.0%)
6	N	0.16	0/808	0.41	0/1103
7	Р	0.10	0/2193	0.27	0/3066
8	Х	0.30	0/9048	0.50	5/12364~(0.0%)
9	У	0.12	0/1224	0.32	0/1710
10	Z	0.19	0/921	0.41	0/1253
All	All	0.42	12/37053~(0.0%)	0.63	35/50417~(0.1%)

All (12) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
1	А	85	PRO	C-O	-7.66	1.15	1.23
1	Ε	217	PRO	C-O	-6.24	1.15	1.23
1	Ε	807	MET	C-O	-6.09	1.16	1.24
1	Е	34	PRO	C-O	-5.76	1.17	1.24
1	А	915	TYR	C-O	-5.73	1.16	1.23
2	В	37	PRO	C-O	-5.46	1.17	1.24
2	В	469	PRO	C-O	-5.44	1.17	1.23
2	В	39	VAL	C-O	-5.38	1.18	1.24
2	F	174	SER	CA-CB	-5.27	1.45	1.53
3	Ι	216	PRO	C-O	-5.25	1.17	1.24
1	E	71	ILE	C-O	-5.15	1.18	1.24
1	Е	800	ASP	C-O	-5.05	1.17	1.24

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
8	Х	880	ASN	N-CA-C	-9.32	102.03	113.50
2	F	129	GLU	N-CA-C	-8.27	102.96	113.72
1	Е	784	ARG	N-CA-C	-7.18	103.99	112.89
2	В	82	GLY	CA-C-O	-6.93	117.05	122.52
2	F	106	GLU	N-CA-C	-6.39	105.45	113.18
1	А	85	PRO	N-CA-CB	-6.32	97.47	103.34
2	F	356	GLY	CA-C-O	-6.11	117.15	122.16
2	В	396	HIS	CA-C-O	-6.02	113.97	121.02
2	F	325	ARG	CB-CA-C	6.00	120.11	109.72
2	F	273	HIS	N-CA-C	-5.85	101.39	110.10
1	Е	745	MET	N-CA-C	-5.84	105.99	113.23
5	М	108	GLN	CA-C-O	-5.63	115.58	121.99
2	В	459	ASP	N-CA-C	-5.62	105.53	112.90
2	В	194	VAL	N-CA-C	-5.61	105.06	110.72
8	Х	1025	LYS	N-CA-C	-5.58	106.50	113.15
2	В	162	ASN	N-CA-C	-5.58	103.73	110.88
2	F	153	THR	N-CA-C	-5.47	106.11	112.89
8	Х	20	ALA	CA-C-O	-5.44	114.89	120.99
2	F	318	ARG	N-CA-C	-5.41	107.24	112.97
1	А	85	PRO	CA-C-O	-5.35	114.89	121.31
2	F	462	TRP	N-CA-C	-5.31	105.57	111.36
2	В	458	LEU	N-CA-C	-5.30	106.81	113.28
1	Е	259	PHE	CA-CB-CG	5.30	119.10	113.80
8	Х	130	PHE	N-CA-C	-5.26	106.72	112.72
2	F	315	ILE	N-CA-C	-5.25	107.04	111.56
2	F	314	THR	N-CA-C	-5.25	106.65	113.16
2	В	399	VAL	CA-C-O	-5.24	115.30	120.85
3	Ι	42	GLU	N-CA-C	-5.20	105.53	111.14
1	А	263	LYS	N-CA-C	-5.16	105.34	111.69
1	Е	780	PRO	N-CA-CB	-5.15	97.85	103.25
1	А	84	ASP	CA-CB-CG	5.08	117.67	112.60
1	Е	152	HIS	CB-CA-C	-5.07	101.48	109.80
3	Ι	47	LYS	N-CA-C	-5.05	107.10	114.12
8	Х	158	LEU	CB-CA-C	-5.01	110.42	117.23
2	F	281	MET	N-CA-C	-5.00	105.95	111.71

All (35) bond angle outliers are listed below:

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4599	4530	4531	48	0
1	Е	4520	4461	4461	73	0
2	В	3698	3698	3697	31	0
2	F	3664	3649	3648	51	0
3	Ι	1687	1748	1748	20	0
3	Κ	1519	1537	1537	16	0
4	J	735	748	748	19	0
4	L	551	475	475	10	0
5	М	1510	1386	1386	20	0
6	Ν	795	671	671	10	0
7	Р	2187	981	979	6	0
8	Х	8847	8239	8238	112	0
9	У	1219	560	559	1	0
10	Z	908	815	814	16	0
11	А	1	0	0	0	0
11	Ε	1	0	0	0	0
12	A	27	12	12	1	0
12	Е	27	12	12	3	0
All	All	36495	33522	33516	405	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (405) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom-2	Interatomic	Clash
Atom-1		distance (\AA)	overlap (Å)
1:E:44:CYS:SG	1:E:61:VAL:HG21	2.15	0.86
1:E:102:MET:HE3	1:E:798:PHE:CE2	2.15	0.81
1:E:70:THR:HG21	1:E:826:LEU:CD1	2.12	0.79
1:A:968:ILE:HD11	1:A:1016:VAL:HG21	1.64	0.78
1:E:102:MET:HE3	1:E:798:PHE:CZ	2.25	0.71
1:A:1046:ARG:NH2	1:A:1054:GLU:OE1	2.24	0.71
2:F:275:LEU:HD12	2:F:330:THR:HB	1.74	0.70
1:E:225:THR:HG22	1:E:856:LEU:HD23	1.75	0.69
4:J:93:ASP:O	4:J:97:ILE:HD12	1.92	0.69

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
10:z:142:ASN:O	10:z:142:ASN:ND2	2.22	0.69
1:E:265:VAL:HG23	12:E:1102:ADP:O1A	1.93	0.68
3:K:49:ASN:O	3:K:53:ASN:ND2	2.26	0.68
2:F:277:ILE:HG23	2:F:332:ILE:O	1.96	0.66
10:z:86:VAL:HG11	10:z:133:GLU:HG3	1.77	0.66
1:E:950:LEU:HD21	1:E:966:ASP:HB3	1.77	0.65
8:x:21:THR:O	8:x:21:THR:HG22	1.97	0.64
5:M:57:MET:HE2	6:N:94:ILE:HG22	1.79	0.64
3:I:121:LEU:HD23	3:I:148:LEU:HD22	1.78	0.64
1:A:102:MET:HE2	1:A:771:THR:OG1	1.98	0.63
1:E:855:ALA:HB3	1:E:861:ARG:HG2	1.79	0.63
4:L:113:ALA:O	4:L:114:LEU:C	2.42	0.63
8:x:844:LEU:O	8:x:857:GLN:NE2	2.32	0.62
6:N:77:ILE:O	6:N:77:ILE:HG22	1.99	0.62
8:x:188:MET:HE2	8:x:188:MET:HA	1.82	0.61
1:E:105:ILE:HD11	1:E:774:ALA:HB2	1.81	0.61
1:E:118:GLU:O	1:E:121:GLN:NE2	2.32	0.61
2:F:209:SER:HB2	2:F:274:VAL:HG22	1.83	0.61
8:x:1124:ILE:HG22	8:x:1125:VAL:HG13	1.83	0.60
1:A:962:LEU:O	1:A:967:LYS:NZ	2.34	0.60
8:x:389:VAL:HG21	8:x:713:ALA:HB1	1.84	0.60
8:x:807:MET:O	10:z:159:ARG:NH2	2.35	0.60
8:x:981:ILE:O	8:x:985:LEU:HD23	2.02	0.60
1:E:950:LEU:HD23	1:E:970:LEU:HG	1.83	0.60
8:x:870:VAL:O	8:x:874:GLU:N	2.35	0.60
1:A:70:THR:HG21	1:A:826:LEU:HD21	1.84	0.60
7:P:388:LYS:O	7:P:392:TYR:N	2.34	0.60
1:E:70:THR:HG21	1:E:826:LEU:HD13	1.82	0.59
1:E:105:ILE:CD1	1:E:749:LEU:HD11	2.32	0.59
2:F:264:GLU:HA	2:F:329:ILE:HD11	1.85	0.59
2:F:469:PRO:HD2	2:F:472:MET:HE3	1.85	0.59
2:F:168:GLN:HB2	2:F:382:LEU:HD12	1.85	0.59
8:x:617:ASN:OD1	8:x:620:GLY:N	2.35	0.59
1:E:46:MET:HE1	1:E:62:ILE:O	2.03	0.59
1:E:82:VAL:HG23	2:F:70:ILE:HD12	1.84	0.59
2:B:481:LEU:HD23	2:B:485:TYR:HB2	1.85	0.58
2:B:114:ASP:OD1	2:B:115:GLY:N	2.36	0.58
8:x:71:PHE:CZ	8:x:76:LEU:HD13	2.38	0.58
8:x:958:PHE:O	8:x:968:ARG:NH2	2.35	0.58
1:A:217:PRO:HB2	1:A:220:VAL:HG12	1.86	0.58
8:x:318:VAL:CB	8:x:374:LEU:CB	2.82	0.58

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:265:VAL:HG23	12:A:1102:ADP:O1A	2.04	0.57
1:E:270:LEU:HD22	1:E:808:ILE:CD1	2.34	0.57
5:M:57:MET:HA	5:M:60:VAL:HG12	1.87	0.57
2:B:433:LEU:O	2:B:437:GLU:OE1	2.23	0.57
8:x:233:GLU:O	8:x:236:LYS:N	2.37	0.57
10:z:143:ILE:HG23	10:z:143:ILE:O	2.05	0.57
1:E:270:LEU:HD22	1:E:808:ILE:HD11	1.85	0.57
1:E:750:MET:HE1	2:F:146:TYR:CD2	2.40	0.57
3:I:62:PHE:O	3:I:66:LEU:HD23	2.03	0.57
1:A:283:GLY:HA3	1:A:745:MET:HE3	1.86	0.56
10:z:142:ASN:HD22	10:z:142:ASN:C	2.12	0.56
6:N:5:ARG:NE	6:N:64:ILE:O	2.31	0.56
5:M:6:GLU:OE1	5:M:18:MET:HE1	2.05	0.56
5:M:101:VAL:HG13	5:M:102:SER:H	1.70	0.56
1:A:887:LEU:HD21	1:A:893:PHE:CD1	2.41	0.56
3:K:115:ASP:OD1	3:K:116:GLU:N	2.39	0.55
8:x:781:LEU:HD22	8:x:864:ILE:CD1	2.35	0.55
1:A:114:LYS:O	1:A:118:GLU:OE1	2.24	0.55
1:E:968:ILE:HD11	1:E:1016:VAL:HG21	1.89	0.55
8:x:1081:MET:HG2	8:x:1097:ILE:HD11	1.87	0.55
1:E:28:ILE:HD12	1:E:84:ASP:HB2	1.89	0.55
2:F:469:PRO:HG3	2:F:472:MET:HE2	1.88	0.55
3:K:128:ALA:HB3	3:K:190:VAL:HG21	1.88	0.55
8:x:1198:ILE:HG23	8:x:1198:ILE:O	2.06	0.55
2:B:270:THR:O	2:B:270:THR:HG22	2.05	0.54
3:I:29:GLU:OE1	4:J:22:SER:OG	2.20	0.54
3:I:73:GLN:OE1	4:J:65:VAL:HG13	2.07	0.54
4:J:45:SER:O	4:J:48:ILE:HG22	2.06	0.54
1:E:1056:GLU:OE1	1:E:1056:GLU:N	2.40	0.54
2:F:211:VAL:HB	2:F:276:THR:HG23	1.89	0.54
5:M:150:ALA:HB2	6:N:66:ILE:HD12	1.90	0.54
1:A:267:SER:HB3	1:A:808:ILE:HG21	1.89	0.54
8:x:96:LEU:HD23	8:x:135:PRO:HG2	1.89	0.54
1:E:105:ILE:HD13	1:E:749:LEU:HD11	1.90	0.54
2:F:469:PRO:CD	2:F:472:MET:HE3	2.37	0.54
1:A:115:ALA:O	1:A:119:GLU:OE1	2.25	0.54
6:N:103:PRO:O	6:N:109:LEU:HD23	2.06	0.54
8:x:950:PHE:CD2	8:x:1064:VAL:HG21	2.43	0.54
2:F:106:GLU:HG2	2:F:272:ARG:HH12	1.73	0.54
8:x:330:LEU:HD23	8:x:349:VAL:HG13	1.90	0.53
5:M:149:LEU:HD23	5:M:149:LEU:O	2.08	0.53

Atom-1	Atom-2	Interatomic $(\overset{A}{\lambda})$	Clash
2.I.125.II F.HC21	2.I.156.II F.HD12		$\frac{0.53}{0.53}$
<u><i>A</i>·L·103·ILF·O</u>	4.L.103.ILE.HC22	2.08	0.53
5·M·101·VAL·HC13	4.L.103.ILE.IIG22	2.08	0.53
1. A . 107. A SD. HB2	1.A.112.JEIL.HD21	1.00	0.53
1.A.107.A51.IID5 8.w.008.TRP.H72	8.w.1141.ALA.HB1	1.90	0.53
0.X.900.11(1.1122	0.x.1141.ALA.IID1	2.73	0.53
2:D:110:5ER:0G	2:D:110:ARG:NE	2.41	0.55
0:X:1040:VAL:HG11	8:X:1002:015:5G	2.49	0.55
1:E:200:VAL:HG11	12:E:1102:ADP:03	2.43	0.53
1:E:850:ALA:HB2	1:E:807:ILE:HD12	1.90	0.52
1:E:142:PHE:HA	1:E:162:VAL:HG12	1.90	0.52
2:F:335:LEU:HD11	2:F:346:ILE:HG22	1.91	0.52
12:E:1102:ADP:H5 ² 2	2:F:381:ARG:HD2	1.91	0.52
1:E:70:THR:HG21	1:E:826:LEU:HD11	1.89	0.52
1:E:767:MET:HE1	1:E:772:LEU:HD13	1.90	0.52
2:F:152:SER:N	2:F:192:GLY:O	2.43	0.52
8:x:45:ARG:NH2	8:x:693:ALA:O	2.43	0.52
2:B:470:LYS:HG3	2:B:481:LEU:HD22	1.91	0.52
1:E:225:THR:HG22	1:E:856:LEU:HA	1.91	0.52
8:x:1055:MET:HE1	8:x:1076:LEU:HG	1.90	0.52
2:F:299:PRO:HD3	5:M:206:VAL:HG21	1.92	0.52
2:F:195:ARG:O	2:F:195:ARG:HG2	2.10	0.51
3:I:47:LYS:HB2	4:J:36:LYS:CE	2.40	0.51
8:x:769:ILE:HG13	8:x:777:VAL:HG21	1.92	0.51
2:F:41:LEU:HD22	2:F:44:VAL:HG22	1.92	0.51
3:I:106:LYS:CB	4:J:99:ILE:HD11	2.40	0.51
1:E:953:VAL:HG22	5:M:27:GLN:HG3	1.92	0.51
3:K:96:LEU:HD11	3:K:218:ILE:HG21	1.93	0.51
8:x:141:GLN:HG3	8:x:172:TRP:CH2	2.46	0.51
8:x:363:ILE:HG23	8:x:364:LEU:HD12	1.93	0.51
1:A:158:ILE:HD11	1:A:861:ARG:CD	2.41	0.50
2:B:51:GLU:OE2	2:B:97:GLY:N	2.42	0.50
8:x:1015:ALA:HB3	8:x:1038:THR:CG2	2.41	0.50
8:x:1176:THR:O	8:x:1177:ASP:HB3	2.11	0.50
4:L:94:VAL:O	4:L:98:LEU:HD13	2.11	0.50
5:M:96:ALA:HA	5:M:109:PHE:HA	1.93	0.50
1:E:147:PHE:HB3	1:E:183:ILE:CD1	2.42	0.50
3:I:192:ASN:OD1	3:I:193:ALA:N	2.45	0.50
5:M:159:LEU:O	5:M:163:ILE:HG13	2.11	0.50
7:P:372:PRO:N	7:P:373:PRO:HD2	2.27	0.50
8:x:1119:GLU:O	8:x:1120:ASN:OD1	2.29	0.50
2:F:446:GLN:NE2	2:F:450:GLU:O	2.40	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:x:166:ASP:O	8:x:195:ILE:HD12	2.11	0.50
1:E:818:ALA:O	1:E:822:ILE:HD12	2.11	0.50
2:F:277:ILE:N	2:F:277:ILE:HD12	2.27	0.50
8:x:121:LEU:HD21	8:x:159:ILE:HG21	1.93	0.50
4:J:45:SER:O	4:J:49:GLN:OE1	2.29	0.50
2:F:211:VAL:HG11	2:F:259:ALA:O	2.12	0.49
1:E:107:ASP:O	1:E:109:ILE:N	2.45	0.49
8:x:852:LEU:O	8:x:854:ARG:NH2	2.44	0.49
1:A:847:TYR:HB2	1:A:889:ILE:HG21	1.92	0.49
4:L:91:LYS:O	4:L:95:VAL:HG23	2.11	0.49
8:x:630:ARG:NH2	8:x:634:GLU:OE2	2.43	0.49
1:E:204:ASP:OD1	8:x:1016:LEU:CD1	2.61	0.49
1:A:968:ILE:HD11	1:A:1016:VAL:CG2	2.38	0.49
1:E:795:ALA:HA	1:E:805:VAL:HG11	1.93	0.49
1:A:972:VAL:HG21	1:A:1009:HIS:HB2	1.95	0.49
1:E:114:LYS:NZ	1:E:118:GLU:OE2	2.33	0.49
3:K:209:LEU:O	3:K:213:GLU:OE1	2.31	0.49
8:x:776:LEU:O	8:x:780:LEU:HD13	2.13	0.49
1:E:858:SER:HA	1:E:859:PRO:C	2.38	0.49
8:x:426:LEU:HD23	8:x:427:GLN:N	2.28	0.49
8:x:729:ASP:OD1	8:x:731:PHE:N	2.40	0.49
1:A:957:VAL:HG12	1:A:957:VAL:O	2.13	0.48
2:F:308:MET:HE2	2:F:349:LEU:HD12	1.93	0.48
2:F:110:GLY:N	2:F:238:THR:O	2.43	0.48
8:x:674:TYR:CZ	8:x:1137:VAL:HG11	2.48	0.48
8:x:1193:LYS:HG3	10:z:151:CYS:SG	2.53	0.48
1:A:102:MET:HE3	1:A:798:PHE:CE2	2.48	0.48
1:E:822:ILE:O	1:E:826:LEU:HB2	2.14	0.48
4:L:39:ALA:CA	4:L:40:ALA:HB3	2.44	0.48
8:x:71:PHE:CE2	8:x:76:LEU:HD13	2.48	0.48
2:B:487:ARG:O	2:B:488:ALA:HB3	2.13	0.48
8:x:613:LEU:CD2	8:x:615:ILE:HG23	2.44	0.48
8:x:36:LEU:HD23	8:x:49:ILE:HD12	1.96	0.48
10:z:168:ARG:NH1	10:z:169:THR:HG22	2.29	0.48
8:x:389:VAL:HG22	8:x:715:GLY:O	2.13	0.48
8:x:329:TYR:O	8:x:352:LEU:HD12	2.14	0.47
8:x:1110:ALA:HA	8:x:1118:LEU:HD11	1.96	0.47
8:x:1081:MET:CG	8:x:1097:ILE:HD11	2.44	0.47
2:F:386:ALA:O	2:F:391:MET:HE2	2.15	0.47
3:K:114:ARG:NE	3:K:148:LEU:HD21	2.29	0.47
4:L:39:ALA:HA	4:L:40:ALA:C	2.39	0.47

	At 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:253:THR:CG2	1:E:868:VAL:HG22	2.45	0.47
2:B:335:LEU:HD11	2:B:346:ILE:HG22	1.96	0.47
2:F:386:ALA:C	2:F:391:MET:HE2	2.40	0.47
3:K:74:GLN:O	3:K:77:LYS:HG2	2.14	0.47
3:K:210:LEU:O	3:K:214:ALA:HB3	2.15	0.47
6:N:68:LEU:HD21	6:N:94:ILE:HD13	1.96	0.47
8:x:187:THR:C	8:x:188:MET:HE2	2.40	0.47
8:x:187:THR:O	8:x:188:MET:HE2	2.14	0.47
8:x:643:ILE:HG21	8:x:646:ILE:HD11	1.96	0.47
1:A:848:GLU:HG3	2:F:245:ALA:HB3	1.96	0.47
10:z:86:VAL:HG11	10:z:133:GLU:CG	2.45	0.47
1:A:102:MET:HE3	1:A:798:PHE:CZ	2.49	0.47
1:A:107:ASP:OD2	1:A:111:ARG:NH2	2.48	0.47
3:I:62:PHE:CE2	3:I:66:LEU:HD21	2.50	0.47
5:M:43:PHE:O	5:M:47:THR:HG23	2.15	0.47
1:E:101:LEU:HD13	1:E:134:LEU:HD21	1.97	0.47
8:x:1028:TYR:CD1	8:x:1051:GLN:HB3	2.50	0.47
1:A:115:ALA:O	1:A:116:ILE:C	2.57	0.46
10:z:29:LEU:HD12	10:z:33:LEU:CB	2.44	0.46
4:J:45:SER:O	4:J:46:TYR:C	2.58	0.46
3:K:169:LEU:HD23	3:K:172:ILE:CG1	2.46	0.46
8:x:45:ARG:NH1	8:x:45:ARG:HB3	2.30	0.46
1:A:156:GLY:O	1:A:861:ARG:NH2	2.48	0.46
2:B:469:PRO:HG2	2:B:472:MET:HE3	1.97	0.46
1:E:1046:ARG:HG3	1:E:1051:VAL:HG23	1.98	0.46
2:F:411:LYS:HD3	2:F:436:LEU:HD11	1.98	0.46
3:K:59:ASP:O	3:K:62:PHE:HB3	2.16	0.46
5:M:39:LEU:HD22	5:M:159:LEU:CD1	2.45	0.46
8:x:394:ARG:HB2	8:x:703:VAL:HG21	1.98	0.46
8:x:854:ARG:NH1	8:x:857:GLN:OE1	2.49	0.46
1:A:82:VAL:HG23	2:B:70:ILE:HD12	1.97	0.46
2:B:470:LYS:HG3	2:B:481:LEU:HD13	1.97	0.46
8:x:544:ILE:HD12	8:x:566:LEU:HD23	1.97	0.46
8:x:769:ILE:HG21	8:x:886:LEU:HD13	1.98	0.46
8:x:892:LEU:HD21	8:x:935:TYR:OH	2.15	0.46
2:F:51:GLU:OE2	2:F:97:GLY:N	2.47	0.46
1:A:28:ILE:HD12	1:A:84:ASP:HB2	1.97	0.46
1:E:105:ILE:HG13	1:E:772:LEU:HB3	1.98	0.46
1:A:70:THR:HG21	1:A:826:LEU:CD2	2.43	0.46
6:N:85:THR:HG22	6:N:111:ARG:NH2	2.30	0.46
1:A:848:GLU:CG	2:F:245:ALA:HB3	2.46	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:954:VAL:CG2	1:E:962:LEU:HD11	2.45	0.45
2:F:145:ILE:HD11	2:F:323:GLU:HA	1.98	0.45
1:E:105:ILE:HD12	1:E:749:LEU:HD11	1.97	0.45
2:F:170:ILE:O	2:F:170:ILE:HG23	2.16	0.45
1:A:767:MET:HA	1:A:770:THR:HG22	1.98	0.45
1:E:42:ILE:O	1:E:88:ARG:NH2	2.49	0.45
2:F:469:PRO:CG	2:F:472:MET:HE2	2.46	0.45
8:x:649:THR:O	8:x:650:SER:OG	2.28	0.45
3:I:82:ASN:OD1	3:I:85:ARG:NH2	2.49	0.45
4:J:40:ALA:HA	4:J:43:ILE:HG22	1.98	0.45
1:A:281:TYR:CD2	1:A:745:MET:HE1	2.52	0.45
1:A:167:LEU:HD21	1:A:769:ARG:HG2	1.98	0.45
1:E:282:VAL:HG22	1:E:773:VAL:HG21	1.97	0.45
1:E:101:LEU:HD21	1:E:794:LEU:CD2	2.47	0.45
10:z:88:GLN:OE1	10:z:91:ILE:HD11	2.17	0.45
1:E:987:SER:O	1:E:991:ALA:HB2	2.16	0.45
8:x:711:VAL:HG22	8:x:720:ILE:CG1	2.47	0.45
2:B:264:GLU:HA	2:B:329:ILE:HD11	1.98	0.45
1:E:158:ILE:HG21	1:E:172:LYS:HD2	1.98	0.45
2:F:234:SER:O	2:F:238:THR:OG1	2.28	0.45
8:x:633:LEU:HD23	8:x:633:LEU:O	2.17	0.45
1:E:899:LYS:O	1:E:903:ARG:HG3	2.17	0.45
8:x:22:TRP:CE3	8:x:27:ILE:HD11	2.52	0.45
8:x:283:VAL:HG12	8:x:285:LEU:CD1	2.47	0.44
2:B:313:SER:HA	2:B:353:ILE:HG21	1.99	0.44
8:x:171:LEU:C	8:x:171:LEU:HD23	2.42	0.44
2:B:376:LEU:HB2	2:B:377:PRO:HD3	1.98	0.44
3:I:106:LYS:HB2	4:J:99:ILE:HD11	2.00	0.44
8:x:207:VAL:CB	8:x:208:SER:HA	2.48	0.44
10:z:81:ASN:ND2	10:z:140:TYR:CE2	2.83	0.44
10:z:83:ARG:HB3	10:z:86:VAL:HG22	1.98	0.44
1:A:157:ASP:OD1	1:A:858:SER:N	2.47	0.44
2:F:272:ARG:O	2:F:274:VAL:HG23	2.16	0.44
2:F:277:ILE:HG13	2:F:332:ILE:HB	2.00	0.44
2:B:195:ARG:HH11	2:B:195:ARG:HG2	1.82	0.44
3:I:170:GLU:OE1	3:I:170:GLU:N	2.50	0.44
8:x:329:TYR:C	8:x:330:LEU:HD12	2.42	0.44
2:B:486:ASP:O	2:B:487:ARG:C	2.60	0.44
1:E:968:ILE:HD11	1:E:1016:VAL:CG2	2.47	0.44
8:x:803:SER:OG	10:z:164:GLU:OE1	2.32	0.44
8:x:950:PHE:CE2	8:x:1064:VAL:HG21	2.53	0.44

	jus puge	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:E:62:ILE:C	1:E:63:ARG:HD2	2.43	0.44
6:N:106:ASP:OD1	6:N:109:LEU:HB3	2.17	0.44
8:x:794:GLU:OE1	8:x:796:GLN:NE2	2.45	0.44
1:E:745:MET:HE3	1:E:774:ALA:HA	1.98	0.44
1:E:937:ARG:O	1:E:941:LYS:HG2	2.18	0.44
7:P:141:ILE:O	7:P:145:ASN:N	2.51	0.44
8:x:70:SER:OG	8:x:103:VAL:HB	2.17	0.44
1:A:110:GLN:O	1:A:110:GLN:HG3	2.18	0.44
3:I:215:LEU:N	3:I:216:PRO:HD2	2.33	0.44
8:x:159:ILE:HG22	8:x:160:VAL:N	2.32	0.44
10:z:79:VAL:HB	10:z:80:PRO:HD3	2.00	0.44
2:B:37:PRO:HD2	2:B:294:ALA:HB2	1.99	0.43
2:B:486:ASP:O	2:B:488:ALA:N	2.50	0.43
8:x:107:ARG:NH1	8:x:150:VAL:O	2.51	0.43
8:x:1055:MET:HE2	8:x:1077:LEU:HD23	2.00	0.43
2:B:52:ILE:HD12	2:B:65:GLY:O	2.18	0.43
2:F:114:ASP:OD1	2:F:120:ILE:HG21	2.17	0.43
2:F:310:THR:O	2:F:314:THR:HG23	2.18	0.43
3:K:62:PHE:O	3:K:63:LYS:C	2.61	0.43
2:B:361:ASP:HB2	2:B:374:ASN:HB2	2.01	0.43
2:B:346:ILE:HB	2:B:347:PRO:CD	2.48	0.43
2:F:260:LEU:HD11	2:F:278:LEU:HD11	1.99	0.43
9:y:31:ILE:O	9:y:35:VAL:N	2.50	0.43
2:B:300:GLY:N	2:B:304:TYR:O	2.45	0.43
1:E:747:GLU:HG3	1:E:750:MET:HE2	2.01	0.43
8:x:1001:PHE:O	8:x:1004:ASN:ND2	2.46	0.43
1:E:174:LEU:HD11	1:E:801:GLN:HG2	2.01	0.43
1:E:764:GLU:O	1:E:765:PRO:C	2.60	0.43
1:E:831:ALA:HB3	1:E:835:PHE:O	2.19	0.43
8:x:577:LYS:N	8:x:590:ILE:O	2.48	0.43
8:x:813:PHE:N	8:x:813:PHE:CD1	2.84	0.43
2:B:63:ARG:NH2	2:B:84:SER:O	2.47	0.43
5:M:104:VAL:HG22	5:M:105:TYR:N	2.34	0.43
8:x:1172:ILE:HD11	8:x:1195:TRP:CE2	2.53	0.43
1:E:28:ILE:HD11	1:E:52:VAL:CG1	2.49	0.43
1:E:110:GLN:HG3	1:E:133:ALA:CB	2.48	0.43
3:K:107:LEU:HD12	3:K:207:LEU:HD22	2.00	0.43
8:x:227:ARG:NE	8:x:245:GLU:OE2	2.47	0.43
8:x:699:ILE:HG23	8:x:712:VAL:HG13	2.01	0.43
1:E:63:ARG:NH1	1:E:826:LEU:CD2	2.82	0.43
2:F:37:PRO:HB3	2:F:250:ILE:HG13	2.01	0.43

	ht o	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:J:45:SER:C	4:J:49:GLN:OE1	2.61	0.43
8:x:394:ARG:HD2	8:x:553:VAL:HG12	2.01	0.43
1:A:99:PRO:HG2	1:A:194:LEU:HD21	2.01	0.43
2:F:230:GLU:OE2	2:F:235:LEU:CD2	2.67	0.43
8:x:75:VAL:HB	8:x:96:LEU:HB2	2.01	0.43
7:P:441:LEU:O	7:P:446:GLY:N	2.49	0.42
8:x:870:VAL:HG13	8:x:882:VAL:HG22	2.01	0.42
2:B:164:ILE:HG12	2:B:170:ILE:HG21	1.99	0.42
1:E:282:VAL:HG22	1:E:773:VAL:CG2	2.49	0.42
2:F:275:LEU:CD2	2:F:277:ILE:HD11	2.48	0.42
3:I:42:GLU:O	3:I:43:TYR:C	2.61	0.42
3:K:130:LEU:HD21	3:K:163:LYS:HB2	2.01	0.42
8:x:390:GLN:N	8:x:404:THR:O	2.48	0.42
8:x:1029:MET:O	8:x:1033:VAL:HG23	2.20	0.42
10:z:156:GLU:OE1	10:z:156:GLU:HA	2.18	0.42
4:J:96:LYS:O	4:J:100:GLU:HG2	2.19	0.42
4:L:39:ALA:N	4:L:40:ALA:HB3	2.35	0.42
1:A:158:ILE:HD11	1:A:861:ARG:NE	2.35	0.42
2:F:255:THR:N	2:F:256:PRO:HD2	2.34	0.42
3:I:47:LYS:HB2	4:J:36:LYS:HD2	2.01	0.42
8:x:3:LEU:C	8:x:3:LEU:HD23	2.44	0.42
8:x:781:LEU:HD22	8:x:864:ILE:HD12	2.00	0.42
8:x:860:LEU:O	8:x:864:ILE:HG12	2.19	0.42
1:A:279:ILE:HD13	1:A:806:SER:HB2	2.01	0.42
2:B:83:THR:HA	2:B:86:ILE:HD12	2.02	0.42
1:E:1056:GLU:O	1:E:1060:SER:HB2	2.20	0.42
2:F:106:GLU:HG2	3:I:228:THR:HG21	2.00	0.42
4:J:44:ASP:OD1	4:J:44:ASP:C	2.63	0.42
8:x:492:ILE:O	8:x:493:VAL:HG13	2.20	0.42
1:A:111:ARG:HB3	1:A:116:ILE:HD11	2.02	0.42
1:A:798:PHE:HB2	1:A:805:VAL:HG21	2.01	0.42
2:B:161:MET:HE2	2:B:404:TYR:CD2	2.55	0.42
2:F:361:ASP:HB2	2:F:374:ASN:HB2	2.02	0.42
8:x:958:PHE:CE2	8:x:985:LEU:CD1	3.02	0.42
2:F:448:ALA:O	2:F:449:TYR:HB2	2.20	0.42
8:x:479:VAL:HG12	8:x:480:GLU:N	2.35	0.42
2:B:35:ASN:CG	2:B:35:ASN:O	2.62	0.42
4:J:90:LYS:O	4:J:94:VAL:HG23	2.20	0.42
8:x:1112:LEU:HD12	8:x:1171:LEU:HG	2.00	0.42
1:E:105:ILE:HB	1:E:749:LEU:HD21	2.01	0.41
1:E:785:GLU:HA	1:E:815:TRP:CD1	2.55	0.41

	sus puge	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:850:ALA:HB2	1:E:867:ILE:CD1	2.50	0.41
7:P:5:LYS:N	7:P:148:SER:O	2.52	0.41
8:x:87:ASN:OD1	8:x:87:ASN:O	2.38	0.41
8:x:643:ILE:HG23	8:x:660:ILE:HG23	2.02	0.41
8:x:827:ASP:N	8:x:828:PRO:HD2	2.35	0.41
1:A:62:ILE:HD12	1:A:826:LEU:HD11	2.01	0.41
1:A:112:PRO:HD2	1:A:131:THR:HG23	2.02	0.41
2:F:110:GLY:HA2	2:F:235:LEU:O	2.20	0.41
2:F:432:SER:HA	2:F:468:TYR:OH	2.20	0.41
3:K:88:VAL:HG22	4:L:76:VAL:HG13	2.02	0.41
2:B:161:MET:HE2	2:B:404:TYR:CE2	2.55	0.41
3:K:61:ASN:O	3:K:62:PHE:C	2.62	0.41
1:A:910:ASN:HB3	1:A:913:VAL:HG22	2.03	0.41
3:I:169:LEU:HD23	3:I:172:ILE:CG1	2.50	0.41
8:x:68:ALA:HB1	8:x:106:LEU:HD21	2.01	0.41
8:x:951:GLU:O	8:x:955:LYS:HG2	2.20	0.41
1:A:1058:LEU:C	1:A:1058:LEU:HD23	2.45	0.41
2:F:425:LEU:O	2:F:430:LYS:NZ	2.53	0.41
3:I:76:THR:HG21	4:J:65:VAL:HB	2.02	0.41
5:M:150:ALA:CB	6:N:66:ILE:HD12	2.49	0.41
6:N:88:PHE:HB2	6:N:89:PRO:HD3	2.01	0.41
8:x:76:LEU:HD11	8:x:95:GLN:HE22	1.85	0.41
8:x:189:LEU:N	8:x:190:PRO:CD	2.83	0.41
8:x:742:LEU:HD13	8:x:851:TYR:OH	2.20	0.41
5:M:97:ARG:N	5:M:108:GLN:O	2.53	0.41
1:E:982:GLN:HE22	2:F:475:ARG:CZ	2.34	0.41
2:F:299:PRO:CD	5:M:206:VAL:HG21	2.51	0.41
4:J:36:LYS:O	4:J:36:LYS:HD3	2.21	0.41
8:x:160:VAL:HG23	8:x:200:TRP:HZ2	1.86	0.41
1:A:110:GLN:HG3	1:A:133:ALA:HB1	2.03	0.41
1:A:944:LEU:O	1:A:948:GLU:HG3	2.20	0.41
1:E:1046:ARG:HD3	1:E:1050:GLU:HG2	2.03	0.41
3:K:62:PHE:CE1	4:L:54:LEU:CB	3.04	0.41
5:M:55:GLN:NE2	5:M:59:ARG:HD3	2.36	0.41
8:x:29:ALA:HA	8:x:37:ILE:O	2.21	0.41
8:x:658:VAL:HG13	8:x:669:TYR:HB2	2.03	0.41
8:x:711:VAL:HG22	8:x:720:ILE:HG12	2.03	0.41
10:z:25:ARG:HG3	10:z:143:ILE:HD11	2.03	0.41
1:E:253:THR:HG23	1:E:868:VAL:HA	2.01	0.41
2:F:468:TYR:HB3	2:F:469:PRO:HD2	2.03	0.41
7:P:438:ILE:O	7:P:442:ASP:N	2.43	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:x:72:HIS:HB3	8:x:73:ASN:H	1.75	0.41
8:x:818:ARG:HG3	8:x:818:ARG:HH11	1.86	0.41
1:A:227:LYS:HD2	1:A:853:ALA:HB2	2.03	0.40
1:A:947:ALA:O	1:A:951:GLU:HG3	2.21	0.40
1:E:282:VAL:HG21	1:E:791:GLY:HA3	2.02	0.40
1:E:771:THR:O	1:E:772:LEU:HD12	2.21	0.40
1:E:1046:ARG:HG3	1:E:1046:ARG:O	2.21	0.40
5:M:56:LYS:O	5:M:60:VAL:HG12	2.21	0.40
8:x:544:ILE:CD1	8:x:566:LEU:HD23	2.51	0.40
8:x:563:LEU:HD12	8:x:578:ALA:HB2	2.03	0.40
8:x:1118:LEU:O	8:x:1119:GLU:C	2.64	0.40
2:B:438:LYS:HD3	2:B:467:ILE:HD11	2.04	0.40
1:E:61:VAL:HG11	1:E:64:ILE:HD11	2.04	0.40
3:I:123:SER:HB3	4:J:105:PRO:CB	2.51	0.40
5:M:165:VAL:HG22	5:M:168:ARG:NH2	2.35	0.40
8:x:206:GLN:CB	8:x:212:THR:HG21	2.52	0.40
8:x:658:VAL:HG13	8:x:658:VAL:O	2.21	0.40
1:A:115:ALA:C	1:A:119:GLU:OE1	2.65	0.40
1:A:188:PRO:O	1:A:192:TYR:OH	2.35	0.40
2:B:270:THR:O	2:B:270:THR:CG2	2.69	0.40
1:E:204:ASP:OD1	8:x:1016:LEU:HD12	2.21	0.40
3:I:128:ALA:HB3	3:I:190:VAL:HG21	2.03	0.40
8:x:884:PHE:CD1	8:x:909:ALA:HB2	2.57	0.40
4:L:103:ILE:O	4:L:103:ILE:CG2	2.69	0.40
4:J:93:ASP:O	4:J:97:ILE:CD1	2.67	0.40
8:x:268:SER:O	8:x:272:SER:N	2.49	0.40
8:x:960:LYS:HG3	8:x:961:ASP:H	1.87	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	594/1071~(56%)	577 (97%)	17 (3%)	0	100	100
1	Е	585/1071~(55%)	558 (95%)	26 (4%)	1 (0%)	44	68
2	В	467/517~(90%)	453 (97%)	13 (3%)	1 (0%)	44	68
2	F	463/517~(90%)	444 (96%)	19 (4%)	0	100	100
3	Ι	210/233~(90%)	204 (97%)	6 (3%)	0	100	100
3	К	195/233~(84%)	189 (97%)	6 (3%)	0	100	100
4	J	98/114 (86%)	93~(95%)	5 (5%)	0	100	100
4	L	84/114 (74%)	81 (96%)	3 (4%)	0	100	100
5	М	211/256~(82%)	202 (96%)	9 (4%)	0	100	100
6	Ν	113/117~(97%)	103 (91%)	10 (9%)	0	100	100
7	Р	430/478~(90%)	413 (96%)	17 (4%)	0	100	100
8	х	1188/1357 (88%)	1097 (92%)	90 (8%)	1 (0%)	48	73
9	У	236/351~(67%)	234 (99%)	2 (1%)	0	100	100
10	Z	123/194 (63%)	112 (91%)	11 (9%)	0	100	100
All	All	4997/6623 (75%)	4760 (95%)	234 (5%)	3 (0%)	50	73

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	В	487	ARG
8	Х	127	LYS
1	Е	183	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	499/908~(55%)	498 (100%)	1 (0%)	92	98
1	Ε	490/908~(54%)	483 (99%)	7 (1%)	62	84
2	В	402/444 (90%)	398~(99%)	4 (1%)	73	89
2	F	398/444~(90%)	388~(98%)	10 (2%)	42	72

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
3	Ι	187/208~(90%)	183~(98%)	4 (2%)	48	76
3	Κ	162/208~(78%)	162 (100%)	0	100	100
4	J	69/94~(73%)	69 (100%)	0	100	100
4	L	40/94~(43%)	40 (100%)	0	100	100
5	М	129/221~(58%)	128 (99%)	1 (1%)	79	91
6	Ν	61/103~(59%)	61 (100%)	0	100	100
7	Р	9/439~(2%)	9~(100%)	0	100	100
8	х	839/1244~(67%)	835 (100%)	4 (0%)	86	95
9	У	8/327~(2%)	8 (100%)	0	100	100
10	Z	79/179~(44%)	$78 \ (99\%)$	1 (1%)	65	85
All	All	3372/5821 (58%)	3340 (99%)	32 (1%)	74	90

All (32) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	743	ASN
2	В	169	LYS
2	В	456	GLU
2	В	466	ARG
2	В	481	LEU
1	Е	174	LEU
1	Е	219	ARG
1	Е	757	THR
1	Е	780	PRO
1	Е	814	ARG
1	Е	858	SER
1	Е	862	THR
2	F	163	SER
2	F	176	SER
2	F	269	GLN
2	F	270	THR
2	F	310	THR
2	F	311	ASP
2	F	340	ASP
2	F	381	ARG
2	F	411	LYS
2	F	442	THR
3	Ι	226	SER

Conti	nued from	n previo	ous page
Mol	Chain	Res	Type

Mol	Chain	Res	Type
3	Ι	229	ARG
3	Ι	230	LYS
3	Ι	233	ASP
5	М	151	SER
8	Х	122	SER
8	Х	315	HIS
8	Х	1042	LYS
8	Х	1051	GLN
10	Z	142	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (29) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	141	GLN
1	А	249	GLN
1	А	743	ASN
1	А	905	HIS
1	А	929	ASN
1	А	982	GLN
2	В	64	GLN
2	В	122	ASN
2	В	460	GLN
2	В	474	ASN
1	Е	40	ASN
1	Е	249	GLN
1	Е	804	ASN
1	Е	982	GLN
2	F	35	ASN
2	F	66	GLN
2	F	186	GLN
2	F	232	ASN
2	F	326	ASN
2	F	374	ASN
4	L	77	GLN
8	Х	19	GLN
8	X	24	ASN
8	Х	63	GLN
8	Х	72	HIS
8	Х	496	ASN
8	X	641	ASN
8	Х	748	HIS
8	Х	775	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 4 ligands modelled in this entry, 2 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Chain	Chain	Chain	Chain	Dec	Tink	Bo	ond leng	$_{\rm ths}$	B	ond ang	les
WIOI	туре	Unain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
12	ADP	А	1102	11	24,29,29	0.85	1 (4%)	29,45,45	0.77	1 (3%)		
12	ADP	Е	1102	11	24,29,29	0.78	0	29,45,45	0.81	1 (3%)		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
12	ADP	А	1102	11	-	0/12/32/32	0/3/3/3
12	ADP	Е	1102	11	-	4/12/32/32	0/3/3/3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
12	А	1102	ADP	C8-N7	-2.00	1.31	1.34

M	ol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	А	1102	ADP	C5-C6-N6	2.48	124.10	120.31
1	2	Е	1102	ADP	C5-C6-N6	2.32	123.84	120.31

All (2) bond angle outliers are listed below:

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms	
12	Е	1102	ADP	C5'-O5'-PA-O1A	
12	Е	1102	ADP	C5'-O5'-PA-O2A	
12	Е	1102	ADP	C5'-O5'-PA-O3A	
12	Е	1102	ADP	C4'-C5'-O5'-PA	

There are no ring outliers.

2 monomers are involved in 4 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
12	А	1102	ADP	1	0
12	Е	1102	ADP	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-45788. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 195

Y Index: 195

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 192

Y Index: 168

Z Index: 151

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.1. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 759 nm^3 ; this corresponds to an approximate mass of 686 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.70	-	-
Author-provided FSC curve	2.66	3.07	2.71
Unmasked-calculated*	-	-	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-45788 and PDB model 9COP. Per-residue inclusion information can be found in section 3 on page 7.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.1 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.1).

9.4 Atom inclusion (i)

At the recommended contour level, 94% of all backbone atoms, 94% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.1) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score	
All	0.9400	0.2520	
А	0.9140	0.2320	– 10
В	0.9400	0.2790	1.0
Е	0.9360	0.2500	
F	0.9070	0.2220	
Ι	0.9220	0.2110	
J	0.9140	0.1660	
K	0.9680	0.3100	
L	0.9600	0.2850	
М	0.9560	0.2230	
N	0.9640	0.2210	0.0
Р	0.9850	0.1390	<0.0
X	0.9570	0.3140	
у	0.9680	0.1450	
Z	0.9510	0.2890	

