

wwPDB X-ray Structure Validation Summary Report (i)

Jun 12, 2024 – 09:44 AM EDT

PDB ID	:	2CDH
Title	:	ARCHITECTURE OF THE THERMOMYCES LANUGINOSUS FUNGAL
		FATTY ACID SYNTHASE AT 5 ANGSTROM RESOLUTION.
Authors	:	Jenni, S.; Leibundgut, M.; Maier, T.; Ban, N.
Deposited on	:	2006-01-24
Resolution	:	4.20 Å(reported)

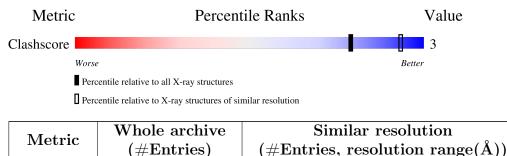
This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	NOT EXECUTED
EDS	:	NOT EXECUTED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2


1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 4.20 Å.

141614

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

1044(4.60-3.80)

Note EDS was not executed.

Clashscore

Mol	Chain	Length	Quality of chain
1	0	226	100%
1	1	226	100%
1	2	226	100%
1	3	226	100%
1	Y	226	100%
1	Z	226	100%
2	4	305	99%
2	5	305	99%
2	6	305	99%
2	7	305	99%

Continued from previous page...

Chain Length Quality of chain Mol 28 30599% • 2930599% 2М 305 99% 2Ν 30599% . Ο 230599% Р 230599% 2Q 30599% 2 \mathbf{R} 30599% ٠ 406 3 А 100% В 3 406100% С 3 40698% • D 4063 98% . 3 Е 406100% F 3 40699% \mathbf{G} 2444 100% 4 Η 244100% Ι 4 244100% J 4 244100% Κ 4 244100% L 4 244100% \mathbf{S} 5248100% Т 5248100% 5U 248100% \mathbf{V} 2485100% W 5248100%

Continued from previous page...

Mol	Chain	Length	Quality of chain
5	Х	248	100%

$2\mathrm{CDH}$

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 10404 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
1	0	226	Total C 226 226	0	0	226
1	1	226	Total C 226 226	0	0	226
1	2	226	Total C 226 226	0	0	226
1	3	226	Total C 226 226	0	0	226
1	Y	226	Total C 226 226	0	0	226
1	Ζ	226	Total C 226 226	0	0	226

• Molecule 1 is a protein called ENOYL REDUCTASE.

• Molecule 2 is a protein called MALONYL/PALMITOYL TRANSFERASE.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
2	4	305	Total C 305 305	0	0	305
2	5	305	Total C 305 305	0	0	305
2	6	305	Total C 305 305	0	0	305
2	7	305	Total C 305 305	0	0	305
2	8	305	Total C 305 305	0	0	305
2	9	305	Total C 305 305	0	0	305
2	М	305	Total C 305 305	0	0	305
2	Ν	305	Total C 305 305	0	0	305

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
2	О	305	Total C 305 305	0	0	305
2	Р	305	Total C 305 305	0	0	305
2	Q	305	Total C 305 305	0	0	305
2	R	305	Total C 305 305	0	0	305

 $\bullet\,$ Molecule 3 is a protein called KETOACYL SYNTHASE.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	А	406	Total C 406 406	0	0	406
3	В	406	Total C 406 406	0	0	406
3	С	406	Total C 406 406	0	0	406
3	D	406	Total C 406 406	0	0	406
3	Е	406	Total C 406 406	0	0	406
3	F	406	Total C 406 406	0	0	406

• Molecule 4 is a protein called KETOACYL REDUCTASE.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
4	G	244	Total C 244 244	0	0	244
4	Н	244	Total C 244 244	0	0	244
4	Ι	244	Total C 244 244	0	0	244
4	J	244	Total C 244 244	0	0	244
4	K	244	Total C 244 244	0	0	244
4	L	244	Total C 244 244	0	0	244

• Molecule 5 is a protein called DEHYDRATASE.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
5	\mathbf{S}	248	Total C 248 248	0	0	248
5	Т	248	Total C 248 248	0	0	248
5	U	248	Total C 248 248	0	0	248
5	V	248	Total C 248 248	0	0	248
5	W	248	Total C 248 248	0	0	248
5	Х	248	Total C 248 248	0	0	248

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS was not executed.

• Molecule 1: ENOYL REDUCTASE

Chain 0: 100% There are no outlier residues recorded for this chain. • Molecule 1: ENOYL REDUCTASE Chain 1: 100% There are no outlier residues recorded for this chain. • Molecule 1: ENOYL REDUCTASE Chain 2: 100% There are no outlier residues recorded for this chain. • Molecule 1: ENOYL REDUCTASE Chain 3: 100% There are no outlier residues recorded for this chain. • Molecule 1: ENOYL REDUCTASE Chain Y: 100% There are no outlier residues recorded for this chain. • Molecule 1: ENOYL REDUCTASE Chain Z: 100% There are no outlier residues recorded for this chain. • Molecule 2: MALONYL/PALMITOYL TRANSFERASE Chain 4: 99%

• Molecule 2: MALONYL/PALMITOYL TRANSFERASE

Chain 5: 99% .
1 2276 1 2276 1 2277 1 22777 1 22777 1 22777 1 22777 1 22777 1 22777 1 22777 1 22777 1 227777 1 227777 1 227777 1 227777777777
• Molecule 2: MALONYL/PALMITOYL TRANSFERASE
Chain 6: 99% .
V1 32 P2 77 13 14 14 15 15 14 15 14 15 14 15 15 15
• Molecule 2: MALONYL/PALMITOYL TRANSFERASE
Chain 7: 99% .
• Molecule 2: MALONYL/PALMITOYL TRANSFERASE
Chain 8: 99% .
• Molecule 2: MALONYL/PALMITOYL TRANSFERASE
Chain 9: 99% .
1212 1212 1214 1214
• Molecule 2: MALONYL/PALMITOYL TRANSFERASE
Chain M: 99%
• Molecule 2: MALONYL/PALMITOYL TRANSFERASE
Chain N: 99% ·

	76	77	14
H	8	P2	13

• Molecule 2: MALONYL/PALMITOYL TRANSFERASE

Chain O: 99%
• Molecule 2: MALONYL/PALMITOYL TRANSFERASE
Chain P: 99% ·
• Molecule 2: MALONYL/PALMITOYL TRANSFERASE
Chain Q: 99%
• Molecule 2: MALONYL/PALMITOYL TRANSFERASE
Chain R: 99%
• Molecule 3: KETOACYL SYNTHASE
Chain A: 100%
There are no outlier residues recorded for this chain.
• Molecule 3: KETOACYL SYNTHASE
Chain B: 100%
There are no outlier residues recorded for this chain.
• Molecule 3: KETOACYL SYNTHASE
Chain C: 98% .
M1 842 7114 7114 7115 7115 7139 8138 7139 7139 7139
• Molecule 3: KETOACYL SYNTHASE

Chain D:	98%	•
M1 542 6107 6107 6110 7114 7115 F115 F115 F115 F115		
• Molecule 3: KETOA	CYL SYNTHASE	
Chain E:	100%	
M1 V114 C266 D406		
• Molecule 3: KETOA	CYL SYNTHASE	
Chain F:	99%	·
M1 Q113 V114 H153 D406		
• Molecule 4: KETOA	CYL REDUCTASE	
Chain G:	100%	
There are no outlier re	esidues recorded for this chain.	
• Molecule 4: KETOA	CYL REDUCTASE	
Chain H:	100%	
There are no outlier re	esidues recorded for this chain.	
• Molecule 4: KETOA	CYL REDUCTASE	
Chain I:	100%	
There are no outlier re	esidues recorded for this chain.	
• Molecule 4: KETOA	CYL REDUCTASE	
Chain J:	100%	
There are no outlier re	esidues recorded for this chain.	
• Molecule 4: KETOA	CYL REDUCTASE	
Chain K:	100%	
There are no outlier re	esidues recorded for this chain.	
• Molecule 4: KETOA	CYL REDUCTASE	
Chain L:	100%	
There are no outlier re	esidues recorded for this chain.	

• Molecule 5: DEHYDRATASE
Chain S: 100%
• Molecule 5: DEHYDRATASE
Chain T: 100%
A10 41 448
• Molecule 5: DEHYDRATASE
Chain U: 100%
A40 A20 A20 A20 A20 A20 A20 A20 A20 A20 A2
• Molecule 5: DEHYDRATASE
Chain V: 100%
There are no outlier residues recorded for this chain.
• Molecule 5: DEHYDRATASE
Chain W: 100%
There are no outlier residues recorded for this chain.
• Molecule 5: DEHYDRATASE
Chain X: 100%
A10 A28 A289 A289

4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	217.00Å 415.00Å 222.00Å	Depositor
a, b, c, α , β , γ	90.00° 111.50° 90.00°	Depositor
Resolution (Å)	500.00 - 4.20	Depositor
% Data completeness	(Not available) (500.00-4.20)	Depositor
(in resolution range)	(1100 available) (000.00 4.20)	Depositor
R_{merge}	0.15	Depositor
R_{sym}	(Not available)	Depositor
Refinement program		Depositor
R, R_{free}	(Not available) , (Not available)	Depositor
Estimated twinning fraction	No twinning to report.	Xtriage
Total number of atoms	10404	wwPDB-VP
Average B, all atoms $(Å^2)$	23.0	wwPDB-VP

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

There are no protein, RNA or DNA chains available to summarize Z scores of covalent bonds and angles.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	0	226	0	0	0	0
1	1	226	0	0	0	0
1	2	226	0	0	0	0
1	3	226	0	0	0	0
1	Y	226	0	0	0	0
1	Ζ	226	0	0	0	0
2	4	305	0	0	2	0
2	5	305	0	0	2	0
2	6	305	0	0	2	0
2	7	305	0	0	1	0
2	8	305	0	0	1	0
2	9	305	0	0	2	0
2	М	305	0	0	1	0
2	N	305	0	0	1	0
2	0	305	0	0	1	0
2	Р	305	0	0	1	0
2	Q	305	0	0	1	0
2	R	305	0	0	1	0

Continued from previous page						
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	А	406	0	0	0	0
3	В	406	0	0	0	0
3	С	406	0	0	10	0
3	D	406	0	0	10	0
3	Е	406	0	0	3	0
3	F	406	0	0	3	0
4	G	244	0	0	0	0
4	Н	244	0	0	0	0
4	Ι	244	0	0	0	0
4	J	244	0	0	0	0
4	Κ	244	0	0	0	0
4	L	244	0	0	0	0
5	S	248	0	0	1	0
5	Т	248	0	0	1	0
5	U	248	0	0	1	0
5	V	248	0	0	0	0
5	W	248	0	0	0	0
5	Х	248	0	0	1	0
All	All	10404	0	0	29	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

The worst 5 of 29 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:C:138:MET:CA	3:D:107:GLY:CA	1.82	1.56
3:C:107:GLY:CA	3:D:138:MET:CA	1.95	1.44
3:C:115:PHE:CA	3:D:114:VAL:CA	2.16	1.24
3:E:266:GLY:CA	3:F:153:HIS:CA	2.31	1.09
3:C:200:GLU:CA	3:D:131:PRO:CA	2.44	0.96

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

There are no protein backbone outliers to report in this entry.

5.3.2 Protein sidechains (i)

There are no protein residues with a non-rotameric sidechain to report in this entry.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

