

wwPDB EM Validation Summary Report (i)

Oct 13, 2024 – 01:20 AM EDT

PDB ID	:	9AXT
EMDB ID	:	EMD-43972
Title	:	Non-translating S. pombe ribosome
Authors	:	Gluc, M.; Gemin, O.; Purdy, M.; Mattei, S.; Jomaa, A.
Deposited on	:	2024-03-06
Resolution	:	2.40 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	EM structures
INTEGI IC	$(\# {\rm Entries})$	$(\# { m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	АА	1842	52% 69%	23%	7%
		1012	27%		
2	AD	292	67% ·	30%	
			54%		
3	AE	252	81%	5%	14%
			24%		
4	AF	253	81%	•	15%
			87%		
5	AG	249	82%	5%	13%
			24%		
6	AH	262	94%		5%
			99%		
7	AI	203	97%		•
			90%		
8	AJ	239	89%		• 8%

Mol	Chain	Length	Quality of chain	
0	ΔK	105	79%	201
9	АК	190	93%	6% •
10	AL	200	92%	• 6%
11	4.3.4	100	49%	
	AM	192	63%	• 7%
12	AN	147	62% • 3	7%
			27%	
13	AO	152	90%	• 6%
14	AP	145	78%	% 17%
			44%	
15	AQ	151	97%	••
16	AB	139	53%	. 8%
10	1110	105	77%	• 070
17	AS	154	75% •	23%
10		140	99%	
18	AI	140	99% 87%	•
19	AU	131	85%	5% 10%
20	4.7.7	150	93%	
20	AV	152	91%	• 7%
21	AW	144	95%	
			85%	
22	Aa	118	84%	• 14%
23	Ab	87	94%	6%
			•	0,0
24	Ac	130	98%	••
25	Ad	1/13	82%	.
20	nu	140	82%	
26	Ae	134	96%	
07	Λf	20	78%	
21	AI		74% • 27%	22%
28	Ag	119	77% •	18%
	4.1	0.0	67%	
29	Ah	83	94%	• •
30	Ai	68	88%	• 7%
			93%	
31	Aj	56	93%	• 5%
32	Ak	61	90%	7% •
		~ 1	8%	170 •
33	B0	106	86%	• 12%

Mol	Chain	Length	Quality of chain	
34	B1	94	96%	. .
35	B2	3498	73%	% 8%
36	B3	246	4 1% 7% 52%	
37	B4	165	7%	16% 5%
38	BN	253	98%	
39	BO	388	97%	
40	BP	363	98%	<mark>.</mark>
41	BQ	294	20%	
42	BR	195	15%	17%
43	BS	251	9%	. 7%
44	BD	259	15%	10%
45	BU	180	87%	• 12%
40	DU		79%	• 11%
40	BV	221	<u>83%</u> 61%	• 14%
47	BW	174	89%	7% •
48	BX	208	99%	
49	BY	134	96%	•••
50	ΒZ	201	97%	•
51	Ba	197	98%	
52	Bb	187	78% •	19%
53	Bc	187	98%	
54	Bd	193	7%	19%
55	Be	176	98%	
56	Bf	160	98%	
57	Bg	117	82%	• 15%
58	Bh	139	7%	· ·

Mol	Chain	Length	Quality of chain	
59	Bi	149	<u>6%</u> <u>40%</u> • 58%	
60	Bj	141	82%	16%
61	Bk	126	97%	••
62	Bl	136	96%	••
63	Bm	148	97%	••
64	Bn	61	8%	•
65	Во	109	85%	• 14%
66	Bp	113	<u>6%</u> 88%	• 9%
67	Bq	127	91%	• 7%
68	Br	108	91%	6% •
69	Bs	111	92%	• 5%
70	Bt	122	9%	·
71	Bu	99	95%	• •
72	Bv	91	90%	10%
73	Bw	74	86%	7% 7%
74	Bx	51	92%	6% •
75	By	134	97%	•

2 Entry composition (i)

There are 76 unique types of molecules in this entry. The entry contains 194719 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	AA	1705	Total 36359	C 16255	N 6470	O 11929	Р 1705	0	0

• Molecule 2 is a protein called Small ribosomal subunit protein uS2A.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	AD	205	Total 1602	C 1016	N 294	0 287	${ m S}{ m 5}$	0	0

• Molecule 3 is a protein called Small ribosomal subunit protein eS1B.

Mol	Chain	Residues	Atoms				AltConf	Trace	
3	AE	216	Total 1733	C 1093	N 319	0 316	${S \atop 5}$	0	0

• Molecule 4 is a protein called Small ribosomal subunit protein uS5.

Mol	Chain	Residues	Atoms				AltConf	Trace	
4	AF	216	Total 1660	C 1072	N 289	O 292	${ m S} 7$	0	0

• Molecule 5 is a protein called Small ribosomal subunit protein uS3.

Mol	Chain	Residues	Atoms				AltConf	Trace	
5	AG	216	Total 1701	C 1080	N 308	O 305	S 8	0	0

• Molecule 6 is a protein called Small ribosomal subunit protein eS4C.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
6	AH	261	Total 2083	C 1330	N 391	O 356	${ m S}{ m 6}$	0	0

• Molecule 7 is a protein called Small ribosomal subunit protein uS7A.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	AI	203	Total 1559	C 972	N 291	O 290	S 6	0	0

• Molecule 8 is a protein called Small ribosomal subunit protein eS6B.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
8	AJ	221	Total 1784	C 1123	N 352	O 302	S 7	0	0

• Molecule 9 is a protein called Small ribosomal subunit protein eS7.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	AK	193	Total 1530	C 967	N 284	0 276	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called Small ribosomal subunit protein eS8B.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	AL	188	Total 1506	C 936	N 303	0 264	${ m S} { m 3}$	0	0

• Molecule 11 is a protein called Small ribosomal subunit protein uS4B.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	AM	178	Total 1462	C 928	N 291	0 241	${S \over 2}$	0	0

• Molecule 12 is a protein called Small ribosomal subunit protein eS10B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	AN	92	Total 748	C 484	N 132	O 130	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called Small ribosomal subunit protein uS17A.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	AO	143	Total 1164	C 743	N 222	0 196	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called Small ribosomal subunit protein eS12A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
14	AP	121	Total 884	C 549	N 151	0 177	${f S}$ 7	0	0

• Molecule 15 is a protein called Small ribosomal subunit protein uS15.

Mol	Chain	Residues	Atoms					AltConf	Trace
15	AQ	150	Total 1184	С 754	N 222	O 204	$\frac{S}{4}$	0	0

• Molecule 16 is a protein called Small ribosomal subunit protein uS11B.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	AR	128	Total 949	$\begin{array}{c} \mathrm{C} \\ 587 \end{array}$	N 184	0 174	${S \atop 4}$	0	0

• Molecule 17 is a protein called Small ribosomal subunit protein uS19B.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
17	AS	119	Total 954	C 608	N 179	O 163	$\frac{S}{4}$	0	0

• Molecule 18 is a protein called Small ribosomal subunit protein uS9A.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	AT	140	Total 1082	C 688	N 203	0 186	${ m S}{ m 5}$	0	0

• Molecule 19 is a protein called Small ribosomal subunit protein eS17A.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	AU	118	Total 972	C 606	N 185	0 179	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called Small ribosomal subunit protein uS13B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	AV	141	Total 1144	C 714	N 222	0 204	$\frac{S}{4}$	0	0

• Molecule 21 is a protein called Small ribosomal subunit protein eS19A.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	AW	142	Total 1119	C 699	N 212	O 205	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called Small ribosomal subunit protein uS10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	Aa	101	Total 815	C 511	N 156	0 146	${ m S} { m 2}$	0	0

• Molecule 23 is a protein called Small ribosomal subunit protein eS21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	Ab	87	Total 672	C 411	N 122	0 135	$\frac{S}{4}$	0	0

• Molecule 24 is a protein called Small ribosomal subunit protein uS8A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	Ac	129	Total 1028	C 649	N 196	0 179	${S \over 4}$	0	0

• Molecule 25 is a protein called Small ribosomal subunit protein uS12A.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	Ad	142	Total 1095	C 692	N 214	0 187	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called Small ribosomal subunit protein eS24A.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	Ae	133	Total 1078	C 672	N 217	0 185	${f S}$ 4	0	0

• Molecule 27 is a protein called Small ribosomal subunit protein eS25A.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
27	Af	69	Total 551	C 350	N 103	O 97	S 1	0	0

• Molecule 28 is a protein called Small ribosomal subunit protein eS26B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	Ag	97	Total 795	C 491	N 167	0 132	${f S}{5}$	0	0

• Molecule 29 is a protein called Small ribosomal subunit protein eS27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	Ah	81	Total 619	C 388	N 114	0 108	S 9	0	0

• Molecule 30 is a protein called Small ribosomal subunit protein eS28A.

Mol	Chain	Residues		Atc	\mathbf{ms}		AltConf	Trace	
30	Ai	63	Total 498	C 308	N 99	O 90	S 1	0	0

• Molecule 31 is a protein called Small ribosomal subunit protein uS14.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
21	Λį	53	Total	С	Ν	Ο	S	0	0
	лj	00	447	282	91	73	1	0	0

• Molecule 32 is a protein called Small ribosomal subunit protein eS30B.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
32	Ak	60	Total 475	C 296	N 99	0 78	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 33 is a protein called Large ribosomal subunit protein eL42.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	B0	93	Total 758	C 479	N 152	0 122	${f S}{5}$	0	0

• Molecule 34 is a protein called Large ribosomal subunit protein eL43A.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	B1	93	Total 718	C 442	N 147	0 123	${f S}{f 6}$	0	0

• Molecule 35 is a RNA chain called 28S ribosomal RNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
35	B2	3212	Total 68676	C 30687	N 12377	O 22400	Р 3212	0	0

• Molecule 36 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A		AltConf	Trace		
36	B3	119	Total 2539	C 1133	N 454	0 833	Р 119	0	0

• Molecule 37 is a RNA chain called 5.8S ribosomal RNA.

Mol	Chain	Residues		A	toms			AltConf	Trace
37	Β4	157	Total 3332	C 1491	N 583	O 1101	Р 157	0	0

• Molecule 38 is a protein called Large ribosomal subunit protein uL2C.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	BN	248	Total 1872	C 1166	N 377	0 324	${f S}{5}$	0	0

• Molecule 39 is a protein called Large ribosomal subunit protein uL3A.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	ВО	384	Total 3050	C 1929	N 576	O 535	S 10	0	0

• Molecule 40 is a protein called Large ribosomal subunit protein uL4A.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	BP	362	Total 2799	C 1768	N 538	O 490	${ m S} { m 3}$	0	0

• Molecule 41 is a protein called Large ribosomal subunit protein uL18B.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	BQ	287	Total 2312	C 1461	N 410	0 437	$\frac{S}{4}$	0	0

• Molecule 42 is a protein called Large ribosomal subunit protein eL6.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	BR	162	Total 1251	C 802	N 231	0 215	${ m S} { m 3}$	0	0

• Molecule 43 is a protein called Large ribosomal subunit protein uL30C.

Mol	Chain	Residues		At	AltConf	Trace			
43	BS	233	Total 1897	C 1211	N 349	0 334	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called Large ribosomal subunit protein eL8.

Mol	Chain	Residues		Ate	AltConf	Trace			
44	BT	229	Total 1772	C 1135	N 325	O 309	$\frac{S}{3}$	0	0

• Molecule 45 is a protein called Large ribosomal subunit protein uL6B.

Mol	Chain	Residues		At	AltConf	Trace			
45	BU	168	Total 1319	C 828	N 244	0 242	${ m S}{ m 5}$	0	0

• Molecule 46 is a protein called Large ribosomal subunit protein uL16A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
46	BV	191	Total 1549	C 982	N 291	O 270	S 6	0	0

• Molecule 47 is a protein called Large ribosomal subunit protein uL5A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
47	BW	167	Total 1346	C 854	N 252	O 235	${ m S}{ m 5}$	0	0

• Molecule 48 is a protein called Large ribosomal subunit protein eL13.

Mol	Chain	Residues		Ate	AltConf	Trace			
48	BX	207	Total 1654	C 1034	N 329	O 290	S 1	0	0

• Molecule 49 is a protein called Large ribosomal subunit protein eL14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
49	BY	130	Total 1038	C 662	N 198	0 174	$\frac{S}{4}$	0	0

• Molecule 50 is a protein called Large ribosomal subunit protein eL15B.

Mol	Chain	Residues		Ate	AltConf	Trace			
50	BZ	200	Total 1676	C 1050	N 348	0 275	${ m S} { m 3}$	0	0

• Molecule 51 is a protein called Large ribosomal subunit protein uL13A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
51	Ba	196	Total 1545	C 991	N 294	O 256	${S \atop 4}$	0	0

• Molecule 52 is a protein called Large ribosomal subunit protein uL22A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
52	Bb	152	Total 1212	C 770	N 229	O 210	${ m S} { m 3}$	0	0

• Molecule 53 is a protein called Large ribosomal subunit protein eL18B.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
53	Bc	186	Total 1487	C 937	N 300	O 250	0	0

• Molecule 54 is a protein called Large ribosomal subunit protein eL19B.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	Bd	157	Total 1301	C 809	N 275	0 212	${ m S}{ m 5}$	0	0

• Molecule 55 is a protein called Large ribosomal subunit protein eL20A.

Mol	Chain	Residues		At	oms			AltConf	Trace
55	Be	173	Total 1423	C 916	N 268	0 234	${f S}{5}$	0	0

• Molecule 56 is a protein called Large ribosomal subunit protein eL21B.

Mol	Chain	Residues		At	oms			AltConf	Trace
56	Bf	159	Total 1286	C 810	N 247	O 226	${ m S} { m 3}$	0	0

• Molecule 57 is a protein called Large ribosomal subunit protein eL22.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
57	Bg	99	Total 798	C 518	N 138	0 142	0	0

• Molecule 58 is a protein called Large ribosomal subunit protein uL14B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
58	Bh	134	Total 999	C 630	N 184	0 177	S 8	0	0

• Molecule 59 is a protein called Large ribosomal subunit protein eL24B.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
59	Bi	63	Total 523	C 336	N 102	O 82	${ m S} { m 3}$	0	0

• Molecule 60 is a protein called Large ribosomal subunit protein uL23A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
60	Bj	118	Total 947	$\begin{array}{c} \mathrm{C} \\ 605 \end{array}$	N 175	0 166	S 1	0	0

• Molecule 61 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues		At	oms			AltConf	Trace
61	Bk	125	Total 998	C 622	N 201	0 173	${ m S} { m 2}$	0	0

• Molecule 62 is a protein called Large ribosomal subunit protein eL27A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
62	Bl	135	Total 1078	C 698	N 200	0 178	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 63 is a protein called Large ribosomal subunit protein uL15B.

Mol	Chain	Residues		At	oms			AltConf	Trace
63	Bm	147	Total 1171	C 740	N 235	0 194	${ m S} { m 2}$	0	0

• Molecule 64 is a protein called Large ribosomal subunit protein eL29.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
64	Bn	59	Total 495	C 299	N 112	0 84	0	0

• Molecule 65 is a protein called Large ribosomal subunit protein eL30A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
65	Bo	94	Total 705	C 450	N 121	0 130	$\frac{S}{4}$	0	0

• Molecule 66 is a protein called Large ribosomal subunit protein eL31.

Mol	Chain	Residues	Atoms				AltConf	Trace	
66	Вр	103	Total 857	C 538	N 167	0 149	${ m S} { m 3}$	0	0

• Molecule 67 is a protein called Large ribosomal subunit protein eL32A.

Mol	Chain	Residues	Atoms				AltConf	Trace	
67	Bq	118	Total 944	C 591	N 191	O 157	${ m S}{ m 5}$	0	0

• Molecule 68 is a protein called Large ribosomal subunit protein eL33A.

Mol	Chain	Residues	Atoms				AltConf	Trace	
68	Br	104	Total 831	C 531	N 160	0 137	${ m S} { m 3}$	0	0

• Molecule 69 is a protein called Large ribosomal subunit protein eL34B.

Mol	Chain	Residues	Atoms			AltConf	Trace		
69	Bs	106	Total 858	C 538	N 176	0 142	${ m S} { m 2}$	0	0

• Molecule 70 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues	Atoms			AltConf	Trace	
70	Bt	121	Total 999	C 629	N 194	O 176	0	0

• Molecule 71 is a protein called Large ribosomal subunit protein eL36B.

Mol	Chain	Residues	Atoms			AltConf	Trace		
71	Bu	95	Total 759	C 472	N 159	0 127	S 1	0	0

• Molecule 72 is a protein called Large ribosomal subunit protein eL37B.

Mol	Chain	Residues	Atoms			AltConf	Trace		
72	Bv	82	Total 652	C 399	N 140	0 106	S 7	0	0

• Molecule 73 is a protein called Large ribosomal subunit protein eL38A.

Mol	Chain	Residues	Atoms				AltConf	Trace	
73	Bw	69	Total 560	$\begin{array}{c} \mathrm{C} \\ 355 \end{array}$	N 103	0 101	S 1	0	0

• Molecule 74 is a protein called Large ribosomal subunit protein eL39.

Mol	Chain	Residues	Atoms			AltConf	Trace		
74	Bx	50	Total 436	C 273	N 98	O 64	S 1	0	0

• Molecule 75 is a protein called Large ribosomal subunit protein eL28.

Mol	Chain	Residues	Atoms			AltConf	Trace		
75	Ву	134	Total 1039	C 646	N 204	0 187	${ m S} { m 2}$	0	0

• Molecule 76 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
76	Ag	1	Total Zn 1 1	0
76	Ah	1	Total Zn 1 1	0
76	Aj	1	Total Zn 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
76	B0	1	Total Zn 1 1	0
76	B1	1	Total Zn 1 1	0
76	Bv	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 18S ribosomal RNA

G793	U7 94	U7 95	U7 96	01.98 C1.98	G802	A803	-004	C807					A825	A826	A827	U828	A829	G831	A832	C833	G834	(836	U837	<mark>G838</mark>	G839		C842	U843	U845	U846		G849		G852	u854	U855	U856 C857	U858	A859	G861	A862 C863		CB66	
C867	<mark>G868</mark>	U869	A870		G873	A874	G / 80	A878	U888	<mark>6891</mark>		N897	A907	806 0	606N	G910	C912	A913	U918	G919	A920 A921	A922	U923 U924	C925	U926	0927	G929	A930		A948	U950	097 <u>4</u>	U975	U980 A981	C984	A985 A986	G987	A988	9660	1660				
A998	6665	G1000	G1002	A1003	A1007	A1008	G1009 A1010		G1012	A1013		A1016	G1017	A1018	A 1020		U1027	A1028	C1036	A1041	A1042 C1043		A1054	U1067	G1068	U1070	U1071	C1072 A	U	U	U1078	C1079	A1092	C1098	A1108	C1112	U1113 U1114	U1115 G1116	A1129					
-	C1137	C1139	A1140	A1154		00119	G1171	A1173	C1174	C1175	C1177	A1178	A1179	01180 61181	G1182	A1183	G1184	U1185	G1187	A1188	G1189	C1190	C1191	G1193	C1194	G1195	G1197	U1198	U1199 🔶 A1200	A1201	U1202	U1204	G1205	C1207	U1208	A1210	A1211	C1212 A1213	C1214	61215 G1216	G1217	A1219	A1220	
A1221	C1222	U1223	C1224	A1 225	C1227	A1228	G1229 G1230	U1231	C1232	C1233	61235 G	A1236	C1237	A1238	01239	G1241	U1242	A1243	A1244	G1246 G1246	A1247	U1248	U1249	G1250 A1251	C1252	A1253	G1254 🕈 A1255	U1 256	U1257	41259 A1259	G1260	A1261 G1262	C1263	01264 C1265	U1266	01267 01268	C1 269	U1270	G1272	A1273 U1274	U1275	C1276 U1277	A1278	G1280
G1281	G1282	U1283	G1284	01286 U1286	G1287	G1288	01289 G1290	C1291	A1292	U1293	G1295 G1295	C1296	C1297	G1298 111299	U1300	C1301	U1302	U1303	61305 61305	G1308	00010	U1322	C1323	01324 G1325	C1326	U1327	U1328 A1329	A1330	U1331 U1332	G1333	C1334 G1335	A1336	01337 A1338	A1342	C1349	C1350	U1351 U1352	A1353	A1354	C1356	U1357 G1358	C1359	U1360	
A1361	A1362	A1363	U1364	G1366	C1367	U1368	G1309 G1370	A1371	U1372	C1373	G1375 G1375	C1376	C1377	A1378	01379 111380	U1381	U1382	<mark>G1383</mark>	G1384	01386	G1387	A1388	U1389	C1390	U1392	U1393	A1394 G1395	<mark>C1396</mark>	U1397	C1399	U1400	U1401 A1402	G1403	A1404 G1405	G1406	G1407 A1408	C1409	U1410	U1412	U1413 G1414	G1415	C1416 A1417	U1418 A1419	A1420
• A1421	• G1422	C1423	C1424	A1425	• U1427	G1428	41429 A1430	A1431	G1432	U1433	01435	G1436	A1437	G1438	C1440	A1441	A1442	U1443	A1444	C1446	A1447	G1448	61449 111450	C1451	U1452	G1453	01454 G1455	A1456	U1457 G1458	C1459	C1460	U1462	U1463	G1465	A1466	G1468	U1469	U1470	U1472	G14/3 G1474	G1475	C1477	G1478 C1479	A1480
C1481	G 1482	C1483	G1484	G1485 G1486	C1487	U1488	A1489 C1490	A1491	C1492	01493	41494 A1495	• C1496	G1497	G1498	A1499	C1501	• C1502	A1503		G1506	A1507	G1508	U1509	01510 G	A A	A A	A A	A A	ט כ •			ט ט . • ט י	A D :			41533	U1534	C1535	U1537	U1538 61539	G1540		••	•
C1541	C1542	G1543	G1544		G1547	G1548		• U1551	G1552	G1553		A1556	A1557	U1558		U1561	G1562	● U1563			A1567	C1568			G1572	U1573		U1576	61577 01578 01578	U1579	G1580 G1581	G1582	G1583	01585	A1586	A1588	G1589	C1590	U1592	G1594	C1595	A1597	• U1598 U1599	A1600
U1601	• U1602	G1603	C1604	C1606	U1607	U1608	A1610	A1611	C1612	G1613	A1014 G1615	G1616	A1617	A1618		C1621	C1622		A1624	U1626	A1627	A1628	C1630	G1631	C1632	A1633	U1636	C1637	• U1639	C1640	G1642	C1643	U1645	G1646		01650 G1651	A1652	A1653	01034 A1655	C1656 C1657	U1658	C1659 C1660	C1661	20010
G1663	C1664	C167F		C1677	0/010	C1681	C1682 61683	U1684	C1685	G1686		A1689	C1690	U1691	A1692	C1693	G1695	A1696	U1697	01698	A1700	A1701	U1702	G1703		• U1706	U1707	G1709	01710	U1719	G1720	A1722	U1723	G1725	G1726		⊃ ত ♦	n n	⊳ 0	D U		23		
Ċ	ບ ⊲	A C	5 5	5 5	0 5	9 A	A	4 10	A1754	U1755 111756	G1757	C1758	C1759	G1760	G1762	A1763	A1764	G1765	U1765	G1768	01770	7 1 1 1	U1776	U1777	G1779 G1779	U1780	C1781	N1783	U1784	U1785 A1786	G1787	A1788 G1789	G1790	A1791 A1792	G1793	U1794	A1796	A1797	A1798 G1799	U1800	G1802	U1803		

• Molecule 5: Small ribosomal subunit protein uS3

ALA GLU GLU GLU THR ALA ALA ALA ALA TYR

• Molecule 6: Small ribosomal subunit protein eS4C

Chain AH:	24%		94%	5%										
MET V2 V12 S24 S24	R39 K62 D88 D93	K94 195 096 1105 1114 1115 A116 E117 E117	A119 A120 A120 A122 A122 A123 A133 A133 A133 A133 A133	P152 1153 1153 1153 N161 1164 1169 1169 N174	F175 D176 S177 A179 A179									
M182 M187 R187 E199 H200	H201 L202 C203 S204 1207	U212 A213 D215 P216 P216 P216 P216 P228 C229 P220 P220	2332 K233 \$234 \$240 \$243 \$247 \$247 \$247 \$247 \$247	2550 2551 2552 2253 2255 2255 2255 2255 2255										
• Molecule	Molecule 7: Small ribosomal subunit protein uS7A													
Chain AI:			99% 97%											
M1 A2 S3 S5 L6 S5	P8 69 811 112 113 D13	 E14 N15 G16 G16 S17 S17 S17 S17 S17 S12 F21 W22 K23 K23 	F24 P25 F26 F26 F27 E27 V29 F30 V31 V31 V31 V32 F33 F33 F33 F33 F35 F36 F36	V37 D38 Y39 Y39 Y39 T41 C41 C43 C43 C43 C43 C43 C45 C45 C45 C45 C45 C45 C45 C45 C45 C45	P49 H50 A52 A52 C53 C53 C53 C55 C55 C55 C55 C55 C55 C55									
R61 K62 A63 R64 C65 F66 F66	V68 E69 R70 L71 T72 N73 S74	L75 M76 M77 N78 079 R80 R80 N81 N81 C83 C83	K855 L685 A88 A88 A88 T191 V92 K93 A95 K95 A95	E97 198 1199 1199 1101 1101 1102 1103 1106 1106 1108	4105 1111 7112 7112 7114 7114 7116 7116 7116 7116 7116 7116									

• Molecule 8: Small ribosomal subunit protein eS6B

 \bullet Molecule 9: Small ribosomal subunit protein eS7

• Molecule 19: Small ribosomal subunit protein eS17A

ALA PRO GLU GLU ARG ARG ARG ARG GLN

• Molecule 20: Small ribosomal subunit protein uS13B

 \bullet Molecule 37: 5.8S ribosomal RNA

MET VAL LIZS ASIN THR THR THR VI VB VB VB VB VB V20 V21 V21 V22 V22 V22 V22 V22 V22 V22 V22	V106 V106 ASN VAL VAL VAL VAL ASN ASP ASN ASP GLU
GLU	
\bullet Molecule 58: Large ribosomal subunit protein uL14B	
Chain Bh: 94% · ·	
MET ARG GE ARG ARG ARG ARG AS AS AS AS AS AS AS AS AS AS AS AS AS	
\bullet Molecule 59: Large ribosomal subunit protein eL24B	
Chain Bi: 40% · 58%	I
M1 K2 V3 V3 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2	VAL ARG ALA ALA ALA ALA ALA ALA
ALA ALA ALA ALA ALA ALA ALA ALA ARG CLU SER ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
\bullet Molecule 60: Large ribosomal subunit protein uL23A	
Chain Bj: 82% · 16%	
MET VAL LYS BER ALA LYS CLYS CLYS CLYS CLN CLYS CLN CLYS CLN CLYS ALA ALA CLYS CLN CLYS CLN CLYS CLN CLYS CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	
\bullet Molecule 61: Large ribosomal subunit protein uL24	
Chain Bk: 97%	I
M K36 F40 F40 F40 K121 C122 K121 C122 C	
\bullet Molecule 62: Large ribosomal subunit protein eL27A	
Chain Bl: 96% · ·	I
MET K34 K34 K64 K66 K64 B64 B94 K195 K195 K126 K126 K126 K126 K126 K126 K126 K126	
\bullet Molecule 63: Large ribosomal subunit protein uL15B	
Chain Bm: 97% .	:

WORLDWIDE PROTEIN DATA BANK

9%

- Molecule 64: Large ribosomal subunit protein eL29 Chain Bn: 97% ALA A59 • Molecule 65: Large ribosomal subunit protein eL30A 24% Chain Bo: 85% 14% MET ALA SER VAL VAL UVAL LYS LYS LYS SER LYS SER LYS SER CLYS SER K25 S26 M24 D82 L83 G84 T85 A86 C87 588 588 K89 23 8 • Molecule 66: Large ribosomal subunit protein eL31 Chain Bp: 88% MET ALA ASN ASN THR LYS LYS SER SER ALA
- Molecule 67: Large ribosomal subunit protein eL32A

Chain Bq:	91%	•	7%
MET ALA ALA V4 V4 V4 C120 C120 ALA ALA ALA ALA C120 GLU GLU			
• Molecule 68: Large ribosomal sub	unit protein eL33A		

Chain Br: 91% 6% •

• Molecule 70: Large ribosomal subunit protein uL29

Chain Bt:	9%	
MET A2 F6 E18	I35 A36 A35 A35 A35 G37 G38 S39 G40 S41 M122 M122	
• Molecule	71: Large ribosomal subunit protein eL36B	
Chain Bu:	• 95%	
MET A2 P3 S62 S62	LEU ALA HIS	
• Molecule	72: Large ribosomal subunit protein eL37B	
Chain Bv:	90%	10%
MET T2 ALA ALA ALA VAL	ALA SERA ALA	
• Molecule	73: Large ribosomal subunit protein eL38A	
Chain Bw:	27%	7% 7%
MET P2 R3 K9 Q10	E13 R16 R17 K17 K17 K16 A20 A20 K121 A20 K31 A20 K31 K31 K31 K31 K32 A20 K31 K32 C38 C459 A11 K52 C459 C459 C459 C459 C459 C459 C459 C459	
• Molecule	74: Large ribosomal subunit protein eL39	
Chain Bx:	92%	6% •
NET P2 R18 L29	T31 T31 C32 C32 F134 F36 F40 F40 F40 F40	
• Molecule	75: Large ribosomal subunit protein eL28	
Chain By:	97%	·
M1 S2 V3 D14 R32	R44 B51 B51 A58 A58 A58 A58 A56 A90 A90 A90 A90 A90 A90 A90 A90 A90 A90	R128 P129 K130 K131 T132 V133

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	73376	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	1600	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	2.236	Depositor
Minimum map value	-1.145	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.080	Depositor
Recommended contour level	0.26	Depositor
Map size (Å)	424.96, 424.96, 424.96	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.83, 0.83, 0.83	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles			
WIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	AA	0.17	0/40661	0.77	22/63326~(0.0%)		
2	AD	0.25	0/1635	0.53	0/2228		
3	AE	0.24	0/1756	0.52	0/2358		
4	AF	0.26	0/1695	0.51	1/2297~(0.0%)		
5	AG	0.24	0/1726	0.51	0/2316		
6	AH	0.25	0/2125	0.55	0/2858		
7	AI	0.24	0/1577	0.49	0/2123		
8	AJ	0.25	0/1815	0.56	0/2428		
9	AK	0.25	0/1554	0.54	0/2091		
10	AL	0.24	0/1534	0.55	0/2050		
11	AM	0.25	0/1487	0.58	0/1990		
12	AN	0.24	0/769	0.48	0/1043		
13	AO	0.24	0/1190	0.52	0/1602		
14	AP	0.23	0/892	0.48	0/1208		
15	AQ	0.83	2/1208~(0.2%)	1.04	5/1624~(0.3%)		
16	AR	0.25	0/961	0.56	0/1293		
17	AS	0.25	0/973	0.56	0/1307		
18	AT	0.24	0/1100	0.49	0/1474		
19	AU	0.23	0/983	0.55	0/1318		
20	AV	0.23	0/1158	0.51	0/1552		
21	AW	0.23	0/1139	0.47	0/1531		
22	Aa	0.22	0/826	0.53	0/1114		
23	Ab	0.23	0/680	0.49	0/918		
24	Ac	0.23	0/1042	0.49	0/1399		
25	Ad	0.25	0/1115	0.52	0/1489		
26	Ae	0.24	0/1093	0.54	0/1453		
27	Af	0.23	0/558	0.55	0/750		
28	Ag	0.23	0/808	0.57	0/1083		
29	Ah	0.41	1/630~(0.2%)	0.66	1/845~(0.1%)		
30	Ai	0.24	0/500	0.63	0/669		
31	Aj	0.24	0/458	0.56	0/610		
32	Ak	0.23	0/482	0.55	0/639		

	Chain	Bo	ond lengths	E	Bond angles
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	B0	0.24	0/772	0.51	0/1025
34	B1	0.23	0/727	0.58	0/973
35	B2	0.19	0/76871	0.79	41/119827~(0.0%)
36	B3	0.18	0/2838	0.77	0/4422
37	B4	0.18	0/3723	0.76	0/5796
38	BN	0.24	0/1910	0.54	0/2575
39	BO	0.24	0/3116	0.51	0/4190
40	BP	0.24	0/2852	0.49	0/3850
41	BQ	0.24	0/2361	0.50	0/3173
42	BR	0.25	0/1275	0.50	0/1719
43	BS	0.24	0/1929	0.47	0/2583
44	BT	0.24	0/1801	0.45	0/2430
45	BU	0.23	0/1330	0.50	0/1789
46	BV	0.24	0/1579	0.49	0/2115
47	BW	0.58	2/1369~(0.1%)	0.74	4/1830~(0.2%)
48	BX	0.24	0/1686	0.51	0/2267
49	BY	0.23	0/1054	0.48	0/1413
50	ΒZ	0.23	0/1717	0.54	0/2306
51	Ba	0.25	0/1575	0.48	0/2109
52	Bb	0.25	0/1237	0.49	0/1661
53	Bc	0.24	0/1511	0.55	0/2021
54	Bd	0.23	0/1320	0.51	0/1757
55	Be	0.25	0/1458	0.51	0/1961
56	Bf	0.24	0/1314	0.49	0/1771
57	Bg	0.24	0/812	0.48	0/1090
58	Bh	0.25	0/1015	0.52	0/1369
59	Bi	0.25	0/534	0.50	0/709
60	Bj	0.24	0/963	0.49	0/1296
61	Bk	0.23	0/1008	0.54	0/1341
62	Bl	0.24	0/1101	0.49	0/1477
63	Bm	0.23	0/1200	0.52	0/1611
64	Bn	0.23	0/503	0.51	0/664
65	Bo	0.25	0/714	0.52	0/961
66	Bp	0.23	0/872	0.52	0/1172
67	Bq	0.24	0/958	0.53	0/1278
68	Br	0.53	2/853 (0.2%)	1.03	3/1146(0.3%)
69	Bs	0.25	0/870	0.56	0/1165
70	Bt	0.23	0/1008	0.49	0/1340
71	Bu	0.23	0/766	0.53	0/1017
72	Bv	0.24	0/666	0.56	0/881
73	Bw	0.26	$0/56\overline{6}$	$0.5\overline{4}$	0/757
74	Bx	0.23	0/447	0.58	0/597
75	By	0.23	$0/105\overline{3}$	0.51	$0/141\overline{4}$

Mol	Chain	Bo	ond lengths	Bond angles				
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5			
All	All	0.23	7/209364~(0.0%)	0.70	77/307834~(0.0%)			

The worst 5 of 7 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
15	AQ	61	PRO	CG-CD	-24.71	0.69	1.50
47	BW	45	PRO	CG-CD	-18.24	0.90	1.50
68	Br	59	PRO	CB-CG	-11.28	0.93	1.50
15	AQ	61	PRO	CB-CG	11.14	2.05	1.50
29	Ah	10	PRO	CG-CD	-6.76	1.28	1.50

The worst 5 of 77 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
15	AQ	61	PRO	N-CD-CG	-26.75	63.07	103.20
35	B2	3363	С	O5'-P-OP1	-24.73	81.02	110.70
15	AQ	61	PRO	CA-CB-CG	-19.05	67.80	104.00
68	Br	59	PRO	CB-CG-CD	18.84	179.98	106.50
47	BW	45	PRO	N-CD-CG	-17.52	76.92	103.20

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
2	AD	203/292~(70%)	183 (90%)	20 (10%)	0	100 100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	AE	214/252~(85%)	197 (92%)	16 (8%)	1 (0%)	25	38
4	AF	214/253~(85%)	205 (96%)	8 (4%)	1 (0%)	25	38
5	AG	214/249~(86%)	201 (94%)	13~(6%)	0	100	100
6	AH	259/262~(99%)	249 (96%)	9 (4%)	1 (0%)	30	44
7	AI	201/203~(99%)	187 (93%)	13~(6%)	1 (0%)	25	38
8	AJ	219/239~(92%)	210 (96%)	9 (4%)	0	100	100
9	AK	191/195~(98%)	181 (95%)	10 (5%)	0	100	100
10	AL	184/200~(92%)	179 (97%)	5(3%)	0	100	100
11	AM	176/192~(92%)	166 (94%)	9~(5%)	1 (1%)	22	33
12	AN	90/147~(61%)	77 (86%)	12 (13%)	1 (1%)	12	18
13	AO	141/152~(93%)	126 (89%)	15 (11%)	0	100	100
14	AP	119/145~(82%)	103 (87%)	14 (12%)	2(2%)	7	10
15	AQ	148/151~(98%)	143 (97%)	5(3%)	0	100	100
16	AR	126/139~(91%)	117 (93%)	9~(7%)	0	100	100
17	AS	117/154~(76%)	102 (87%)	15 (13%)	0	100	100
18	AT	138/140~(99%)	134 (97%)	4 (3%)	0	100	100
19	AU	116/131~(88%)	107 (92%)	7~(6%)	2(2%)	7	10
20	AV	139/152~(91%)	129 (93%)	10 (7%)	0	100	100
21	AW	140/144~(97%)	131 (94%)	9~(6%)	0	100	100
22	Aa	99/118~(84%)	97~(98%)	2(2%)	0	100	100
23	Ab	85/87~(98%)	81 (95%)	4(5%)	0	100	100
24	Ac	127/130~(98%)	122 (96%)	5 (4%)	0	100	100
25	Ad	140/143~(98%)	135 (96%)	5 (4%)	0	100	100
26	Ae	131/134~(98%)	126 (96%)	5 (4%)	0	100	100
27	Af	67/89~(75%)	66 (98%)	1 (2%)	0	100	100
28	Ag	95/119~(80%)	91 (96%)	4 (4%)	0	100	100
29	Ah	79/83~(95%)	75 (95%)	4(5%)	0	100	100
30	Ai	61/68~(90%)	57 (93%)	4 (7%)	0	100	100
31	Aj	51/56~(91%)	45 (88%)	6 (12%)	0	100	100
32	Ak	58/61~(95%)	52 (90%)	5 (9%)	1 (2%)	7	10
33	B0	91/106~(86%)	88 (97%)	3 (3%)	0	100	100

Continued from previous page.	ued from previous page	
-------------------------------	------------------------	--

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
34	B1	91/94~(97%)	84 (92%)	7 (8%)	0	100	100
38	BN	246/253~(97%)	231 (94%)	15~(6%)	0	100	100
39	BO	382/388~(98%)	369~(97%)	13 (3%)	0	100	100
40	BP	360/363~(99%)	346 (96%)	14 (4%)	0	100	100
41	BQ	285/294~(97%)	279~(98%)	6(2%)	0	100	100
42	BR	160/195~(82%)	143 (89%)	17 (11%)	0	100	100
43	BS	231/251~(92%)	226 (98%)	5(2%)	0	100	100
44	BT	227/259~(88%)	222 (98%)	5(2%)	0	100	100
45	BU	162/189~(86%)	157 (97%)	5(3%)	0	100	100
46	BV	187/221~(85%)	183 (98%)	4 (2%)	0	100	100
47	BW	165/174~(95%)	157 (95%)	8 (5%)	0	100	100
48	BX	205/208~(99%)	201 (98%)	4 (2%)	0	100	100
49	BY	128/134~(96%)	126 (98%)	2 (2%)	0	100	100
50	BZ	198/201~(98%)	191 (96%)	6 (3%)	1 (0%)	25	38
51	Ba	194/197~(98%)	191 (98%)	3 (2%)	0	100	100
52	Bb	150/187~(80%)	145 (97%)	5 (3%)	0	100	100
53	Bc	184/187~(98%)	178 (97%)	6 (3%)	0	100	100
54	Bd	155/193~(80%)	151 (97%)	4 (3%)	0	100	100
55	Be	171/176~(97%)	168 (98%)	3 (2%)	0	100	100
56	Bf	157/160~(98%)	151 (96%)	6 (4%)	0	100	100
57	Bg	97/117~(83%)	87 (90%)	10 (10%)	0	100	100
58	Bh	132/139~(95%)	127 (96%)	5 (4%)	0	100	100
59	Bi	61/149 (41%)	60 (98%)	1 (2%)	0	100	100
60	Bj	116/141~(82%)	109 (94%)	7 (6%)	0	100	100
61	Bk	123/126~(98%)	121 (98%)	2 (2%)	0	100	100
62	Bl	133/136~(98%)	124 (93%)	9(7%)	0	100	100
63	Bm	145/148~(98%)	137 (94%)	8 (6%)	0	100	100
64	Bn	57/61~(93%)	55 (96%)	2(4%)	0	100	100
65	Bo	92/109~(84%)	91 (99%)	1 (1%)	0	100	100
66	Bp	101/113~(89%)	98 (97%)	3(3%)	0	100	100
67	Bq	116/127~(91%)	114 (98%)	2 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
68	Br	102/108~(94%)	100 (98%)	2(2%)	0	100	100
69	Bs	104/111~(94%)	101 (97%)	3~(3%)	0	100	100
70	Bt	119/122~(98%)	116 (98%)	3~(2%)	0	100	100
71	Bu	93/99~(94%)	91~(98%)	2(2%)	0	100	100
72	Bv	80/91~(88%)	74 (92%)	6 (8%)	0	100	100
73	Bw	67/74~(90%)	65~(97%)	2(3%)	0	100	100
74	Bx	48/51~(94%)	47 (98%)	1 (2%)	0	100	100
75	By	132/134~(98%)	126 (96%)	6 (4%)	0	100	100
All	All	10389/11466~(91%)	9904 (95%)	473 (5%)	12 (0%)	50	65

5 of 12 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
6	AH	12	VAL
19	AU	118	VAL
3	AE	147	ALA
7	AI	79	GLY
50	ΒZ	183	SER

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	AD	170/228~(75%)	161~(95%)	9~(5%)	19	33
3	AE	193/223~(86%)	181 (94%)	12~(6%)	15	26
4	AF	175/199~(88%)	167~(95%)	8 (5%)	23	39
5	AG	181/203~(89%)	168~(93%)	13~(7%)	12	20
6	AH	226/227~(100%)	211~(93%)	15 (7%)	14	23
7	AI	169/169~(100%)	163~(96%)	6 (4%)	30	49
8	AJ	188/204~(92%)	180 (96%)	8 (4%)	25	42
9	AK	169/171~(99%)	157 (93%)	12 (7%)	12	20

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
10	AL	157/166~(95%)	152 (97%)	5(3%)	34	54
11	AM	155/165~(94%)	149~(96%)	6~(4%)	27	46
12	AN	77/116~(66%)	77~(100%)	0	100	100
13	AO	124/131~(95%)	118~(95%)	6~(5%)	21	37
14	AP	92/118~(78%)	86~(94%)	6~(6%)	14	24
15	AQ	127/128~(99%)	124 (98%)	3~(2%)	44	64
16	AR	95/104 (91%)	90~(95%)	5(5%)	19	33
17	AS	101/131~(77%)	97~(96%)	4 (4%)	27	45
18	AT	111/111 (100%)	109 (98%)	2(2%)	54	73
19	AU	107/120~(89%)	103 (96%)	4 (4%)	29	48
20	AV	127/136~(93%)	124 (98%)	3(2%)	44	64
21	AW	117/119~(98%)	112 (96%)	5 (4%)	25	42
22	Aa	95/111 (86%)	93~(98%)	2(2%)	48	69
23	Ab	73/73~(100%)	68~(93%)	5(7%)	13	22
24	Ac	114/115~(99%)	112 (98%)	2(2%)	54	73
25	Ad	112/113~(99%)	107 (96%)	5 (4%)	23	40
26	Ae	112/113~(99%)	107~(96%)	5 (4%)	23	40
27	Af	61/75~(81%)	58~(95%)	3~(5%)	21	36
28	Ag	87/106~(82%)	82 (94%)	5~(6%)	17	29
29	Ah	71/73~(97%)	69~(97%)	2(3%)	38	59
30	Ai	56/61~(92%)	53~(95%)	3~(5%)	18	32
31	Aj	45/47~(96%)	44 (98%)	1 (2%)	47	67
32	Ak	51/52~(98%)	48 (94%)	3~(6%)	16	28
33	B0	84/93~(90%)	82 (98%)	2(2%)	44	64
34	B1	74/75~(99%)	71 (96%)	3 (4%)	26	44
38	BN	188/192~(98%)	187 (100%)	1 (0%)	86	94
39	BO	318/326~(98%)	312 (98%)	6(2%)	52	72
40	BP	293/294~(100%)	288 (98%)	5 (2%)	56	75
41	BQ	235/241~(98%)	227~(97%)	8 (3%)	32	52
42	BR	132/155~(85%)	127 (96%)	5 (4%)	28	47
43	BS	198/213~(93%)	196 (99%)	2 (1%)	73	86

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
44	BT	182/212~(86%)	175~(96%)	7~(4%)	28	47
45	BU	149/168~(89%)	144~(97%)	5(3%)	32	52
46	BV	165/187~(88%)	158~(96%)	7~(4%)	25	43
47	BW	141/146~(97%)	129 (92%)	12 (8%)	8	14
48	BX	166/167~(99%)	165 (99%)	1 (1%)	84	92
49	BY	110/113~(97%)	108 (98%)	2 (2%)	54	73
50	BZ	175/176~(99%)	171 (98%)	4 (2%)	45	66
51	Ba	159/160~(99%)	156 (98%)	3 (2%)	52	72
52	Bb	124/149~(83%)	117 (94%)	7 (6%)	17	30
53	Bc	157/158~(99%)	154 (98%)	3 (2%)	52	72
54	Bd	136/163~(83%)	132 (97%)	4 (3%)	37	58
55	Be	151/154~(98%)	150 (99%)	1 (1%)	81	91
56	Bf	138/139~(99%)	136 (99%)	2 (1%)	62	79
57	Bg	86/103 (84%)	83 (96%)	3 (4%)	31	51
58	Bh	103/107~(96%)	99~(96%)	4 (4%)	27	46
59	Bi	57/121 (47%)	53 (93%)	4 (7%)	12	21
60	Bj	105/122~(86%)	103 (98%)	2 (2%)	52	72
61	Bk	110/111 (99%)	107 (97%)	3 (3%)	40	60
62	Bl	114/115~(99%)	109 (96%)	5 (4%)	24	41
63	Bm	122/123~(99%)	119 (98%)	3 (2%)	42	63
64	Bn	50/51~(98%)	50 (100%)	0	100	100
65	Bo	75/87~(86%)	74 (99%)	1 (1%)	65	81
66	Bp	94/102~(92%)	91~(97%)	3 (3%)	34	54
67	Bq	100/107~(94%)	98~(98%)	2 (2%)	50	70
68	Br	91/94~(97%)	86 (94%)	5 (6%)	18	31
69	Bs	91/96~(95%)	87 (96%)	4 (4%)	24	41
70	Bt	106/107~(99%)	106 (100%)	0	100	100
71	Bu	81/84~(96%)	80 (99%)	1 (1%)	67	82
72	Bv	68/71~(96%)	68 (100%)	0	100	100
73	Bw	$\overline{63/66} \ (96\%)$	58 (92%)	5 (8%)	10	16
74	Bx	$46/\overline{47}\ (98\%)$	43 (94%)	3(6%)	14	24

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
75	By	113/113~(100%)	109 (96%)	4 (4%)	31 51
All	All	8888/9616~(92%)	8578 (96%)	310 (4%)	33 51

 $5~{\rm of}~310$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
48	BX	114	GLU
67	Bq	27	GLU
51	Ba	101	GLU
57	Bg	86	SER
73	Bw	13	GLU

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 60 such side chains are listed below:

Mol	Chain	Res	Type
39	BO	293	ASN
70	Bt	84	GLN
43	BS	194	HIS
70	Bt	33	GLN
75	By	41	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	AA	1687/1842~(91%)	413 (24%)	16 (0%)
35	B2	3204/3498~(91%)	644 (20%)	26~(0%)
36	B3	118/246~(47%)	17~(14%)	1 (0%)
37	B4	156/165~(94%)	26~(16%)	1 (0%)
All	All	5165/5751 (89%)	1100 (21%)	44 (0%)

5 of 1100 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	AA	3	С
1	AA	4	С
1	AA	25	С
1	AA	26	А
1	AA	34	G

5 of 44 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
35	B2	1269	С
35	B2	3217	U
35	B2	1272	U
35	B2	2661	U
35	B2	3292	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 6 ligands modelled in this entry, 6 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	AA	9

The worst 5 of 9 chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	AA	537:A	O3'	538:A	Р	4.50
1	AA	546:C	O3'	547:A	Р	4.24
1	AA	1419:A	O3'	1420:A	Р	4.11
1	AA	1359:C	O3'	1360:U	Р	3.79
1	AA	1483:C	O3'	1484:G	Р	3.67

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-43972. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 275

Y Index: 247

Z Index: 323

6.3.2 Raw map

X Index: 0

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.26. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

emd_43972_msk_1.map (i) 6.6.1

Х

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 798 $\rm nm^3;$ this corresponds to an approximate mass of 720 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.417 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.417 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{B}_{\mathrm{assolution ostimato}}(\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.40	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	3.16	4.36	3.25

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.16 differs from the reported value 2.4 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-43972 and PDB model 9AXT. Per-residue inclusion information can be found in section 3 on page 18.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.26 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.26).

9.4 Atom inclusion (i)

At the recommended contour level, 62% of all backbone atoms, 61% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.26) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.6110	0.4710
AA	0.3830	0.3040
AD	0.4760	0.4750
AE	0.3310	0.4020
AF	0.5420	0.4860
AG	0.0350	0.1970
AH	0.5600	0.4930
AI	0.0700	0.2400
AJ	0.0850	0.2720
AK	0.1760	0.3090
AL	0.4000	0.4120
AM	0.3840	0.4250
AN	0.0180	0.1400
AO	0.5670	0.4850
AP	0.0020	0.1310
AQ	0.4300	0.4500
AR	0.3800	0.4060
AS	0.0380	0.1410
AT	0.0660	0.2240
AU	0.1050	0.2880
AV	0.0490	0.1830
AW	0.0630	0.2100
Aa	0.0760	0.2020
Ab	0.5120	0.4800
Ac	0.7430	0.5550
Ad	0.1950	0.3170
Ae	0.2370	0.3540
Af	0.0200	0.1580
Ag	0.4830	0.4510
Ah	0.2880	0.4020
Ai	0.0820	0.3060
Aj	0.0540	0.2630
Ak	0.0220	0.2230
B0	0.7550	0.5840
B1	0.7120	0.5720

Chain	Atom inclusion	Q-score
B2	0.7780	0.5350
B3	0.8450	0.5590
B4	0.8680	0.5760
BN	0.9080	0.6490
BO	0.9010	0.6430
BP	0.8980	0.6450
BQ	0.6680	0.5380
BR	0.6630	0.5350
BS	0.8430	0.6070
BT	0.7310	0.5850
BU	0.0610	0.2580
BV	0.1460	0.3590
BW	0.3270	0.3660
BX	0.7540	0.5940
BY	0.7320	0.5710
BZ	0.9730	0.6700
Ba	0.8950	0.6410
Bb	0.9090	0.6520
Bc	0.9020	0.6490
Bd	0.8390	0.6140
Be	0.8170	0.6100
Bf	0.7600	0.5740
Bg	0.5590	0.5040
Bh	0.8420	0.6260
Bi	0.7280	0.5810
Bj	0.8640	0.6230
Bk	0.8030	0.6140
Bl	0.7320	0.5650
Bm	0.9360	0.6580
Bn	0.8620	0.6210
Bo	0.6070	0.5150
Bp	0.8550	0.6230
Bq	0.9110	0.6470
Br	0.9230	0.6500
Bs	0.8970	0.6480
Bt	0.8000	0.6100
Bu	0.8170	0.6170
Bv	0.9600	0.6670
Bw	0.5920	0.5100
Bx	0.7080	0.5240
By	0.6030	0.5620

