

Apr 23, 2024 - 05:35 am BST

PDB ID	:	7ABG
EMDB ID	:	EMD-11695
Title	:	Human pre-Bact-1 spliceosome
Authors	:	Townsend, C.; Kastner, B.; Leelaram, M.N.; Bertram, K.; Stark, H.;
		Luehrmann, R.
Deposited on	:	2020-09-07
Resolution	:	7.80 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 7.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	A5	790	• 84%			7% • 7%
2	A2	103	• 67%	9%	•	23%
3	Z	125	6% 85%			• 14%
4	F	464	10% • 89%	_		
5	D	357	76%		8%	• 15%
6	W	255	33% 62%	_	36%	
7	В	225	75%	•		25%

Continued on next page...

Mol	Chain	Length	Qua	ality of chain		
8	S	2136	80%			19%
9	Q	144		94%		• •
10	A1	156	8	39%		6% 5%
11	5	116	45%	46%		8% •
12	L	802	12%	87%		
13	R	229	•	96%		
14	V	95	5%	92%		• 5%
15	9	102	5%	•	289	%
16	С	139	• 54%	·	42%	
17	Н	91	11%		13%	16%
18	J	80	70%		16%	14%
19	2	188	32%	22% 139	//0 2	23%
20	A3	96	51%	14%	35%	
21	K	439	27% •	72%		
22	v	110		91%		9%
23	G	514	60%		38%	
24	Z	230	7% 10%	80%		
25	A	2335	· · · · · · · · · · · · · · · · · · ·	80%		. 7%
26	I	312	56%	70	1194	• 778
20	P	420	270/	610/	4476	
21	n	703	7%	020/		
20	р 	793 501	47%	92%		
29	4	1000	80%		••	10%
30	A4	1098	36% ·	63%		
31	u	1304	64%		36%	
32	Т	895	18% •	80%		

Continued from previous page...

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
33	Е	1217	91%	6% •
34	W	424	18% 82%	
35	x	86	91%	• 8%
36	v	536	22% 78%	
37	0	396	• 37% • 62%	
38	Ν	199	26% • 72%	
39	r	972	87%	13%
40	Y	904	9% • 89%	
41	6	106	42% 27% ·	26%
42	A6	248	27% · 70%	
43	a	118	66%	34%
43	h	118	9%81%	19%
44	b	86	85%	15%
44	i	86	19%	16%
45	f	240	27% 73%	
45	m	240	8% 34% 66%	
46	е	126	62%	38%
46	1	126	66%	34%
47	d	76	91%	9%
47	k	76	96%	·
48	с	92	85%	15%
48	j	92	66%	12%
49	g	119	78%	22%
49	n	119	• 67%	33%
50	q	73	100%	

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain
51	Х	641	6% 94%

2 Entry composition (i)

There are 55 unique types of molecules in this entry. The entry contains 73818 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Nuclear cap-binding protein subunit 1.

Mol	Chain	Residues	Atoms			AltConf	Trace	
1	A5	732	Total 3723	C 2259	N 732	O 732	0	0

• Molecule 2 is a protein called U6 snRNA-associated Sm-like protein LSm7.

Mol	Chain	Residues	Atoms				AltConf	Trace
2	A2	79	Total 393	C 235	N 79	O 79	0	0

• Molecule 3 is a protein called Splicing factor 3B subunit 6.

Mol	Chain	Residues	Atoms				AltConf	Trace
3	7	108	Total	С	Ν	Ο	0	0
5	Z	100	544	328	108	108	0	0

• Molecule 4 is a protein called Splicing factor 3A subunit 2.

Mol	Chain	Residues	Atoms				AltConf	Trace
4	F	49	Total 242	C 144	N 49	O 49	0	0

• Molecule 5 is a protein called U5 small nuclear ribonucleoprotein 40 kDa protein.

Mol	Chain	Residues	Atoms				AltConf	Trace
5	D	302	Total 1506	C 902	N 302	O 302	0	0

• Molecule 6 is a protein called U2 small nuclear ribonucleoprotein A'.

Mol	Chain	Residues	Atoms				AltConf	Trace
6	W	162	Total 816	C 492	N 162	O 162	0	0

• Molecule 7 is a protein called U2 small nuclear ribonucleoprotein B".

Mol	Chain	Residues	Atoms				AltConf	Trace
7	В	169	Total 851	C 513	N 169	O 169	0	0

• Molecule 8 is a protein called U5 small nuclear ribonucleoprotein 200 kDa helicase.

Mol	Chain	Residues		Ato	AltConf	Trace		
8	S	1722	Total 8688	C 5244	N 1722	O 1722	0	0

• Molecule 9 is a protein called Protein BUD31 homolog.

Mol	Chain	Residues	Atoms				AltConf	Trace
9	Q	138	Total 695	C 419	N 138	O 138	0	0

• Molecule 10 is a protein called Nuclear cap-binding protein subunit 2.

Mol	Chain	Residues	Atoms				AltConf	Trace
10	A1	148	Total 724	C 428	N 148	0 148	0	0

• Molecule 11 is a RNA chain called U5 snRNA.

Mol	Chain	Residues		A	AltConf	Trace			
11	5	114	Total 2397	C 1074	N 399	0 810	Р 114	0	0

• Molecule 12 is a protein called Cell division cycle 5-like protein.

Mol	Chain	Residues	Atoms				AltConf	Trace
12	L	103	Total 517	C 311	N 103	O 103	0	0

• Molecule 13 is a protein called Spliceosome-associated protein CWC15 homolog.

Mol	Chain	Residues	Atoms				AltConf	Trace
13	R	9	Total 45	C 27	N 9	O 9	0	0

• Molecule 14 is a protein called U6 snRNA-associated Sm-like protein LSm2.

Mol	Chain	Residues	Atoms				AltConf	Trace
14	V	90	Total 453	C 273	N 90	O 90	0	0

• Molecule 15 is a protein called U6 snRNA-associated Sm-like protein LSm3.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
15	9	73	Total 369	C 223	N 73	O 73	0	0

• Molecule 16 is a protein called U6 snRNA-associated Sm-like protein LSm4.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
16	С	80	Total 404	C 244	N 80	O 80	0	0

• Molecule 17 is a protein called U6 snRNA-associated Sm-like protein LSm5.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
17	Н	76	Total 380	C 228	N 76	О 76	0	0

• Molecule 18 is a protein called U6 snRNA-associated Sm-like protein LSm6.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
18	J	69	Total 342	C 204	N 69	O 69	0	0

• Molecule 19 is a RNA chain called U2 snRNA.

Mol	Chain	Residues		А	AltConf	Trace			
19	2	145	Total 3077	C 1374	N 533	O 1025	Р 145	0	0

• Molecule 20 is a protein called U6 snRNA-associated Sm-like protein LSm8.

Mol	Chain	Residues	Atoms				AltConf	Trace
20	A3	62	Total 304	C 180	N 62	O 62	0	0

• Molecule 21 is a protein called Microfibrillar-associated protein 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
21	К	123	Total 614	C 368	N 123	0 123	0	0

• Molecule 22 is a protein called PHD finger-like domain-containing protein 5A.

Mol	Chain	Residues	Atoms				AltConf	Trace
22	У	100	Total 498	C 298	N 100	O 100	0	0

• Molecule 23 is a protein called Pleiotropic regulator 1.

Mol	Chain	Residues	Atoms				AltConf	Trace
23	G	320	Total 1604	C 964	N 320	O 320	0	0

• Molecule 24 is a RNA chain called MINX M3 pre-mRNA.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
24	Z	47	Total 998	С 447	N 177	0 327	Р 47	0	0

• Molecule 25 is a protein called Pre-mRNA-processing-splicing factor 8.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
25	А	2174	Total 11024	C 6676	N 2174	0 2174	0	0

• Molecule 26 is a protein called Pre-mRNA-splicing factor 38A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
26	Ι	176	Total 883	C 531	N 176	O 176	0	0

• Molecule 27 is a protein called Pre-mRNA-splicing factor RBM22.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
27	Р	162	Total 825	C 501	N 162	O 162	0	0

• Molecule 28 is a protein called Splicing factor 3A subunit 1.

Mol	Chain	Residues	Atoms				AltConf	Trace
28	р	60	Total 301	C 181	N 60	O 60	0	0

• Molecule 29 is a protein called Splicing factor 3A subunit 3.

Mol	Chain	Residues		Ator	AltConf	Trace		
29	4	421	Total 2110	C 1268	N 421	O 421	0	0

• Molecule 30 is a protein called Transcription elongation regulator 1.

Mol	Chain	Residues		Ator	AltConf	Trace		
30	A4	405	Total 2034	C 1224	N 405	O 405	0	0

• Molecule 31 is a protein called Splicing factor 3B subunit 1.

Mol	Chain	Residues		Ator	AltConf	Trace		
31	u	836	Total 4207	$\begin{array}{c} \mathrm{C} \\ 2535 \end{array}$	N 836	O 836	0	0

• Molecule 32 is a protein called Splicing factor 3B subunit 2.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
32	Т	183	Total 942	C 576	N 183	0 183	0	0

• Molecule 33 is a protein called Splicing factor 3B subunit 3.

Mol	Chain	Residues		Ato	AltConf	Trace		
33	Е	1177	Total 5926	$\begin{array}{c} \mathrm{C} \\ 3572 \end{array}$	N 1177	O 1177	0	0

• Molecule 34 is a protein called Splicing factor 3B subunit 4.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
34	W	78	Total 391	C 235	N 78	O 78	0	0

• Molecule 35 is a protein called Splicing factor 3B subunit 5.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
35	х	79	Total 397	C 239	N 79	O 79	0	0

• Molecule 36 is a protein called SNW domain-containing protein 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
36	V	119	Total 605	$\begin{array}{c} \mathrm{C} \\ 367 \end{array}$	N 119	O 119	0	0

• Molecule 37 is a protein called Smad nuclear-interacting protein 1.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
37	0	150	Total 761	C 461	N 150	O 150	0	0

• Molecule 38 is a protein called Zinc finger matrin-type protein 2.

Mol	Chain	Residues		Atom	ıs	AltConf	Trace	
38	Ν	56	Total 277	C 165	N 56	O 56	0	0

• Molecule 39 is a protein called 116 kDa U5 small nuclear ribonucleoprotein component.

Mol	Chain	Residues		Ator	AltConf	Trace		
39	r	844	Total 4265	C 2577	N 844	0 844	0	0

• Molecule 40 is a protein called Serine/arginine repetitive matrix protein 1.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
40	Y	95	Total 478	C 288	N 95	O 95	0	0

• Molecule 41 is a RNA chain called U6 snRNA.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
41	6	78	Total 1672	С 747	N 309	O 538	Р 78	0	0

• Molecule 42 is a protein called Serine/arginine-rich splicing factor 1.

Mol	Chain	Residues	Atoms			AltConf	Trace	
42	A6	74	Total 368	C 220	N 74	O 74	0	0

• Molecule 43 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues	Atoms				AltConf	Trace
42	h	05	Total	С	Ν	0	0	0
40 11	11	90	482	292	95	95	0	0
49	0	70	Total	С	Ν	0	0	0
43	a	a (8	393	237	78	78	0	0

• Molecule 44 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues	Atoms				AltConf	Trace
44	i	72	Total	С	Ν	0	0	0
44	1	12	359	215	72	72	0	0
44	h	73	Total	С	Ν	0	0	0
-14	U	10	364	218	73	73		0

• Molecule 45 is a protein called Small nuclear ribonucleoprotein-associated proteins B and B'.

Mol	Chain	Residues		Atoms				Trace
45	m	80	Total	С	Ν	0	0	0
40	111	02	413	249	82	82	0	0
45	f	64	Total	С	Ν	0	0	0
45	Î	t 64	319	191	64	64	0	0

• Molecule 46 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues	Atoms			AltConf	Trace	
46	1	03	Total	С	Ν	0	0	0
40	1	00	415	249	83	83	0	0
46	0	79	Total	С	Ν	0	0	0
40	е	18	390	234	78	78	0	U

• Molecule 47 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues	Atoms				AltConf	Trace	
47	ŀ	73	Total	С	Ν	0	0	0	
47	K	15	364	218	73	73	0	0	
47	d	60	Total	С	Ν	0	0	0	
47	a	09	344	206	69	69	0	0	

• Molecule 48 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues	Atoms				AltConf	Trace
48	j	81	Total 403	C 241	N 81	0 81	0	0
48	с	78	Total 388	C 232	N 78	O 78	0	0

• Molecule 49 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
40	n	80	Total	С	Ν	0	0	0
49	11	80	402	242	80	80	0	0
40	ď	03	Total	С	Ν	0	0	0
49	g	g 93	469	283	93	93	0	U

• Molecule 50 is a protein called Ubiquitin-like protein 5.

Mol	Chain	Residues	Atoms				AltConf	Trace
50	q	73	Total 360	C 214	N 73	O 73	0	0

• Molecule 51 is a protein called WW domain-binding protein 11.

Mol	Chain	Residues	Atoms				AltConf	Trace
51	Х	36	Total 182	C 110	N 36	O 36	0	0

• Molecule 52 is INOSITOL HEXAKISPHOSPHATE (three-letter code: IHP) (formula: $C_6H_{18}O_{24}P_6$).

Mol	Chain	Residues	A	AltConf			
52	А	1	Total 36	C 6	0 24	Р 6	0

• Molecule 53 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		AltConf				
53	r	1	Total 32	C 10	N 5	0 14	Р 3	0

• Molecule 54 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
54	r	1	Total Mg 1 1	0

• Molecule 55 is 7-METHYL-GUANOSINE-5'-TRIPHOSPHATE-5'-GUANOSINE (three-letter code: GTG) (formula: $C_{21}H_{30}N_{10}O_{18}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
55	16	1	Total	С	Ν	0	Р	0
55	A0	A0 I	52	21	10	18	3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Nuclear cap-binding protein subunit 1

• Molecule 7: U2 small nuclear ribonucleoprotein B"

• Molecule 10: Nuclear cap-binding protein subunit 2 Chain A1: 89% 6% 5% MET SER GLY GLY LEU • Molecule 11: U5 snRNA Chain 5: 45% 46% 8% 194 195 195 197 • Molecule 12: Cell division cycle 5-like protein Chain L: 12% 87% MET PRO ARG ILE MET ILE LYS LYS ASP ASN GLU GLU GLU GLU THR LEU PRO PRO GGLU FYS PRO PRO PRO PRO PRO PRO PRO CLU CLEU CLEU CLEU CGLU CGLU MET LLEU GGLUU GGLUU CLYSSSERA GGLUU GGLU CLYSS LLYSS LLYSS CLYSS CLYS ALA ALA CONTRACTOR OF A CONTRACT OF A CONTR SECTOR STATES AND ADDRESS AND PHE GGLY VAL TTHR GGLV VAL CUVAL GGLV VAL CUVAL ALA ASPECTOR ASPECTOR ASPECTOR COLUTION ASPECTOR ASPECTOR COLUTION ADDITION ADDITIONA ADDITION ADDITIONA

PHIE CLUENCE CLUENCE CLUENCE CLUENCE ASSERTAL ASSERTAL ANCOUNT CLUENCE CLUENCE

• Molecule 13: Spliceosome-associated protein CWC15 homolog

Chain y:

• Molecule 23: Pleiotropic regulator 1

A1846 1846 1856 1857 1858 1858 1858 1866 1866 1868 1868 1868	P1871 H1875 L1876 L1876 E1880 E1880 E1988 E1926 Y1930	N1947 K1955 K1955 P1956 D1957 K1968 T1959 T1960 T1960	A2000 \$2001 12002 12011 12011 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1	SER PRO PRO CLN CLN GLN GLN GLN
ILLE ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	LEU THR ALA THR ALA ALA ALA ASN LYS ASN CLYS ASP CLY	112065 12065 12065 12066 12066 12066 12066 12066 12066 12066 82068 82068 82068 82068	A2125 H2179 C216 C216 L2225 T2231 Y2235	N2246 N2247 P2253 G2285
• Melecule 26. Dr	o mDNA onlicing fo	octor 29 A		
• Molecule 20: Pr	e-mrina-splicing la	actor 38A		
Chain I:	56%		44%	
M1 0176 CLEU CLEU ARG PRO PRO PRO CLU GLU GLU	ASP ASP ASP ASP ASP ASP ASP CLU CLU CLU CLU CLU CLU	ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ARA TYR ARG ASP ASP LYS PRO ARG SER SER PRO	THR LEU ARG ARG ARG ARG
SER ARG SER ARG ARG ARG ARG ARG SER SER SER SER	LYS ARG ARG SER PRO PRO ARG ARG ARG CARG CARG CARG CARG CARG CA	LYS SER PRO ARG ARG ARG SER ARG ARG ARG ARG	ARG SER ARG SER LYS SER PRO GLY HIS ARG SER ARG	HIS ARG HIS ARG SER HIS
SER LYS SER PRO GLU GLU CYS SER LYS SER HIS SER HIS SER LYS SER LYS	SER ARG ARG GLY GLU GLU			
• Molecule 27: Pr	e-mRNA-splicing fa	actor RBM22		
Chain P:	37% •	61%		
Chain P:	37% • • • • • • • • • • • • • • • • • • •	PURS ASP VAL ASP ASN TTR TTR ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	G LLU LLLU SER SER SER ASP GLY THR ARG VAL VAL GLY GLY	MET LBU GLY LYS ALA THR
Chain P: Iaw Pite Rass	ASX ASX ASX ASX ASX ASX ASX ASX	THE LYS THR ASP THR ASP THR ASP THR ASP VAL LEU VAL LEU CLY CLY THR ASN ASN THR ASN ASP THR ASN THR ASN THR ASN THR ASN THR ASS THR ASP THR AS	GLU GLU THR GLU ASP GLU LEU ASP SER ASC ASN ASN ASN ASN ASN ASN ASN ASP ASN ASP ASN ASP ASN ASP ASN CLU THR THR THR THR GLU GLU GLU	ILE MET ARG LEU THR LEU CLEU CLEU CLEU ALA VAL THR THR
Chain D: RER ARS CHAIN CONNECTION RER ARS CONNECTION RER ARS CONNECTION RER ARS RER A	ARG P189 ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA ARG ALA ALA ARG ALA ALA ARG ALA ALA ARG CIU ALA ARG CIU ARP PRO ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	LLBU TILE THR VAL THR SER ASN LEU ARG VAL THR SER ARG VAL LEU ARG VAL CASN ARG CLY TTR ASN VAL GLY TTR ASN CLY TTR ASN THR ASN ASN THR	SIAA GLU GLU ALA THR GLU ALA ASP SER ARG ASP SER ARG ASR GLY ASN CU HES SER LYS HES GLY CLY ARG SER CLY ASN ASP CLY ARG ASP GLY GLY GLU	THR ILE MET HR ARG LEU ASP THR LEU SER ILE LYS GLY THR LYS GLY THR ALA ILE VAL THR
Chain D: LUX AND CONSTRUCTION OF CONSTRUCTION	PR0 AKG P169 PR0 AKA AKA AKA AKA AKA AKA AKA AKA AKA AK	AXIN LEU ILE LYS PRO VAL THR SER CVAL PRO AXIN LEU THR SER OLY TYR AXIN LEU VAL PRO AXIN LEU THR ASP PRO AXIN LEU VAL PRO AXIN LEU VAL PRO AXIN LEU TYR AXIN VAL VAL CVAL CVAL AXIN TER AXIN CLU TYR AXIN THR AXIN THR AXIN THR AXIN	LU SAM GLU ANN PR0 GLM GLU GLU PR0 ALA THR GLU PR0 ALA LEU SER PR0 ALA LEU SER PR0 ALA LEU SER PR0 ALA LEU SER GLY ASN SER SER PR0 GLY ASN SER PR0 GLY ASN SER PR0 LYS PHE GLY PR0 CLY PHE GLY PR0 CLY CLY VAL PR0 GLY GLU GLY	GLY THR ILE MET HHE THR ILE MET OLY ASP THR LEU PRO SER ILE LEU HIS GLY THR LYS HIS GLY THR ALA MET ILE VAL THR
PHE LY3 VAL SER PHO LUT SER WET SER PHO LUT SER MET MET PHO LUT REC THR MET MET VAL SER THR MET MET PHO CLUT ALA MET PHO CLUT MET SER MET PHO CLUT MET MET MET PHO CLUT MET MET MET PHO CLUT MET MET MET MET PHE CLUT PHE CLUT MET MET ALA PHO D108 MET MET MET	PR0 PR0 AG0 PR0 AG0 PR0 AG0 PR0 AG1 A1	GLY LEU LEU LEU LEU HIS PR0 VAL THR HR ALA PR0 VAL THR HR ALA PR0 ASN LEU LEU HIS PR0 ASN LEU HR ALA PR0 ASN LEU HR PR0 ASN LEU LEU HR PR0 ASN LEU LYN ASN PR0 VAL CUY TYR ASN PR0 VAL CUY TYR ASN PR0 VAL CUY TYR ASN AN TYR THR MST THR PR0 VAL CUY TYR ASN AN TYR THR MST AN TYR THR MST AN THR MST THR AN THR MST THR AN THR MST THR AN THR MST THR AN THR AN THR AN THR AN AN AN THR AN AN TH	PRO 5.4A GLU ANA PRO 5.1A THR GLU GLU PRO ALA LEU GLU PRO ALA LEU SER PRO ALA LEU SER PRO GLY ASN SER ALA GLU PHE GLY PRO LYS PHE GLY PRO CLU CTYR THR PRO 6.1U GLN ANG PRO 6.1V GLN YTYR THR PRO 6.1Y GLY VAL PRO 6.1Y GLY VAL	GLY THR ILE MET PHE THR ARG LBU GLY ASP THR LEU PRO SER TLE LVS PRO SER ILE LVS HIS GLY THR ALA MET TLE VAL THR
Chain P:	37%	e11% Market Constraints of the second secon	PRD GLN GLN GLN GLN GLN PRD GLN GLN GLN THR GLN FHR CLN FHR CLN FHR GLY ANSI FLZ FHR FHR GLY FHR GLY FHR GLY FHR GLY FHR GLY FHR GLN FHR GLN FHR GLN FHR GLN FHR FHR GLN FHR FHR FHR FHR GLN	GLYTHRILEMETPHEILELEUGLYASPTHRAGGGLYTHRCLYPROSERTLEHISGLYTHRMETILEVALTHRTHR
Chain P:	37%	61%	LED DAM CUU ANN PRO GLN THR GLU PRO ALA ASP THR GLU PRO ALA LEU SER TLE PRO ALA LEU SER SER PRO ALA LEU ASP SER PRO ALA LEU ASS SER PRO GLY GLY ASP ASP PRO CLY THR GLY ASP PRO GLY GLY ASF PRO PRO GLY GLY GLY GLY	CLY THR ILE MET PHE ARG LEU CLY ASP THR ARG LEU PRO SER ILE UNS HIS CLY THR LYS MET ILE VAL THR THR
Chain P: Image: Product of the state of the		61%	TLB DED DEA GUU ANA TYR TYR DEO DEA GUU ANA TYR PRO ALA ASP DEA GUU GUU PRO ALA ASP DEA GUU GUU GUU GUU PRO ALA LEU ASP DEA GUU GUU GUU PRO PRO ALA LEU ASP SER SER SER QUU ALL LVS HLS GUU ASN SER ASN VAL ASO GUU ASN SER ASN ASN ASO GUU ASN GUU ASN ASN ASN ASN MAG CU TYR THR GUV ASN ASN FRO CU CU GUN ASN ASN ASN FRO CU CU GUN ASN ASN ASN	LYS GLY THR ILE MET THR RLE MET MET ALA CLO ASP THR AG ALA GLY ASP THR AG SER GLY ASP THR CLY PHE HIS GLY THR LLU VAL WAL VAL THR THR

ILE HIS LEU LEU LEU LYS GLY GLY ARG GLY LYS LYS LYS

• Molecule 29: Splicing factor 3A subunit 3

• Molecule 32: Splicing factor 3B subunit 2

• Molecule 34: Splicing factor 3B subunit 4

• Molecule 35: Splicing factor 3B subunit 5

Chain x:		91%	• {	8%
M1 I7 P79 ASP ASP PR0 GLU GLU	ASN			
• Molecule 36:	SNW domain-contai	ning protein 1		
Chain v:	22%	78%		
MET ALA LEU THR SER PHE LEU PRO PRO	GLU LEU SER GLN GLU GLU GLU CLU SER SER	GLN ARG ARG ARG GLN GLN CHR CEU VAL SER SER SER SER	GLU PRO PRO PRO TYR TYR GLY CLYS GLY TRP TLPS CLY	LEU LEU GLU GLY ASP ASP ASP
GLY GLY ALA PHE PRO PRO GLU TLE HIS VAL ALA	TYR PRO LEU ARF GLY GLY GLY LYS LYS LYS LYS SRR ASN ALA ALA	ALA ILE GLN VAL ASP SER GLV GLV GLV CVS ILYS ILYS TYR ASP	ALA TILE ALA ALA ALA GLN GLN GLN GLN CLYS ASP LYS TILE TILE	SER LYS TYR THR ASP LEU VAL
PRO LVS GLU VAL VAL ASN ASP ASP PSD	LEU LEU ARG PRO ARP PRO E137 E137 C155 C155 C155 C155 C155 C155 C155 C15	A162 MET MET PRO ARG ALA ALA ALA ALA ALA ALA PRO	ALA ALA GLN CLN R211 PHE LVS TLF ASN LVS LVS LVS LVS PHE PRO PRO	GLY GLY PRO PRO SER PRO PRO ALA PRO VAL
MET HIS SER SER PRO ARG LYS M37 P249 CVO	ASP ASP ASN TRP ASN ASN ASN ASP CTTA TTR TTR TTR TTR TTR ASP ASP ASP	LYS ARG LEU ALA ALA ASP GLY GLY CLU CLU UAI	HIE HIE ASN E282 E282 E282 E282 E282 E282 E282 ALA ALA ALA ALA ALA ALA CLU	ARG ARG ALA GLY ILE LYS THR
HIS VAL CLVS GLU GLU GLU GLV GLU ALA ALA	ARP ASP GLU TILE ARP ARC ARC ARC CLU CLY GLU ARP ARC GLU ARP ARP ARP ARP ARP ARP ARP ARP ARP ARP	ARG ASN LEU SER ARG ALA ALA ALA ARG SSR SSR	LEU GLN GLN ARG ASN ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	ALA GLY VAL PRO ASN PRO ARG
THR SER ASN ASN GLU CLN TYR TYR ASP GLN ASP	PHE ASN ASN ASN ASN CLN SER CLY ASP ASP ASP ALA ALA ALA ALA CLY CLU	ASP GLU TYR ASN VAL ASP ASP ASP ASP ALA ALA ALA ALA	CLL CYS LYS ASP ASP ALA ALA CLN CLN SER TYR PRO PRO PRO PRO PRO	ASN LEU ASP ASP ASP MET TYR CLY
ASP ASP LEU GLU ALA ARG THR THR ASN	PHIE VAL VAL ASP ASP ASP CLV PHE PHE SER SER ASP ARG CLY ARG CLY ARG	GLY ARG GLU GLU GLN PHE GLU GLU ASP PRO	GLU GLU LEU ASP PHE LVS GLU GLU GLU GLU GLU GLV GLV GLY	auri LYS ARG PRO SER SER SER
SER ARG PRO LYS GLU HIS GLU GLU GLY	LYS ARG ARG GLU GLU			
• Molecule 37:	Smad nuclear-intera	cting protein 1		
Chain 0:	37% •		62%	_

HE CALL CALL CALL CALL CALL CALL CALL CAL	1370 1113 1110 1110 1111 1111 1111 1111
SER ASP ASP ASP ASP ASP CIUU CIUU CIUU CIUU CIUU SER SER SER	
• Molecule 38: Zinc finger matrin-type protein 2	
Chain N: 26% · 72%	_
MET ALA SER SER CLY CLY CLY ASP ASP ASP ASP CLU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	TYR LYS VAL ASP LEU GLU SER
LIVE LIVE CLVE CLVE CLVE CLVE CLVE CLVE CLVE CL	LYS ALA TYR LYS LYS GLU LYS
CLU CLYS CLYS CLYS CLYS CLYS CLYS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
\bullet Molecule 39: 116 kDa U5 small nuclear ribonucle oprotein component	
Chain r: 87% 13%	_
MET ASP THR ASP THR ASP THR ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	GLY MET GLU CLU VAL LEU HIS
CLU LIVS LIVS LIVS LIVS CLU RIPRO CLU VILL CLU CLU CLU CLU CLU CLU CLU CLU CLU C	Y114 N957 LEU LEU GLU LEU
LALA LASP GLN ASP VAL LEU VAL LEU TASN TASN MET	
\bullet Molecule 40: Serine/arginine repetitive matrix protein 1	
Chain Y: 9% . 89%	_
	•••
MET ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	1116 A117 L124 E125 L126 L126 LYS LYS
GLU GLU LIFE CLYS GLU GLU GLU GLU GLU GLU CLYS GLU CLYS GLU CLYS GLU CLYS GLU CLYS GLU ARG GLU ARG GLU CLYS SER ARG GLU CLYS SER ARG GLU CLYS SER ARG GLU CLYS SER ARG CLU CLYS SER ARG CLU CLYS CLYS CLU CLU CLYS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	PRO ARG ARG ARG SER SER PRO
VAL ARG CLU ARG CLU ARG CLU ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	SER ASP LLEU LYS VAL PRO
LYS PRO PRO PTLE PRO PRO PRO PRO CLU CLYS CLU CLU CLYS CLU CLYS CLU CLU CLYS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	HIS ARG ARG SER ARG SER SER
TYR SER PRICE PRIC	SER SER SER SER ARG
SER PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	ARG THR ARG LYS SER ARG VAL

SER LEU LEU LEU ASN ASN ASN ASN ALU MEL FIA FIA FIA FIA FIA FIA FIA FIA FIA FIA
Molecule 43: Small nuclear ribonucleoprotein Sm D2
Chain a: 66% 34%
SER. LEU LEU LEU LEU LEU REG CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
Molecule 44: Small nuclear ribonucleoprotein F
19% Chain i: 84% 16%
SER LEU P4 P5 P5 P7 P9 P9 P9 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1
Molecule 44: Small nuclear ribonucleoprotein F
Chain b: 85% 15%
Preserver and the second secon
Molecule 45: Small nuclear ribonucleoprotein-associated proteins B and B'
Chain m: 34% 66%
THR C C C C C C C C C C C C C C C C C C C
ALA ALA VAL VAL VAL PRO CLY VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA
PRIC PRIC PRIC PRIC PRIC PRIC PRIC PRIC
PRO PRO PRO
Molecule 45: Small nuclear ribonucleoprotein-associated proteins B and B'
Chain f: 27% 73%
THE THE CLASS CLAS
MET PRO GLN ALA ALA ALA ALA ALA ALA ALA ALA ALA A
WORLDWIDE PROTEIN DATA BANK

ARG PRO

 \bullet Molecule 46: Small nuclear ribonucleoprotein Sm D3

	51%		
Chain l:	66%	34%	-
••••	•••••	••••	• •••••
ME7 82 13 64 64 75 76 77 77 77 78 81 71 713 813	E14 G15 H16 117 117 118 718 728 G30 G30 G30	L 202 E 33 E 33 E 33 E 33 E 33 E 33 E 34 E 34	R55 Q57 L56 E55 Q66 R66 R66 R66 R66 L17 L17 L17 L17 L17 R77 R77 R77
••••			
D75 M76 L77 L77 K78 M79 M79 M82 L83 M82 L83 K84 K84 K84 L83 K84 L83 K84 K84 K84 K84 K84 K84 K84 K84 K84 K84	ASN ASN GLN GLY GLY GLY GLY GLY GLY GLY GLY GLY GLY	ALA CLN VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA	ARG
• Molecule 46: Small r	nuclear ribonucleoprot	ein Sm D3	
Chain e:	62%	38%	_
MET SER SER ILE C4 MET LYS SER MET LYS SER MET LYS SER ASN C4 ASN C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	GLY GLY GLY GLY GLY CLYS ALA ALA ALA ALA ALA ALA CLV CLV SLV	ALA ALA GLY GLY GLY GLY ARG GLY ARU GLY ARU GLY ARU GLY ARU GLN ARG GLN ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	
• Molecule 47: Small r	nuclear ribonucleoprot	ein G	
	83%		_
Chain k:	96%		·
•••••	•••••	•••••	•••••
MET SER SER SER A4 H5 P7 P7 P7 E8 E8 E8 K11 F12 K11 F12	D14 K15 K16 L17 S18 S18 S18 K25 H26 H26 C29 C29 C29 C29 C29 C29 C29 C29 C29 C29	L31 R322 F345 F345 P365 F37 P365 F37 P365 F37 F37 F37 F37 F37 F37 F37 F37 F37 F37	E47 M48 A499 A551 C52 C55 C552 C55 C55 C55 C55 C55 C55 C5
•••••			
M69 L70 E71 A72 L73 E74 R75 V76			
• Molecule 47: Small r	nuclear ribonucleoprot	ein G	
Chain di	0.1.0/		
	91%	ġ,	70
MET SER LYS LYS A4 A72 LUU ARG VAL			
• Molecule 48: Small r	nuclear ribonucleoprot	ein E	
	66%		
Chain j:	88%	12%	-
*** *	•••••	•••••	•••••
MET ALA TYR ARG GLY GLY GLN CLN GLN CLN GLN VAL VAL V13 V13 V15 V15	q16 P17 118 118 N19 F20 F22 F22 F22 F23 Y24 L25 Q26 N27	R28 R30 131 032 833 033 833 833 833 842 842 845 645 645 645 645 645 645 645 645 645 6	F 50 E 51 F 55 F 53 M5 4 M5 5 L5 6 L5 8 D6 0 D6 0 D6 0 B6 0 H6 5 R6 6 K6 7 F 63 F 64 F 63 F 64 F 64 F 64 F 64 F 64 F 64 F 65 F 63 F 63 F 63 F 63 F 63 F 63 F 63 F 63

K69 S70 R71 R71 C75 R76 T77 T85 L86 L87 L87 C88 C88	NSA 192 NSA NSA		
• Molecule 48: Smal	l nuclear ribonucleoprotein E		
Chain c:	85%	15%	
MET ALA ALA ALA CLY GLY GLN GLN GLN GLN GLN GLN GLN VAL CVS VAL VAL VAL	N92		
• Molecule 49: Smal	l nuclear ribonucleoprotein Sm D1		
Chain n:	67%	33%	
M1 T78 L79 VAL VAL VAL VAL VAL VAL CYS SER SER CYS	LYD ARG ALA ALA ALA ALA GLY GLY GLY ARG GLY ARG GLY GLY GLY GLY GLY ARG GLY ARG GLY ARG GLY ARG GLY ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG		
• Molecule 49: Smal	l nuclear ribonucleoprotein Sm D1		
Chain g:	78%	22%	
MET MET R2 S35 MET N37 V83 E84 K91 K91	GLY ARG GLY ARG CLY ARG GLY ARG GLY ARG CLY ARG CLY ARG CLY ARG CLY ARG CLY ARG CLY ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG		
• Molecule 50: Ubiq	uitin-like protein 5		
Chain q:	100%		
There are no outlier	residues recorded for this chain.		
• Molecule 51: WW	domain-binding protein 11		
Chain X: 6%	94%		
MET GLY ARG ARG ARG SER THR SER SER SER SER SER SER SER SER SER SE	ASN THR ASP ASP ALA ALA ALA ALA ASS ASN ASN ASN ASN ASN ASN ASN ASN AS	LEU LYS ASP LYS ARG LYS LYS LYS LEU ARG GLU THR THR	GLU ARG ILE
ARG LEU LEU TYR GLU GLU PRO ASP ILE TYR LYS GLU LEU ARG	LYS LEU GLU VAL CIU CIU TYR GLU GLU CIN DER ARC GLU VAL ASP ALA ALA ALA ALA ALA ALA ALA ALA CIU VAL VAL VAL	SER TLE TLE PRO PRO PRO MET PRO HIS PRO PRO PRO	ASN ILE LEU
GLN ASP ILE PRLO PRLO FLEU ALA GLN PRO PRO PRO FLE LLE LFU LYS	LYS SER SER ALA ALA ALA CLY PRO PRO PRO PRO PRO VAL SER LEU LEU LEU LEU LEU LEU LEU CLZ PRO GLY PRO GLY PRO GLY PRO GLY PRO CLZ ALA ALA ALA ALA ALA ALA ALA ALA ALA A	LYS PRO PRO GLY PRO PRO GLY PRO PRO PRO PRO	GLN VAL VAL
MET TYR GLY GLY ARG LYS VAL CLY PHE ASP PHE FRO PRO PRO ARC	ARG ARG ARA ARA ARA ALA ALA ALA ALA ALA ALA ALA	TYR PRO ASP ASP ASP GLN GLN CLYS H1S ASP ASP	SER THR ASP
田 本 は よ な よ よ よ よ よ よ よ よ よ よ よ よ よ	AL AL SSP SSP SSP SSP SSP SSP SSP SSP SSP SS	K K K K K K K K K K K K K K K K K K K	EU

MET LYS GLU GLU GLU CLU CLU LEU LEU

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	84539	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	D. I.
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	2.25	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.055	Depositor
Minimum map value	-0.015	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.0095	Depositor
Map size (Å)	445.44, 445.44, 445.44	wwPDB
Map dimensions	384, 384, 384	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.16, 1.16, 1.16	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, IHP, GTG, GTP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A5	0.45	4/3759~(0.1%)	0.66	3/5280~(0.1%)	
2	A2	0.56	0/395	0.96	1/549~(0.2%)	
3	Z	0.31	0/548	0.50	0/766	
4	F	0.36	0/241	0.51	0/334	
5	D	0.87	0/1515	0.93	0/2113	
6	W	0.27	0/821	0.53	0/1149	
7	В	0.67	0/857	0.82	1/1196~(0.1%)	
8	S	0.24	0/8766	0.46	2/12286~(0.0%)	
9	Q	0.24	0/700	0.43	0/979	
10	A1	0.35	0/723	0.76	0/1001	
11	5	0.27	0/2672	0.81	3/4154~(0.1%)	
12	L	0.24	0/519	0.47	0/725	
13	R	0.21	0/44	0.32	0/60	
14	V	0.45	0/455	0.84	0/636	
15	9	0.47	0/371	0.99	1/517~(0.2%)	
16	С	0.45	0/407	0.89	0/569	
17	Н	0.51	0/382	0.96	0/532	
18	J	0.59	0/343	0.94	0/475	
19	2	0.46	6/3430~(0.2%)	1.09	31/5329~(0.6%)	
20	A3	0.52	0/302	0.91	1/416~(0.2%)	
21	K	0.23	0/615	0.41	0/858	
22	У	0.24	0/501	0.49	0/697	
23	G	0.28	0/1616	0.54	1/2258~(0.0%)	
24	Ζ	0.55	4/1114~(0.4%)	0.84	0/1730	
25	А	0.27	1/11142~(0.0%)	0.46	0/15633	
26	Ι	0.25	0/888	0.45	0/1241	
27	Р	0.47	1/835~(0.1%)	0.72	0/1170	
28	р	0.54	0/301	0.99	0/420	
29	4	0.52	0/2119	0.97	$\overline{1/2960}~(0.0\%)$	
30	A4	0.33	0/2037	0.49	1/2850~(0.0%)	
31	u	0.31	0/4241	0.50	0/5935	
32	Т	0.58	3/957~(0.3%)	0.64	2/1341~(0.1%)	

Mal	Chain Bond lengths		Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
33	Ε	0.26	0/5980	0.48	0/8363
34	W	0.63	0/394	0.68	0/549
35	Х	0.46	0/399	0.46	0/557
36	V	0.28	0/607	0.44	0/847
37	0	0.24	0/770	0.48	0/1079
38	Ν	0.28	0/276	0.39	0/383
39	r	0.25	0/4313	0.47	0/6044
40	Y	0.30	0/481	0.44	0/672
41	6	0.25	0/1870	0.80	1/2909~(0.0%)
42	A6	0.19	0/369	0.34	0/513
43	a	0.23	0/394	0.45	0/548
43	h	0.33	0/485	0.54	0/677
44	b	0.24	0/367	0.46	0/509
44	i	0.36	0/362	0.55	0/502
45	f	0.23	0/319	0.45	0/442
45	m	0.36	0/416	0.55	0/581
46	е	0.24	0/392	0.48	0/546
46	l	0.39	0/417	0.60	0/581
47	d	0.24	0/346	0.48	0/481
47	k	0.39	0/366	0.60	0/509
48	с	0.23	0/388	0.47	0/540
48	j	0.36	0/403	0.55	0/561
49	g	0.23	0/471	0.44	0/657
49	n	0.34	0/404	0.55	0/564
50	q	0.25	0/359	0.53	0/498
51	Х	0.22	0/182	0.32	0/254
All	All	0.36	19/75146~(0.0%)	0.63	49/106525~(0.0%)

All (19) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	A5	252	PRO	N-CA	13.43	1.70	1.47
1	A5	365	PRO	C-N	8.55	1.50	1.34
32	Т	605	LYS	C-N	8.45	1.50	1.34
1	A5	223	HIS	C-N	8.43	1.50	1.34
27	Р	188	ASP	C-N	8.41	1.50	1.34
19	2	72	U	C1'-N1	7.06	1.59	1.48
19	2	69	U	C1'-N1	6.85	1.59	1.48
19	2	73	С	C1'-N1	6.37	1.58	1.48
19	2	84	С	C1'-N1	6.26	1.58	1.48
24	Ζ	146	G	C1'-N9	-6.13	1.38	1.46
19	2	70	С	C1'-N1	6.11	1.57	1.48

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	A5	251	ARG	C-N	6.04	1.45	1.34
19	2	71	С	C1'-N1	6.03	1.57	1.48
24	Ζ	147	U	C1'-N1	5.85	1.57	1.48
24	Ζ	145	U	C1'-N1	5.81	1.57	1.48
32	Т	620	PRO	N-CD	5.44	1.55	1.47
24	Ζ	154	U	C1'-N1	5.34	1.56	1.48
32	Т	643	PRO	N-CD	5.27	1.55	1.47
25	А	1869	LEU	C-O	5.23	1.33	1.23

All (49) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
29	4	472	GLN	C-N-CD	-16.15	85.08	120.60
1	A5	252	PRO	CA-N-CD	-9.81	97.77	111.50
30	A4	845	GLU	CA-C-O	-9.14	100.90	120.10
1	A5	222	PRO	CA-N-CD	-8.79	99.19	111.50
23	G	382	PRO	CA-N-CD	-8.79	99.20	111.50
1	A5	363	PRO	CA-N-CD	-8.73	99.28	111.50
8	S	621	HIS	CB-CA-C	8.57	127.53	110.40
8	s	1976	ASP	CB-CA-C	8.55	127.51	110.40
19	2	120	A	C6-N1-C2	-7.94	113.84	118.60
11	5	23	С	C2-N1-C1'	7.43	126.97	118.80
19	2	84	С	OP2-P-O3'	7.28	121.22	105.20
19	2	83	А	OP2-P-O3'	7.26	121.18	105.20
19	2	68	G	OP2-P-O3'	7.26	121.17	105.20
19	2	72	U	OP2-P-O3'	7.25	121.14	105.20
19	2	71	С	OP2-P-O3'	7.24	121.13	105.20
19	2	81	G	OP2-P-O3'	7.24	121.13	105.20
19	2	79	G	OP2-P-O3'	7.22	121.08	105.20
19	2	80	А	OP2-P-O3'	7.19	121.01	105.20
19	2	70	С	OP2-P-O3'	7.15	120.94	105.20
19	2	82	G	OP2-P-O3'	7.13	120.88	105.20
19	2	69	U	OP2-P-O3'	7.10	120.83	105.20
19	2	84	С	O3'-P-O5'	-6.91	90.87	104.00
19	2	72	U	O3'-P-O5'	-6.86	90.97	104.00
19	2	81	G	O3'-P-O5'	-6.83	91.02	104.00
19	2	82	G	O3'-P-O5'	-6.82	91.05	104.00
19	2	71	С	O3'-P-O5'	-6.80	91.08	104.00
19	2	79	G	O3'-P-O5'	-6.78	91.12	104.00
19	2	80	A	O3'-P-O5'	-6.76	91.15	104.00
19	2	68	G	O3'-P-O5'	-6.74	91.20	104.00
19	2	70	С	O3'-P-O5'	-6.73	91.21	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
19	2	69	U	O3'-P-O5'	-6.71	91.26	104.00
19	2	83	A	O3'-P-O5'	-6.67	91.33	104.00
2	A2	56	ARG	N-CA-CB	-6.39	99.10	110.60
19	2	136	G	C2-N3-C4	6.18	114.99	111.90
19	2	120	А	N1-C2-N3	6.18	132.39	129.30
19	2	129	U	N1-C2-O2	5.83	126.88	122.80
7	В	175	PRO	N-CA-C	5.72	126.97	112.10
32	Т	642	PRO	C-N-CD	5.66	140.28	128.40
19	2	129	U	N3-C2-O2	-5.43	118.40	122.20
19	2	136	G	N3-C4-C5	-5.38	125.91	128.60
11	5	78	U	P-O3'-C3'	5.37	126.15	119.70
32	Т	619	MET	C-N-CD	5.33	139.60	128.40
19	2	137	U	C6-N1-C2	-5.30	117.82	121.00
19	2	121	A	C2-N3-C4	5.30	113.25	110.60
19	2	168	А	C4-N9-C1'	5.25	135.75	126.30
11	5	23	С	C6-N1-C1'	-5.15	114.62	120.80
41	6	66	С	C6-N1-C1'	5.10	126.92	120.80
15	9	45	ALA	N-CA-CB	5.05	117.17	110.10
20	A3	41	SER	CB-CA-C	-5.02	100.56	110.10

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A5	3723	0	1806	60	0
2	A2	393	0	183	4	0
3	Z	544	0	264	0	0
4	F	242	0	118	11	0
5	D	1506	0	737	30	0
6	W	816	0	386	2	0
7	В	851	0	423	7	0
8	S	8688	0	4220	0	0
9	Q	695	0	327	2	0
10	A1	724	0	335	13	0

Conti	nueu jron	i previous	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
11	5	2397	0	1216	54	0
12	L	517	0	257	3	0
13	R	45	0	17	0	0
14	V	453	0	212	1	0
15	9	369	0	174	1	0
16	С	404	0	189	2	0
17	Н	380	0	172	6	0
18	J	342	0	164	10	0
19	2	3077	0	1559	86	0
20	A3	304	0	137	7	0
21	K	614	0	284	7	0
22	У	498	0	241	0	0
23	G	1604	0	795	22	0
24	Z	998	0	504	44	0
25	А	11024	0	5384	54	0
26	Ι	883	0	414	0	0
27	Р	825	0	409	21	0
28	р	301	0	134	0	0
29	4	2110	0	987	35	0
30	A4	2034	0	912	27	0
31	u	4207	0	2103	0	0
32	Т	942	0	490	13	0
33	Е	5926	0	2964	63	0
34	W	391	0	197	0	0
35	X	397	0	191	0	0
36	V	605	0	311	0	0
37	0	761	0	376	6	0
38	N	277	0	114	3	0
39	r	4265	0	2120	0	0
40	Y	478	0	226	15	0
41	6	1672	0	846	34	0
42	A6	368	0	175	23	0
43	a	393	0	176	0	0
43	h	482	0	220	0	0
44	b	364	0	181	0	0
44	i	359	0	179	0	0
45	f	319	0	144	0	0
45	m	413	0	193	0	0
46	е	390	0	188	0	0
46	1	415	0	198	0	0
47	d	344	0	168	0	0
47	k	364	0	176	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
48	с	388	0	167	0	0
48	j	403	0	173	0	0
49	g	469	0	214	0	0
49	n	402	0	184	0	0
50	q	360	0	159	0	0
51	Х	182	0	85	0	0
52	А	36	0	6	0	0
53	r	32	0	12	0	0
54	r	1	0	0	0	0
55	A6	52	0	26	11	0
All	All	73818	0	35922	516	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (516) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A5:258:SER:CB	30:A4:766:MET:HA	1.27	1.64
1:A5:258:SER:CB	30:A4:766:MET:CA	1.77	1.63
25:A:1772:PHE:CB	25:A:2246:ASN:CB	1.79	1.60
30:A4:731:ASP:CB	30:A4:759:ARG:CA	1.77	1.59
30:A4:731:ASP:CB	30:A4:759:ARG:CB	1.75	1.58
1:A5:88:THR:CB	1:A5:253:TYR:CB	1.82	1.54
30:A4:731:ASP:CB	30:A4:759:ARG:C	1.78	1.51
1:A5:258:SER:CB	30:A4:766:MET:CB	1.86	1.50
25:A:1616:PRO:HA	25:A:2058:THR:CB	1.46	1.45
1:A5:358:GLU:O	1:A5:365:PRO:CB	1.65	1.44
29:4:485:ASN:N	33:E:974:LYS:CB	1.82	1.41
1:A5:252:PRO:CA	1:A5:252:PRO:N	1.70	1.41
5:D:104:THR:O	11:5:6:C:C5'	1.69	1.37
1:A5:88:THR:CA	1:A5:253:TYR:CB	2.01	1.36
29:4:470:ARG:CB	33:E:1019:ASN:CB	2.03	1.36
1:A5:88:THR:HA	1:A5:253:TYR:CB	1.54	1.35
27:P:173:CYS:CA	41:6:28:A:N6	1.88	1.34
10:A1:19:GLN:HA	42:A6:122:ARG:N	1.42	1.33
20:A3:32:GLN:CB	41:6:95:G:OP1	1.74	1.33
30:A4:731:ASP:CB	30:A4:759:ARG:O	1.75	1.32
30:A4:731:ASP:CA	30:A4:759:ARG:CB	2.06	1.32
5:D:104:THR:O	11:5:6:C:H5'	1.26	1.30
10:A1:19:GLN:O	42:A6:122:ARG:HA	1.29	1.30

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
19:2:53:U:C2	19:2:61:C:N4	1.97	1.30
27:P:173:CYS:HA	41:6:28:A:N6	1.45	1.28
42:A6:148:CYS:O	55:A6:301:GTG:H3B	1.26	1.28
25:A:1926:THR:O	25:A:2253:PRO:HG3	1.27	1.27
30:A4:728:ALA:HB1	30:A4:763:ILE:CB	1.66	1.26
42:A6:148:CYS:O	55:A6:301:GTG:H5B2	1.25	1.25
27:P:64:ARG:HA	41:6:26:U:O4	1.39	1.22
42:A6:149:TYR:CB	55:A6:301:GTG:O1G	1.88	1.22
5:D:104:THR:N	11:5:6:C:H4'	1.53	1.21
10:A1:19:GLN:O	42:A6:122:ARG:CA	1.87	1.20
29:4:484:GLY:C	33:E:974:LYS:CB	2.08	1.20
25:A:1772:PHE:CA	25:A:2246:ASN:CB	2.19	1.20
19:2:44:U:N3	24:Z:144:A:N1	1.90	1.20
32:T:605:LYS:CB	32:T:606:PRO:HD2	1.56	1.18
10:A1:29:ASN:CB	42:A6:124:VAL:CB	2.22	1.18
11:5:13:C:N3	11:5:65:G:N1	1.91	1.18
4:F:61:THR:CB	19:2:40:C:O5'	1.93	1.16
30:A4:731:ASP:HA	30:A4:759:ARG:CB	1.73	1.15
27:P:173:CYS:CA	41:6:28:A:H61	1.53	1.14
40:Y:86:GLN:O	40:Y:90:THR:CB	1.95	1.14
1:A5:358:GLU:C	1:A5:365:PRO:HB3	1.67	1.13
1:A5:258:SER:C	30:A4:766:MET:CB	2.17	1.12
40:Y:89:LEU:O	40:Y:98:ALA:HB1	1.46	1.12
23:G:382:PRO:HB3	23:G:425:GLY:HA2	1.28	1.10
18:J:29:ASP:O	18:J:49:GLU:CB	2.00	1.08
1:A5:363:PRO:HD2	1:A5:364:ALA:H	1.09	1.08
5:D:104:THR:H	11:5:6:C:C4'	1.67	1.08
27:P:173:CYS:C	41:6:28:A:H61	1.40	1.06
25:A:1772:PHE:HA	25:A:2246:ASN:CB	1.81	1.06
23:G:382:PRO:CB	23:G:425:GLY:HA2	1.84	1.05
40:Y:103:GLY:O	40:Y:107:PRO:CD	2.03	1.05
33:E:354:GLY:H	33:E:405:SER:CB	1.67	1.05
42:A6:149:TYR:CB	55:A6:301:GTG:O5E	2.04	1.05
11:5:13:C:O2	11:5:65:G:N2	1.91	1.04
40:Y:89:LEU:O	40:Y:98:ALA:CB	2.05	1.04
29:4:470:ARG:CA	33:E:1019:ASN:CB	2.34	1.04
5:D:104:THR:O	11:5:6:C:H5"	1.54	1.03
10:A1:19:GLN:CA	42:A6:122:ARG:N	2.20	1.03
25:A:166:PHE:CB	25:A:167:PRO:CD	2.37	1.03
29:4:483:SER:O	33:E:974:LYS:O	1.76	1.02
5:D:104:THR:CB	11:5:6:C:O3'	2.07	1.02

	A 4 arra 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
42:A6:148:CYS:O	55:A6:301:GTG:C3E	2.07	1.02
25:A:1616:PRO:CA	25:A:2058:THR:CB	2.37	1.02
1:A5:258:SER:CA	30:A4:766:MET:CB	2.38	1.01
29:4:483:SER:C	33:E:974:LYS:O	1.98	1.01
29:4:473:PRO:HB2	33:E:978:LEU:CB	1.90	1.01
11:5:44:A:H8	24:Z:55:A:N1	1.58	1.01
40:Y:103:GLY:O	40:Y:107:PRO:HD3	1.57	1.00
25:A:1926:THR:O	25:A:2253:PRO:CG	2.08	0.99
27:P:180:PRO:CG	41:6:26:U:O2'	2.11	0.99
30:A4:731:ASP:CB	30:A4:759:ARG:HA	1.93	0.98
24:Z:64:A:N6	41:6:41:A:N1	2.12	0.98
29:4:470:ARG:CB	33:E:1018:GLU:O	2.13	0.97
27:P:64:ARG:CA	41:6:26:U:O4	2.12	0.97
25:A:1877:LEU:O	25:A:1880:PRO:HD3	1.66	0.96
10:A1:20:TYR:O	42:A6:122:ARG:CB	2.13	0.96
1:A5:359:LEU:HA	1:A5:365:PRO:HG3	1.48	0.96
23:G:382:PRO:HD2	23:G:383:ARG:H	1.29	0.95
32:T:605:LYS:CB	32:T:606:PRO:CD	2.44	0.95
24:Z:74:G:H1'	41:6:30:A:H61	1.32	0.95
23:G:382:PRO:HB3	23:G:425:GLY:CA	1.97	0.95
23:G:382:PRO:CG	23:G:425:GLY:HA2	1.97	0.95
11:5:40:U:H5	21:K:383:PHE:CB	1.78	0.95
42:A6:149:TYR:CB	55:A6:301:GTG:PG	2.55	0.94
29:4:484:GLY:N	33:E:974:LYS:CB	2.31	0.93
33:E:354:GLY:N	33:E:405:SER:CB	2.30	0.93
23:G:342:GLU:CB	23:G:343:PRO:CD	2.46	0.92
24:Z:74:G:N3	41:6:30:A:N6	2.19	0.91
29:4:472:GLN:N	29:4:473:PRO:HD2	1.85	0.91
29:4:484:GLY:CA	33:E:974:LYS:CB	2.47	0.91
29:4:485:ASN:H	33:E:974:LYS:CB	1.82	0.91
7:B:20:LYS:CB	19:2:170:C:OP1	2.18	0.91
10:A1:19:GLN:O	42:A6:122:ARG:CB	2.17	0.91
19:2:45:C:N3	24:Z:144:A:C2	2.38	0.91
11:5:13:C:C2	11:5:65:G:C2	2.59	0.91
11:5:13:C:N4	11:5:65:G:O6	2.02	0.91
29:4:472:GLN:N	29:4:473:PRO:CD	2.34	0.91
5:D:104:THR:C	11:5:6:C:H5"	1.91	0.90
23:G:382:PRO:CB	23:G:425:GLY:CA	2.48	0.90
42:A6:148:CYS:O	55:A6:301:GTG:C2E	2.20	0.89
40:Y:86:GLN:O	40:Y:90:THR:N	2.06	0.89
42:A6:148:CYS:O	55:A6:301:GTG:H2B	1.72	0.88

Atom-1	Atom-2	Interatomic	Clash
	7100m 2	distance (Å)	overlap (Å)
1:A5:358:GLU:O	1:A5:365:PRO:HB3	0.71	0.88
25:A:166:PHE:CB	25:A:167:PRO:HD3	2.02	0.88
42:A6:148:CYS:O	55:A6:301:GTG:C5E	2.18	0.88
11:5:44:A:C8	24:Z:55:A:N1	2.41	0.87
20:A3:32:GLN:CB	41:6:95:G:P	2.61	0.87
23:G:382:PRO:HG3	23:G:425:GLY:HA2	1.54	0.87
37:0:255:PRO:HG2	37:0:276:HIS:CB	2.05	0.87
10:A1:20:TYR:C	42:A6:122:ARG:CB	2.43	0.86
19:2:43:U:C2	24:Z:146:G:N2	2.43	0.86
29:4:469:GLU:O	33:E:981:CYS:HA	1.75	0.86
19:2:43:U:N3	24:Z:146:G:N2	2.23	0.86
1:A5:363:PRO:HD2	1:A5:364:ALA:N	1.87	0.85
11:5:13:C:C2	11:5:65:G:N2	2.44	0.85
11:5:13:C:O2	11:5:65:G:C2	2.29	0.85
19:2:53:U:O2	19:2:61:C:N4	1.92	0.84
4:F:61:THR:CB	19:2:40:C:P	2.66	0.84
11:5:40:U:C5	21:K:383:PHE:CB	2.60	0.84
25:A:2055:ILE:CB	41:6:42:C:OP1	2.26	0.83
38:N:90:LYS:CB	41:6:40:U:O2'	2.25	0.83
29:4:472:GLN:H	29:4:473:PRO:HD2	1.44	0.83
23:G:382:PRO:CG	23:G:425:GLY:CA	2.56	0.83
18:J:30:TYR:HA	18:J:49:GLU:HA	1.59	0.83
29:4:473:PRO:CB	33:E:978:LEU:CB	2.57	0.83
11:5:13:C:N3	11:5:65:G:C2	2.47	0.82
25:A:1858:PRO:O	25:A:1859:LYS:O	1.97	0.82
6:W:152:LEU:N	19:2:157:G:OP1	2.12	0.82
23:G:382:PRO:HG3	23:G:425:GLY:CA	2.09	0.82
25:A:168:PRO:HG2	25:A:559:ASP:CB	2.09	0.82
27:P:173:CYS:HA	41:6:28:A:H62	1.44	0.82
27:P:173:CYS:CB	41:6:28:A:N6	2.43	0.82
19:2:45:C:H42	24:Z:143:G:H1	1.28	0.81
7:B:53:PHE:CB	19:2:165:A:H2	1.92	0.81
1:A5:255:ALA:HB2	30:A4:748:SER:HA	1.60	0.81
1:A5:259:ILE:N	30:A4:766:MET:CB	2.42	0.80
23:G:382:PRO:HD2	23:G:383:ARG:N	1.95	0.80
19:2:44:U:O2	24:Z:144:A:H2	1.64	0.80
19:2:45:C:N4	24:Z:143:G:H1	1.79	0.80
19:2:43:U:N3	24:Z:146:G:C2	2.50	0.80
1:A5:359:LEU:O	1:A5:365:PRO:HD3	1.82	0.79
1:A5:363:PRO:CD	1:A5:364:ALA:H	1.93	0.79
11:5:13:C:N3	11:5:65:G:C6	2.50	0.79

	A t arra 0	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A5:256:PHE:CB	1:A5:260:LEU:CB	2.60	0.79	
5:D:265:ARG:CB	5:D:270:LYS:H	1.97	0.78	
5:D:104:THR:H	11:5:6:C:H4'	0.72	0.78	
10:A1:19:GLN:C	42:A6:122:ARG:CA	2.51	0.78	
27:P:180:PRO:HG2	41:6:26:U:O2'	1.81	0.78	
29:4:470:ARG:HA	33:E:1019:ASN:CB	2.13	0.78	
18:J:29:ASP:O	18:J:49:GLU:CA	2.32	0.78	
19:2:45:C:H2'	29:4:395:TRP:CB	2.14	0.78	
40:Y:103:GLY:O	40:Y:107:PRO:CG	2.31	0.77	
19:2:54:U:O2	19:2:59:A:N6	2.15	0.77	
19:2:150:U:H3	19:2:181:G:H1	1.31	0.77	
19:2:14:C:N3	41:6:85:U:O2	2.18	0.77	
33:E:354:GLY:HA2	33:E:405:SER:CB	2.14	0.77	
27:P:173:CYS:C	41:6:28:A:N6	2.06	0.76	
25:A:1791:HIS:O	25:A:1792:LYS:CB	2.32	0.76	
1:A5:256:PHE:O	1:A5:261:CYS:CB	2.33	0.76	
4:F:61:THR:CA	19:2:40:C:OP1	2.34	0.75	
4:F:61:THR:HA	19:2:40:C:OP1	1.86	0.75	
25:A:1776:ILE:O	25:A:1858:PRO:O	2.05	0.75	
19:2:44:U:O2	24:Z:144:A:C2	2.39	0.75	
30:A4:728:ALA:CB	30:A4:763:ILE:CB	2.58	0.75	
5:D:104:THR:C	v:104:THR:C 11:5:6:C:C5'		0.75	
29:4:483:SER:CA	33:E:974:LYS:O	2.34	0.75	
33:E:354:GLY:CA	33:E:405:SER:CB	2.65	0.74	
41:6:59:G:O6	41:6:76:A:N1	2.21	0.74	
5:D:57:ALA:HB1	5:D:58:PRO:HD2	1.69	0.74	
23:G:342:GLU:CB	23:G:343:PRO:HD3	2.18	0.72	
40:Y:103:GLY:O	40:Y:107:PRO:HG3	1.88	0.72	
32:T:519:LYS:CB	32:T:520:PRO:HD2	2.20	0.72	
27:P:64:ARG:C	41:6:26:U:O4	2.28	0.71	
4:F:61:THR:CB	19:2:40:C:OP1	2.38	0.71	
40:Y:86:GLN:O	40:Y:90:THR:CA	2.38	0.71	
27:P:173:CYS:CB	41:6:28:A:H61	2.01	0.71	
5:D:293:TRP:O	5:D:295:PRO:HD3	1.90	0.71	
1:A5:361:GLN:O	361:GLN:O 1:A5:363:PRO:CD		0.70	
11:5:13:C:N4	11:5:65:G:C6	2.58	0.70	
19:2:45:C:C2	24:Z:144:A:C2	2.80	0.70	
23:G:382:PRO:CD	3:G:382:PRO:CD 23:G:383:ARG:H		0.70	
10:A1:19:GLN:C	42:A6:122:ARG:N	2.45	0.70	
21:K:272:ASP:CB	30:A4:679:SER:HA	2.22	0.70	
19:2:53:U:N3	19:2:61:C:N4	2.39	0.69	

Atom-1 Atom-2		Interatomic	Clash		
	7100m 2	distance (Å)	overlap (Å)		
27:P:180:PRO:CB	41:6:26:U:O2'	2.41	0.69		
25:A:166:PHE:CB	25:A:167:PRO:HD2	2.20	0.69		
25:A:584:HIS:O	25:A:588:LEU:N	2.26	0.69		
41:6:34:G:OP2	41:6:34:G:N2	2.25	0.69		
10:A1:19:GLN:C	42:A6:122:ARG:CB	2.62	0.68		
19:2:45:C:C4	24:Z:144:A:N1	2.62	0.68		
11:5:39:C:H4'	21:K:383:PHE:CB	2.24	0.68		
23:G:342:GLU:CB	23:G:343:PRO:HD2	2.23	0.68		
19:2:45:C:N4	24:Z:144:A:C6	2.63	0.67		
33:E:406:PRO:HA	33:E:1122:LEU:O	1.94	0.67		
32:T:470:ALA:C	32:T:472:PRO:HD3	2.16	0.66		
24:Z:75:U:H2'	24:Z:76:A:H8	1.59	0.66		
11:5:13:C:C2	11:5:65:G:N1	2.63	0.66		
29:4:483:SER:HA	33:E:974:LYS:O	1.96	0.66		
1:A5:488:GLY:C	1:A5:490:GLU:H	2.00	0.65		
30:A4:728:ALA:HB1	30:A4:763:ILE:CA	2.25	0.65		
1:A5:361:GLN:O	1:A5:363:PRO:HD2	1.96	0.65		
42:A6:148:CYS:C	55:A6:301:GTG:H3B	2.15	0.64		
7:B:47:LYS:O	19:2:163:G:O2'	2.07	0.64		
25:A:1603:ALA:HB1	25:A:2285:GLY:HA3	1.79	0.64		
5:D:86:PHE:HA	5:D:111:ALA:HB1	1.79	0.64		
7:B:53:PHE:CB	19:2:165:A:C2	2.78	0.64		
25:A:1587:GLU:CB	25:A:2060:SER:CB	2.76	0.63		
11:5:13:C:C4	11:5:65:G:N1	2.67	0.63		
29:4:472:GLN:H	29:4:473:PRO:CD	2.05	0.63		
4:F:61:THR:CB	19:2:40:C:C5'	2.76	0.63		
18:J:48:THR:CB	18:J:58:ASN:HA	2.28	0.62		
24:Z:77:G:H2'	24:Z:78:A:H8	1.64	0.62		
1:A5:363:PRO:CD	1:A5:364:ALA:N	2.56	0.62		
23:G:382:PRO:CD	23:G:383:ARG:N	2.61	0.62		
37:0:255:PRO:HG2	37:0:276:HIS:CA	2.29	0.62		
23:G:382:PRO:CG	23:G:425:GLY:HA3	2.29	0.62		
25:A:1870:ASP:CB	25:A:1871:PRO:HD3	2.30	0.62		
40:Y:106:TRP:N	40:Y:107:PRO:HD2	2.14	0.62		
37:0:255:PRO:HG2	37:0:276:HIS:HA	1.82	0.61		
25:A:1605:GLU:O	25:A:1634:SER:N	2.33	0.61		
1:A5:365:PRO:HB2	1:A5:366:PRO:HD2	1.81	0.61		
4:F:60:LEU:O	19:2:40:C:OP1	2.19	0.61		
32:T:612:GLU:O	32:T:615:ILE:N	2.33	0.61		
33:E:428:GLY:HA3	33:E:433:SER:HA	1.83	0.61		
25:A:135:VAL:N	25:A:420:ARG:O	2.33	0.61		

A 4 1	A torus D	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
11:5:13:C:C4	11:5:65:G:C6	2.88	0.61	
17:H:53:ASP:HA	17:H:68:LYS:O	2.01	0.60	
40:Y:89:LEU:O	40:Y:98:ALA:HB2	1.99	0.60	
37:0:270:LEU:CB	37:0:271:PRO:HD3	2.32	0.60	
19:2:44:U:C2	24:Z:144:A:C2	2.90	0.59	
19:2:44:U:C2	24:Z:144:A:N1	2.67	0.59	
24:Z:67:C:H2'	24:Z:68:U:C6	2.37	0.59	
15:9:46:TYR:HA	15:9:51:ASN:O	2.03	0.59	
24:Z:74:G:H3'	24:Z:75:U:H5'	1.83	0.59	
30:A4:728:ALA:CB	30:A4:763:ILE:CA	2.81	0.59	
29:4:485:ASN:CA	33:E:974:LYS:CB	2.80	0.59	
18:J:48:THR:CB	18:J:57:LYS:O	2.51	0.58	
27:P:180:PRO:HB2	41:6:26:U:O2'	2.02	0.58	
19:2:45:C:C4	24:Z:144:A:C2	2.90	0.58	
1:A5:488:GLY:O	1:A5:490:GLU:N	2.27	0.58	
25:A:1777:ILE:HA	25:A:1858:PRO:O	2.03	0.58	
5:D:104:THR:CA	11:5:6:C:H4'	2.29	0.58	
11:5:9:G:H2'	11:5:9:G:OP2	2.04	0.58	
19:2:60:U:C6	19:2:60:U:C5'	2.86	0.58	
12:L:86:ALA:HB3	12:L:87:PRO:HD3	1.85	0.58	
25:A:1930:TYR:CB	25:A:2247:ASN:CB	2.82	0.58	
7:B:41:VAL:HA	19:2:167:U:O4	:04 2.04		
16:C:14:PRO:O	16:C:72:PRO:HD3	2.03	0.58	
37:0:270:LEU:CB	37:0:271:PRO:CD	2.83	0.57	
1:A5:490:GLU:C	1:A5:492:SER:H	2.07	0.57	
24:Z:55:A:H2'	24:Z:56:A:H8	1.68	0.57	
19:2:71:C:H2'	19:2:72:U:H6	1.70	0.56	
11:5:109:C:H2'	11:5:110:A:H8	1.70	0.56	
19:2:43:U:C2	24:Z:146:G:C2	2.93	0.56	
19:2:71:C:C2	19:2:72:U:C5	2.94	0.56	
19:2:72:U:H2'	19:2:73:C:H6	1.71	0.56	
29:4:473:PRO:HG3	33:E:979:ARG:C	2.25	0.56	
24:Z:54:G:O2'	24:Z:55:A:H5"	2.03	0.56	
25:A:1926:THR:O	25:A:2253:PRO:CB	2.54	0.56	
19:2:70:C:H2'	19:2:70:C:H2' 19:2:71:C:H6		0.56	
19:2:72:U:C2	19:2:73:C:C5	2.94	0.56	
1:A5:142:ALA:HB3	1:A5:142:ALA:HB3 1:A5:143:PRO:HD3		0.56	
1:A5:258:SER:O	30:A4:766:MET:N	2.31	0.56	
19:2:68:G:H2'	19:2:69:U:H6	1.70	0.56	
19:2:70:C:C2	19:2:71:C:C5	2.94	0.56	
24:Z:75:U:H2'	24:Z:76:A:C8	2.39	0.56	

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	distance (Å)		overlap (Å)	
19:2:83:A:H2'	19:2:84:C:H6 1.70		0.55	
25:A:1271:MET:O	25:A:1273:TYR:N	25:A:1273:TYR:N 2.39		
33:E:442:LEU:CB	33:E:771:GLY:HA3	2.36	0.55	
19:2:69:U:C2	19:2:70:C:C5	2.94	0.55	
27:P:180:PRO:HG3	41:6:26:U:O2'	2.02	0.55	
5:D:267:PHE:O	5:D:269:PRO:HD3	2.06	0.55	
19:2:83:A:C4	19:2:84:C:C5	2.95	0.55	
25:A:1628:ASP:N	25:A:1662:ILE:O	2.38	0.55	
1:A5:365:PRO:HB2	1:A5:366:PRO:CD	2.37	0.55	
11:5:109:C:H2'	11:5:110:A:C8	2.42	0.55	
19:2:68:G:C4	19:2:69:U:C5	2.94	0.55	
29:4:470:ARG:C	33:E:1019:ASN:CB	2.75	0.55	
40:Y:104:GLU:C	40:Y:107:PRO:HD2	2.28	0.54	
19:2:69:U:H2'	19:2:70:C:H6	1.71	0.54	
24:Z:66:C:O2'	24:Z:67:C:H5'	2.07	0.54	
25:A:1870:ASP:CB	25:A:1871:PRO:CD	2.86	0.54	
33:E:3:LEU:HA	33:E:1131:PRO:HA	1.89	0.54	
4:F:61:THR:CB	19:2:40:C:H4'	2.38	0.54	
24:Z:77:G:H2'	24:Z:78:A:C8	2.43	0.54	
29:4:483:SER:C	33:E:974:LYS:C	2.66	0.54	
30:A4:751:ALA:O	30:A4:755:ALA:HB2	2.07	0.54	
37:0:255:PRO:CG	37:0:276:HIS:HA	2.38	0.54	
23:G:382:PRO:HB3	23:G:425:GLY:N	2.23	0.53	
1:A5:488:GLY:C	1:A5:490:GLU:N	2.62	0.53	
19:2:151:C:H2'	19:2:152:G:H8	1.74	0.53	
5:D:265:ARG:CB	5:D:270:LYS:N	2.69	0.53	
23:G:381:HIS:CB	23:G:382:PRO:HD3	2.39	0.53	
19:2:60:U:H6	19:2:60:U:O5'	1.91	0.53	
29:4:485:ASN:CB	33:E:974:LYS:CB	2.86	0.53	
27:P:173:CYS:HA	41:6:28:A:C6	2.34	0.53	
33:E:336:ALA:HA	33:E:351:SER:HA	1.91	0.53	
42:A6:153:TYR:O	42:A6:154:ARG:CB	2.56	0.53	
5:D:164:PRO:O	5:D:181:ILE:CB	2.57	0.53	
1:A5:362:LEU:CB	1:A5:363:PRO:HD3	2.38	0.52	
1:A5:258:SER:CB	30:A4:766:MET:N	2.64	0.52	
1:A5:363:PRO:HB3	1:A5:752:LEU:CB	2.39	0.52	
30:A4:728:ALA:HB2	30:A4:763:ILE:HA	3:ILE:HA 1.92 0.5		
11:5:98:C:H2'	11:5:99:C:C6	2.44	0.52	
17:H:36:ILE:HA	17:H:55:THR:O	2.10	0.52	
20:A3:30:PHE:HA	20:A3:35:ASN:O	2.10	0.52	
2:A2:45:ASN:O	17:H:14:PRO:HG2	2.10	0.52	

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
33:E:637:PRO:HA	33:E:669:LEU:HA	1.92	0.52	
40:Y:106:TRP:N	40:Y:107:PRO:CD	2.72	0.52	
42:A6:149:TYR:CB	55:A6:301:GTG:C5E	2.87	0.52	
19:2:120:A:N1	19:2:137:U:O4	2.43	0.52	
1:A5:141:ALA:O	1:A5:144:SER:N	2.43	0.52	
5:D:104:THR:CB	11:5:6:C:H5"	2.39	0.52	
25:A:1558:THR:O	25:A:1560:ILE:N	2.43	0.51	
19:2:43:U:C4	24:Z:146:G:N2	2.78	0.51	
32:T:519:LYS:CB	32:T:520:PRO:CD	2.89	0.51	
25:A:2125:ALA:HA	25:A:2179:HIS:HA	1.93	0.51	
1:A5:382:LEU:C	1:A5:384:PRO:HD3	2.31	0.51	
6:W:81:GLU:HA	6:W:108:PRO:HB3	1.92	0.51	
19:2:38:A:O2'	19:2:39:U:O4'	2.14	0.51	
25:A:1392:LYS:O	25:A:1396:ALA:N	2.41	0.51	
1:A5:51:GLU:O	1:A5:54:ALA:HB3	2.10	0.51	
30:A4:728:ALA:CB	30:A4:763:ILE:HA	2.40	0.51	
33:E:916:ASN:CB	33:E:917:PRO:HD3	2.41	0.51	
11:5:44:A:H8	24:Z:55:A:C2	2.26	0.51	
25:A:1837:ALA:O	25:A:1840:LYS:N	2.44	0.51	
1:A5:358:GLU:O	1:A5:365:PRO:CG	2.54	0.50	
11:5:99:C:H2'	11:5:100:U:C6	2.47	0.50	
25:A:133:PRO:O	25:A:420:ARG:HA	2.11	0.50	
5:D:104:THR:CB	11:5:7:U:P	3.00	0.50	
24:Z:61:A:H2'	24:Z:62:A:O4'	2.11	0.50	
29:4:470:ARG:O	33:E:980:LYS:O	2.29	0.50	
1:A5:191:GLU:C	1:A5:193:ASP:H	2.15	0.50	
33:E:1012:VAL:HA	33:E:1023:ILE:HA	1.94	0.50	
11:5:11:U:OP1	25:A:221:ASN:O	2.30	0.50	
18:J:29:ASP:O	18:J:49:GLU:HA	2.12	0.50	
32:T:611:ASP:O	32:T:614:ARG:CB	2.60	0.50	
9:Q:122:PRO:O	9:Q:126:LEU:N	2.45	0.49	
24:Z:56:A:O2'	24:Z:57:C:H5'	2.12	0.49	
11:5:97:G:H2'	11:5:98:C:H6	1.77	0.49	
25:A:1777:ILE:HA	25:A:1859:LYS:O	2.11	0.49	
24:Z:53:C:O2'	24:Z:54:G:H5'	2.12	0.49	
2:A2:34:SER:O	2:A2:51:THR:HA	2.13	0.49	
1:A5:177:LEU:HA 1:A5:181:GLY:H		1.77	0.49	
29:4:470:ARG:CB 33:E:1019:ASN:CA		2.85	0.49	
33:E:380:GLU:O	33:E:383:ASP:N	2.46	0.49	
29:4:473:PRO:HB3	33:E:978:LEU:CB	2.39	0.49	
40:Y:49:LYS:N	40:Y:50:PRO:HD2	2.27	0.49	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
11:5:97:G:H2'	11:5:98:C:C6	2.48	0.48
32:T:471:ARG:N	32:T:472:PRO:HD3	2.25	0.48
12:L:86:ALA:HB3	12:L:87:PRO:CD	2.44	0.48
38:N:98:HIS:O	38:N:102:LYS:N	2.46	0.48
25:A:1846:ALA:HB2	25:A:1875:HIS:CB	2.43	0.48
1:A5:365:PRO:CB	1:A5:366:PRO:CD	2.91	0.48
24:Z:65:G:O2'	24:Z:66:C:H5'	2.14	0.48
32:T:652:GLY:N	32:T:655:SER:O	2.46	0.48
33:E:207:THR:HA	33:E:227:PRO:HA	1.96	0.48
19:2:120:A:N1	19:2:137:U:C4	2.82	0.48
11:5:68:C:O2	11:5:68:C:H3'	2.13	0.48
1:A5:251:ARG:O	30:A4:748:SER:CB	2.61	0.48
33:E:732:THR:CB	33:E:771:GLY:O	2.62	0.48
25:A:119:LEU:N	25:A:128:PHE:O	2.44	0.47
29:4:409:GLU:HA	29:4:413:ASN:HA	1.96	0.47
11:5:98:C:H2'	11:5:99:C:H6	1.79	0.47
14:V:13:LYS:HA	23:G:181:LYS:CB	2.45	0.47
27:P:167:PHE:CB	41:6:28:A:N7	2.78	0.47
24:Z:70:G:C6	24:Z:71:C:H1'	2.50	0.47
27:P:166:SER:CB	41:6:30:A:O4'	2.63	0.47
19:2:83:A:H2'	19:2:84:C:C6	2.49	0.47
19:2:124:G:H2'	19:2:125:G:C8 2.49		0.47
11:5:37:G:H21	21:K:386:SER:HA	1.80	0.46
11:5:110:A:H2'	11:5:111:A:C8	2.50 0.46	
19:2:39:U:C4	24:Z:149:A:N6	2.83	0.46
19:2:69:U:H2'	19:2:70:C:C6	2.49	0.46
32:T:630:PRO:HA	32:T:631:PRO:HD3	1.77	0.46
19:2:60:U:C6	19:2:60:U:H5"	2.50	0.46
5:D:104:THR:CA	11:5:6:C:H5"	2.44	0.46
19:2:68:G:H2'	19:2:69:U:C6	2.50	0.46
19:2:70:C:H2'	19:2:71:C:C6	2.49	0.46
4:F:61:THR:HA	19:2:40:C:P	2.55	0.46
20:A3:17:THR:HA	20:A3:66:ASN:O	2.16	0.46
29:4:470:ARG:C	33:E:980:LYS:O	2.54	0.46
33:E:37:ILE:HA	33:E:57:GLU:HA	1.98	0.46
33:E:796:ASN:HA	33:E:796:ASN:HA 33:E:871:PRO:HD3		0.46
5:D:282:HIS:HA 5:D:304:SER:HA		1.98	0.46
7:B:182:LEU:O 7:B:184:PRO:HD3		2.15	0.46
33:E:62:ILE:HA	33:E:82:SER:HA	1.97	0.46
1:A5:50:LEU:O	1:A5:54:ALA:HB2	2.16	0.46
1:A5:490:GLU:C	1:A5:492:SER:N	2.70	0.46

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
5:D:104:THR:O	11:5:6:C:C4'	2.54	0.46	
33:E:43:PRO:HA	33:E:50:VAL:HA	1.97	0.46	
1:A5:61:LEU:N	1:A5:62:PRO:CD	2.79	0.45	
25:A:2068:SER:C	25:A:2070:LYS:H	2.19	0.45	
25:A:2231:THR:O	25:A:2235:TYR:N	2.45	0.45	
19:2:81:G:H2'	19:2:82:G:H8	1.81	0.45	
29:4:473:PRO:CD	33:E:980:LYS:HA	2.46	0.45	
33:E:785:PRO:HA	33:E:801:GLU:HA	1.98	0.45	
1:A5:182:LYS:HA	1:A5:244:TRP:CB	2.46	0.45	
25:A:334:THR:O	25:A:336:ASN:N	2.49	0.45	
1:A5:495:LEU:HA	1:A5:496:PRO:HD3	1.85	0.45	
19:2:120:A:C6	19:2:137:U:O4	2.69	0.45	
41:6:59:G:O6	41:6:76:A:C6	2.70	0.45	
1:A5:273:PRO:HA	1:A5:274:PRO:HD3	1.88	0.45	
19:2:60:U:O2	19:2:60:U:H2'	2.16	0.45	
25:A:602:ILE:O	25:A:606:LYS:N	2.47	0.45	
33:E:1045:ALA:HA	33:E:1055:VAL:HA	1.99	0.45	
18:J:33:VAL:O	18:J:45:LEU:HA	2.17	0.45	
19:2:72:U:H2'	19:2:73:C:C6	2.50	0.45	
19:2:80:A:H2'	19:2:81:G:H8	1.81	0.45	
25:A:798:GLY:O	25:A:800:TYR:N	2.50	0.45	
17:H:26:ILE:O	17:H:37:VAL:HA	2.17	0.45	
38:N:82:CYS:O	38:N:86:ASP:N	2.49	0.45	
1:A5:124:ALA:O	1:A5:127:LEU:N	2.50	0.45	
1:A5:507:ALA:HB1	1:A5:512:ALA:HB2	1.99	0.45	
5:D:126:SER:O	5:D:133:VAL:HA	2.17	0.45	
19:2:79:G:H2'	19:2:80:A:H8	1.81	0.45	
19:2:84:C:H2'	19:2:85:A:H8	1.82	0.45	
33:E:970:TYR:HA	33:E:979:ARG:HA	1.99	0.45	
18:J:35:ALA:HB3	18:J:44:ALA:CB	2.47	0.44	
19:2:39:U:O4	24:Z:149:A:N6	2.49	0.44	
27:P:180:PRO:CB	41:6:26:U:HO2'	2.28	0.44	
19:2:40:C:C5	24:Z:149:A:N6	2.85	0.44	
19:2:45:C:N4	24:Z:144:A:N1	2.64	0.44	
33:E:642:ILE:HA	33:E:665:LEU:HA	2.00	0.44	
19:2:71:C:H2'	19:2:72:U:C6	2.50	0.44	
19:2:166:G:N2	19:2:166:G:OP2	2.50	0.44	
27:P:173:CYS:CB	41:6:28:A:H62	2.28	0.44	
19:2:82:G:H2'	19:2:83:A:H8	1.82	0.44	
25:A:986:GLU:HA	25:A:1029:GLY:HA3	1.98	0.44	
25:A:2068:SER:C	25:A:2070:LYS:N	2.70	0.44	

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
23:G:381:HIS:CB	23:G:382:PRO:CD	2.94	0.44	
23:G:381:HIS:CB	23:G:387:PHE:CB	2.95	0.44	
32:T:611:ASP:O	32:T:614:ARG:N	2.50	0.44	
16:C:39:ASN:HA	16:C:59:CYS:O	2.16	0.44	
33:E:255:TYR:HA	33:E:270:PRO:HA	2.00	0.44	
19:2:60:U:C5	19:2:60:U:OP2	2.70	0.44	
1:A5:223:HIS:HA	1:A5:224:PRO:HD3	1.66	0.44	
11:5:73:C:H2'	11:5:74:U:H6	1.83	0.43	
1:A5:256:PHE:O	1:A5:261:CYS:CA	2.66	0.43	
1:A5:26:GLU:O	1:A5:29:ASP:N	2.51	0.43	
7:B:84:ALA:HB1	19:2:165:A:H61	1.83	0.43	
19:2:144:C:H2'	19:2:145:A:H2'	2.00	0.43	
25:A:1858:PRO:O	25:A:1859:LYS:C	2.57	0.43	
11:5:66:A:H2'	11:5:67:A:C4'	2.49	0.43	
11:5:107:G:H3'	11:5:108:G:H8	1.82	0.43	
29:4:473:PRO:CG	33:E:980:LYS:HA	2.48	0.43	
33:E:931:VAL:N	33:E:936:LYS:O	2.50	0.43	
11:5:74:U:H2'	11:5:75:G:C8	2.52	0.43	
17:H:60:THR:N	17:H:61:PRO:HD2	2.33	0.43	
25:A:948:PRO:HG2	25:A:949:PRO:HD3	2.01	0.43	
25:A:957:GLN:O	25:A:961:ASN:N	2.45	0.43	
33:E:440:HIS:HA	33:E:774:PHE:HA	2.01	0.43	
24:Z:61:A:H2'	24:Z:62:A:C8	2.54	0.43	
5:D:333:VAL:HA	5:D:343:ILE:O	2.19	0.43	
25:A:1809:ILE:O	25:A:1818:PHE:N	2.44	0.43	
25:A:1947:ASN:O	25:A:1951:LYS:CB	2.67	0.43	
11:5:37:G:N2	21:K:386:SER:HA	2.34	0.43	
29:4:470:ARG:CB	33:E:1018:GLU:C	2.84	0.43	
1:A5:88:THR:O	1:A5:91:GLY:N	2.46	0.42	
19:2:151:C:H2'	19:2:152:G:C8	2.53	0.42	
20:A3:43:GLU:O	20:A3:53:GLU:N	2.52	0.42	
33:E:888:ALA:HA	33:E:909:VAL:HA	2.01	0.42	
33:E:1052:ASN:HA	33:E:1096:HIS:HA	2.01	0.42	
5:D:94:ASN:O	5:D:98:ASP:CB	2.68	0.42	
18:J:31:ARG:O 18:J:47:GLN:CB		2.67	0.42	
25:A:2216:CYS:HA	25:A:2225:LEU:HA	2.01	0.42	
32:T:614:ARG:O	32:T:618:GLY:N	2.51	0.42	
40:Y:49:LYS:N	40:Y:50:PRO:CD	2.83	0.42	
10:A1:128:GLY:HA3	10:A1:132:GLY:O	2.19	0.42	
20:A3:42:HIS:HA	20:A3:54:GLN:O	2.20	0.42	
33:E:92:TYR:HA	33:E:99:PHE:HA	2.00	0.42	

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
21:K:304:ILE:O	21:K:308:ARG:N	2.52	0.42	
25:A:802:THR:O	25:A:806:ALA:N	2.48	0.42	
32:T:494:THR:O	33:E:1083:ASN:CB	2.68	0.42	
33:E:436:ARG:HA	33:E:778:ALA:HA	2.02	0.42	
33:E:456:PRO:HA	33:E:478:PHE:HA	2.02	0.42	
1:A5:258:SER:CA	30:A4:766:MET:CA	2.77	0.42	
5:D:264:VAL:O	5:D:269:PRO:HB3	2.20	0.42	
33:E:1059:PRO:HA	33:E:1060:PRO:HD3	1.95	0.42	
25:A:1955:LYS:O	25:A:1956:PRO:C	2.58	0.41	
1:A5:55:GLY:O	1:A5:58:GLU:N	2.52	0.41	
4:F:61:THR:CA	19:2:40:C:P	3.08	0.41	
33:E:209:THR:HA	33:E:225:SER:HA	2.02	0.41	
11:5:73:C:H2'	11:5:74:U:C6	2.55	0.41	
19:2:60:U:C6	19:2:60:U:O5'	2.72	0.41	
41:6:59:G:C6	41:6:76:A:N1	2.88	0.41	
1:A5:240:LYS:C	1:A5:242:ASP:H	2.24	0.41	
1:A5:131:LEU:O	1:A5:132:SER:C	2.59	0.41	
11:5:75:G:H2'	11:5:76:A:C8	11:5:76:A:C8 2.55		
17:H:13:LEU:HA	17:H:14:PRO:HD3	1.95	0.41	
18:J:35:ALA:HB3	18:J:44:ALA:HB3	2.03	0.41	
30:A4:735:MET:CB	30:A4:754:HIS:CB	2.99	0.41	
11:5:5:U:H2'	11:5:6:C:C6	2.56	0.41	
19:2:33:G:O6	24:Z:156:U:O4	2.39	0.41	
25:A:1856:GLU:O	25:A:1857:GLN:C	2.58	0.41	
4:F:71:ALA:HB2	12:L:14:THR:CB	2.51	0.40	
11:5:100:U:H2'	11:5:101:U:C6	2.56	0.40	
19:2:45:C:C2'	29:4:395:TRP:CB	2.93	0.40	
20:A3:39:ASP:HA	20:A3:58:GLY:O	2.20	0.40	
24:Z:70:G:O6	41:6:35:A:N7	2.54	0.40	
5:D:266:PRO:O	5:D:267:PHE:CB	2.69	0.40	
9:Q:90:ALA:HB1	11:5:67:A:OP1	2.21	0.40	
19:2:152:G:H2'	19:2:153:A:H8	1.87	0.40	
23:G:290:ALA:O	23:G:308:ARG:N	2.54	0.40	
2:A2:57:ASP:O	2:A2:62:TYR:HA	2.20	0.40	
5:D:265:ARG:HA 5:D:266:PRO:H		1.70	0.40	
10:A1:7:LYS:O 10:A1:9:LEU:N		2.54	0.40	
33:E:743:SER:O	33:E:755:VAL:N	2.52	0.40	
1:A5:97:ASN:O	1:A5:98:TYR:C	2.60	0.40	
5:D:204:THR:O	5:D:205:SER:CB	2.69	0.40	
5:D:265:ARG:O	5:D:269:PRO:HA	2.21	0.40	
25:A:1609:VAL:H	25:A:2066:THR:H	1.67	0.40	

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	previous	page
• • • • • • • • • • • • •	J	<i>r</i> · · · · · · · · · · · · · · · · · · ·	r

Atom-1 Atom-2		Interatomic distance (Å)	Clash overlap (Å)	
2:A2:25:VAL:HA	2:A2:83:LEU:O	2.22	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	A5	726/790~(92%)	655 (90%)	61 (8%)	10 (1%)	11	46
2	A2	77/103~(75%)	71 (92%)	3 (4%)	3 (4%)	3	23
3	Z	106/125~(85%)	92 (87%)	12 (11%)	2 (2%)	8	38
4	F	47/464~(10%)	46 (98%)	0	1 (2%)	7	36
5	D	300/357~(84%)	276 (92%)	17 (6%)	7 (2%)	6	34
6	W	160/255~(63%)	147 (92%)	13 (8%)	0	100	100
7	В	165/225~(73%)	158 (96%)	4 (2%)	3 (2%)	8	40
8	S	1720/2136~(80%)	1660 (96%)	58 (3%)	2 (0%)	51	86
9	Q	136/144~(94%)	114 (84%)	22 (16%)	0	100	100
10	A1	146/156~(94%)	137 (94%)	7 (5%)	2 (1%)	11	46
12	L	101/802~(13%)	97 (96%)	4 (4%)	0	100	100
13	R	7/229~(3%)	7 (100%)	0	0	100	100
14	V	88/95~(93%)	79 (90%)	7 (8%)	2 (2%)	6	34
15	9	69/102~(68%)	66 (96%)	2(3%)	1 (1%)	11	46
16	С	78/139~(56%)	73 (94%)	4 (5%)	1 (1%)	12	48
17	Н	74/91~(81%)	64 (86%)	8 (11%)	2 (3%)	5	31
18	J	67/80~(84%)	57 (85%)	9 (13%)	1 (2%)	10	46
20	A3	58/96~(60%)	53 (91%)	4 (7%)	1 (2%)	9	42
21	K	121/439~(28%)	98 (81%)	23 (19%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
22	У	98/110~(89%)	96~(98%)	2(2%)	0	100	100
23	G	318/514~(62%)	292 (92%)	22 (7%)	4 (1%)	12	48
25	А	2164/2335~(93%)	1904 (88%)	239 (11%)	21 (1%)	15	55
26	Ι	174/312~(56%)	152 (87%)	22 (13%)	0	100	100
27	Р	158/420~(38%)	128 (81%)	30 (19%)	0	100	100
28	р	58/793~(7%)	53 (91%)	3 (5%)	2(3%)	3	26
29	4	415/501 (83%)	369~(89%)	35 (8%)	11 (3%)	5	31
30	A4	399/1098~(36%)	387 (97%)	10 (2%)	2 (0%)	29	69
31	u	832/1304~(64%)	728 (88%)	98 (12%)	6 (1%)	22	63
32	Т	175/895~(20%)	159 (91%)	15 (9%)	1 (1%)	25	66
33	Ε	1165/1217~(96%)	1143 (98%)	19 (2%)	3~(0%)	41	77
34	W	76/424~(18%)	69 (91%)	6 (8%)	1 (1%)	12	48
35	х	77/86~(90%)	68 (88%)	8 (10%)	1 (1%)	12	48
36	v	111/536~(21%)	98 (88%)	13 (12%)	0	100	100
37	0	148/396~(37%)	146 (99%)	2 (1%)	0	100	100
38	Ν	54/199~(27%)	53 (98%)	1 (2%)	0	100	100
39	r	842/972~(87%)	781 (93%)	61 (7%)	0	100	100
40	Y	93/904~(10%)	90 (97%)	2 (2%)	1 (1%)	14	52
42	A6	72/248~(29%)	61 (85%)	10 (14%)	1 (1%)	11	46
43	a	74/118~(63%)	71 (96%)	3 (4%)	0	100	100
43	h	91/118~(77%)	86 (94%)	5 (6%)	0	100	100
44	b	71/86~(83%)	70 (99%)	1 (1%)	0	100	100
44	i	70/86~(81%)	69~(99%)	1 (1%)	0	100	100
45	f	60/240~(25%)	57~(95%)	3~(5%)	0	100	100
45	m	80/240~(33%)	74 (92%)	6 (8%)	0	100	100
46	е	76/126~(60%)	73~(96%)	3 (4%)	0	100	100
46	1	$81/126 \ (64\%)$	76 (94%)	5 (6%)	0	100	100
47	d	67/76 (88%)	63 (94%)	4 (6%)	0	100	100
47	k	71/76~(93%)	69 (97%)	2 (3%)	0	100	100
48	с	76/92~(83%)	70 (92%)	6 (8%)	0	100	100
48	j	79/92~(86%)	77 (98%)	2 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
49	g	89/119~(75%)	83~(93%)	6~(7%)	0	100	100
49	n	78/119~(66%)	75~(96%)	3~(4%)	0	100	100
50	q	71/73~(97%)	65~(92%)	6 (8%)	0	100	100
51	Х	34/641~(5%)	34 (100%)	0	0	100	100
All	All	12843/22520~(57%)	11839 (92%)	912~(7%)	92 (1%)	26	63

All (92) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	A5	188	LYS
1	A5	222	PRO
1	A5	361	GLN
1	A5	362	LEU
3	Z	99	GLN
5	D	193	THR
5	D	265	ARG
7	В	175	PRO
14	V	55	LEU
17	Н	70	ASP
18	J	50	GLU
23	G	342	GLU
23	G	381	HIS
23	G	382	PRO
25	А	166	PHE
25	А	1272	THR
25	А	1792	LYS
25	А	1796	GLY
25	А	1859	LYS
25	А	2060	SER
28	р	192	ASN
29	4	78	PRO
29	4	463	LYS
29	4	473	PRO
31	u	718	PRO
31	u	942	ASN
33	Е	406	PRO
35	Х	7	ILE
2	A2	62	TYR
4	F	77	LYS
7	В	176	GLY
8	s	1384	ALA

Mol	Chain	Res	Type
10	A1	8	ALA
10	A1	23	GLN
16	С	12	ASN
17	Н	67	THR
25	А	165	ARG
25	А	1866	LYS
29	4	227	PRO
29	4	292	SER
29	4	479	TYR
30	A4	812	SER
31	u	720	GLY
31	u	1259	ARG
32	Т	604	LYS
33	Е	916	ASN
25	А	1867	GLY
25	А	1957	ASP
28	р	218	ILE
29	4	308	LYS
30	A4	741	PHE
33	Е	404	LEU
1	A5	97	ASN
1	A5	249	ILE
3	Z	98	PHE
5	D	267	PHE
14	V	52	PRO
23	G	343	PRO
25	А	169	PHE
25	А	251	ASP
25	А	1773	SER
25	А	1869	LEU
25	А	2068	SER
40	Y	93	LEU
1	A5	363	PRO
1	A5	489	ASP
1	A5	688	LEU
2	A2	66	GLU
2	A2	88	ASP
15	9	35	ASN
25	А	985	TYR
25	A	987	LYS
$\overline{25}$	A	2066	THR
29	4	99	PRO

Mol	Chain	Res	Type
29	4	482	SER
29	4	483	SER
31	u	1108	ASN
1	A5	181	GLY
7	В	213	THR
25	А	96	PRO
25	А	1271	MET
5	D	59	ILE
5	D	97	GLY
20	A3	34	ILE
29	4	472	GLN
8	s	1381	PRO
5	D	238	VAL
5	D	340	PRO
25	А	250	VAL
34	W	27	PRO
42	A6	156	GLY
31	u	932	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	A5	39/724~(5%)	39 (100%)	0	100	100
2	A2	3/91~(3%)	3~(100%)	0	100	100
3	Z	5/109~(5%)	5 (100%)	0	100	100
5	D	10/300~(3%)	10 (100%)	0	100	100
6	W	6/218~(3%)	6 (100%)	0	100	100
7	В	8/195~(4%)	8 (100%)	0	100	100
8	\mathbf{S}	79/1908~(4%)	79 (100%)	0	100	100
9	Q	6/130~(5%)	6 (100%)	0	100	100
12	L	3/709~(0%)	3 (100%)	0	100	100
14	V	3/88~(3%)	3 (100%)	0	100	100

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
15	9	4/94~(4%)	4 (100%)	0	100	100
16	\mathbf{C}	4/111~(4%)	4 (100%)	0	100	100
17	Η	3/80~(4%)	3~(100%)	0	100	100
18	J	2/70~(3%)	2(100%)	0	100	100
21	K	2/395~(0%)	2 (100%)	0	100	100
22	у	4/95~(4%)	4 (100%)	0	100	100
23	G	13/441~(3%)	13 (100%)	0	100	100
25	А	123/2108~(6%)	123 (100%)	0	100	100
26	Ι	6/293~(2%)	6 (100%)	0	100	100
27	Р	12/361~(3%)	12 (100%)	0	100	100
28	р	1/709~(0%)	1 (100%)	0	100	100
29	4	12/446~(3%)	11 (92%)	1 (8%)	11	34
30	A4	6/956~(1%)	6 (100%)	0	100	100
31	u	36/1104 (3%)	36 (100%)	0	100	100
32	Т	19/776~(2%)	19 (100%)	0	100	100
33	Е	60/1051~(6%)	59~(98%)	1 (2%)	60	78
34	W	4/336~(1%)	4 (100%)	0	100	100
35	х	3/77~(4%)	3 (100%)	0	100	100
36	v	6/459~(1%)	6 (100%)	0	100	100
37	0	10/349~(3%)	10 (100%)	0	100	100
39	r	49/866~(6%)	49 (100%)	0	100	100
40	Y	4/831~(0%)	4 (100%)	0	100	100
42	A6	2/203~(1%)	2 (100%)	0	100	100
43	a	3/110 (3%)	3 (100%)	0	100	100
43	h	5/110 (4%)	5 (100%)	0	100	100
44	b	4/74~(5%)	4 (100%)	0	100	100
44	i	4/74~(5%)	4 (100%)	0	100	100
45	f	2/177~(1%)	2 (100%)	0	100	100
45	m	4/177~(2%)	4 (100%)	0	100	100
46	е	3/101~(3%)	3 (100%)	0	100	100
46	l	3/101~(3%)	3 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
47	d	3/66~(4%)	3~(100%)	0	100 100
47	k	3/66~(4%)	3~(100%)	0	100 100
48	с	1/84~(1%)	1 (100%)	0	100 100
48	j	1/84~(1%)	1 (100%)	0	100 100
49	g	4/101~(4%)	4 (100%)	0	100 100
49	n	3/101~(3%)	3~(100%)	0	100 100
51	Х	1/554~(0%)	1 (100%)	0	100 100
All	All	591/18663~(3%)	589 (100%)	2(0%)	92 95

All (2) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
29	4	78	PRO
33	Ε	406	PRO

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
11	5	113/116~(97%)	40~(35%)	2(1%)
19	2	139/188~(73%)	29 (20%)	1 (0%)
24	Ζ	45/230~(19%)	12 (26%)	0
41	6	75/106~(70%)	24 (32%)	0
All	All	372/640~(58%)	105 (28%)	3~(0%)

All (105) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
11	5	8	G
11	5	9	G
11	5	10	U
11	5	15	С
11	5	19	А
11	5	20	G
11	5	21	А
11	5	22	U

Mol	Chain	Res	Type
11	5	23	С
11	5	24	G
11	5	25	С
11	5	26	A
11	5	27	U
11	5	28	А
11	5	35	U
11	5	36	С
11	5	38	С
11	5	39	C
11	5	40	U
11	5	45	C
11	5	48	А
11	5	57	G
11	5	61	A
11	5	66	A
11	5	67	А
11	5	68	С
11	5	69	А
11	5	72	U
11	5	79	С
11	5	80	U
11	5	81	U
11	5	82	А
11	5	83	А
11	5	88	А
11	5	90	U
11	5	92	U
11	5	93	U
11	5	95	G
11	5	96	A
11	5	109	С
19	2	15	U
19	2	33	G
19	2	40	С
19	2	44	U
19	2	49	U
19	2	58	U
19	2	60	U
19	2	61	С
19	2	101	U
19	2	102	U

Mol	Chain	Res	Type
19	2	103	U
19	2	111	G
19	2	116	А
19	2	117	U
19	2	121	А
19	2	122	U
19	2	123	А
19	2	124	G
19	2	128	С
19	2	129	U
19	2	130	U
19	2	131	G
19	2	136	G
19	2	138	С
19	2	146	C
19	2	147	G
19	2	157	G
19	2	164	С
19	2	177	А
24	Ζ	51	U
24	Z	53	С
24	Ζ	54	G
24	Ζ	55	А
24	Ζ	61	А
24	Ζ	63	G
24	Ζ	71	С
24	Ζ	75	U
24	Ζ	147	U
24	Ζ	149	А
24	Ζ	151	А
$\overline{24}$	Z	155	A
41	6	6	С
41	6	7	G
41	6	8	C
41	6	10	U
41	6	12	G
41	6	25	С
41	6	26	U
41	6	27	A
41	6	28	А
41	6	29	A
41	6	31	U

\mathbf{Mol}	Chain	\mathbf{Res}	Type
41	6	33	G
41	6	36	А
41	6	37	С
41	6	38	G
41	6	45	А
41	6	46	G
41	6	59	G
41	6	68	С
41	6	72	G
41	6	74	U
41	6	75	G
41	6	84	А
41	6	85	U

All (3) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
11	5	26	А
11	5	78	U
19	2	60	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 4 ligands modelled in this entry, 1 is monoatomic - leaving 3 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	E	ond ang	gles
	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
55	GTG	A6	301	-	$46,\!57,\!57$	2.65	16 (34%)	47,90,90	<mark>3.18</mark>	14 (29%)
53	GTP	r	1500	54	26,34,34	1.09	1 (3%)	32,54,54	1.85	7 (21%)
52	IHP	А	3001	-	36,36,36	1.52	6 (16%)	54,60,60	0.71	1 (1%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
55	GTG	A6	301	-	-	11/24/64/64	0/6/6/6
53	GTP	r	1500	54	-	6/18/38/38	0/3/3/3
52	IHP	А	3001	-	-	7/30/54/54	0/1/1/1

All (23) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
55	A6	301	GTG	O4E-C1E	10.58	1.55	1.41
55	A6	301	GTG	O4E-C4E	5.88	1.58	1.45
55	A6	301	GTG	C8B-N7B	-5.01	1.26	1.35
55	A6	301	GTG	C2E-C1E	-4.44	1.47	1.53
55	A6	301	GTG	C5E-C4E	-4.19	1.38	1.51
55	A6	301	GTG	PG-O5E	4.12	1.76	1.59
52	А	3001	IHP	P2-O12	3.59	1.66	1.59
53	r	1500	GTP	C6-N1	-3.53	1.32	1.37
55	A6	301	GTG	O3E-C3E	-3.31	1.35	1.43
52	А	3001	IHP	P3-O13	3.23	1.65	1.59
52	А	3001	IHP	P1-011	3.21	1.65	1.59
52	А	3001	IHP	P6-O16	3.14	1.65	1.59
52	А	3001	IHP	P5-O15	3.13	1.65	1.59
52	А	3001	IHP	P4-O14	3.12	1.65	1.59
55	A6	301	GTG	C3E-C4E	2.94	1.60	1.53
55	A6	301	GTG	C2D-C1D	-2.89	1.49	1.53
55	A6	301	GTG	O5E-C5E	-2.75	1.34	1.44
55	A6	301	GTG	C5B-C4B	-2.71	1.36	1.43
55	A6	301	GTG	PA-O5D	2.56	1.69	1.59
55	A6	301	GTG	C8A-N9A	2.44	1.37	1.33
55	A6	301	GTG	O4D-C1D	2.42	1.44	1.41
55	A6	301	GTG	PB-O1B	-2.23	1.43	1.50
55	A6	301	GTG	C6A-N1A	2.02	1.40	1.37

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
55	A6	301	GTG	C5E-C4E-C3E	-10.27	76.70	115.18
55	A6	301	GTG	C2E-C3E-C4E	7.25	116.72	102.64
55	A6	301	GTG	O5E-C5E-C4E	7.24	133.90	108.99
55	A6	301	GTG	PG-O5E-C5E	6.50	159.81	121.68
55	A6	301	GTG	O4E-C4E-C3E	-5.95	93.35	105.11
55	A6	301	GTG	O2A-PA-O5D	-5.34	82.94	107.75
55	A6	301	GTG	O5E-PG-O1G	-5.18	88.84	109.07
55	A6	301	GTG	O5D-PA-O1A	-4.98	89.59	109.07
55	A6	301	GTG	C3E-C2E-C1E	4.67	108.02	100.98
53	r	1500	GTP	C5-C6-N1	4.15	121.28	113.95
53	r	1500	GTP	O6-C6-C5	-4.08	116.39	124.37
53	r	1500	GTP	PA-O3A-PB	-3.91	119.41	132.83
53	r	1500	GTP	PB-O3B-PG	-3.63	120.37	132.83
55	A6	301	GTG	O2G-PG-O5E	-3.33	92.28	107.75
55	A6	301	GTG	O5D-C5D-C4D	3.01	119.35	108.99
52	А	3001	IHP	O12-C2-C1	2.97	115.69	108.69
53	r	1500	GTP	C2-N1-C6	-2.94	119.68	125.10
53	r	1500	GTP	C3'-C2'-C1'	2.69	105.03	100.98
55	A6	301	GTG	O6B-C6B-C5B	2.65	129.55	124.37
55	A6	301	GTG	C2D-C3D-C4D	2.59	107.67	102.64
53	r	1500	GTP	O2G-PG-O3B	2.43	112.79	104.64
55	A6	301	GTG	C3D-C2D-C1D	2.04	104.05	100.98

All (22) bond angle outliers are listed below:

There are no chirality outliers.

All (24) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
52	А	3001	IHP	C1-C2-O12-P2
52	А	3001	IHP	C4-O14-P4-O24
53	r	1500	GTP	C5'-O5'-PA-O3A
53	r	1500	GTP	C5'-O5'-PA-O1A
53	r	1500	GTP	C5'-O5'-PA-O2A
53	r	1500	GTP	O4'-C4'-C5'-O5'
55	A6	301	GTG	C5D-O5D-PA-O1A
55	A6	301	GTG	C5D-O5D-PA-O2A
55	A6	301	GTG	C5E-O5E-PG-O3B
55	A6	301	GTG	C5E-O5E-PG-O1G
55	A6	301	GTG	C5E-O5E-PG-O2G
55	A6	301	GTG	C4E-C5E-O5E-PG
53	r	1500	GTP	C3'-C4'-C5'-O5'
55	A6	301	GTG	O4D-C4D-C5D-O5D

		1	1 0	
Mol	Chain	\mathbf{Res}	Type	Atoms
55	A6	301	GTG	C3D-C4D-C5D-O5D
55	A6	301	GTG	PB-O3B-PG-O5E
53	r	1500	GTP	PB-O3B-PG-O3G
52	А	3001	IHP	C3-C2-O12-P2
52	А	3001	IHP	C3-O13-P3-O33
55	A6	301	GTG	C3E-C4E-C5E-O5E
52	А	3001	IHP	C2-O12-P2-O32
52	А	3001	IHP	C3-O13-P3-O43
52	А	3001	IHP	C4-O14-P4-O34
55	A6	301	GTG	C5D-O5D-PA-O3A

There are no ring outliers.

1 monomer is involved in 11 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
55	A6	301	GTG	11	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-11695. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 192

Y Index: 192

Z Index: 192

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 202

Y Index: 201

Z Index: 175

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0095. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 3218 nm^3 ; this corresponds to an approximate mass of 2907 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.128 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-11695 and PDB model 7ABG. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0095 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0095).

9.4 Atom inclusion (i)

At the recommended contour level, 92% of all backbone atoms, 91% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0095) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} ext{-score}$
All	0.9080	0.1470
0	0.9720	0.0750
2	0.5410	0.0490
4	0.4400	0.0250
5	0.9880	0.1780
6	0.9690	0.1550
9	0.9050	0.0210
А	0.9870	0.2520
A1	0.9970	0.0610
A2	0.9620	0.0650
A3	1.0000	0.0740
A4	0.9420	0.1610
A5	0.9620	0.0740
A6	1.0000	0.0640
В	0.0010	-0.0040
\mathbf{C}	0.9880	0.0570
D	0.9960	0.0960
Ε	0.9520	0.1080
F	0.8800	0.0670
G	0.9980	0.1600
Н	0.8580	0.0370
Ι	0.9970	0.2580
J	0.9880	0.0780
K	0.9940	0.2720
L	0.9480	0.1760
N	1.0000	0.2480
Р	0.9960	0.1760
Q	0.9990	0.2290
R	0.9560	0.2570
Т	0.9930	0.1120
V	0.9450	0.0510
W	0.4860	0.0180
Х	1.0000	0.2510
Y	0.9330	0.1320
Ζ	1.0000	0.1940

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
a	0.9900	0.1530
b	0.9560	0.1180
С	0.9510	0.1160
d	0.9940	0.1820
е	0.9970	0.1990
f	1.0000	0.1560
g	0.9700	0.1360
h	0.8750	-0.0140
i	0.7600	0.0090
j	0.2360	0.0320
k	0.1320	0.0160
1	0.2020	0.0100
m	0.7360	0.0420
n	0.9730	0.0000
р	0.0200	0.0700
q	1.0000	0.2990
r	0.9980	0.2390
S	0.9870	0.1560
u	0.9850	0.1630
V	0.9350	0.2120
W	0.9850	0.0730
X	1.0000	0.1200
У	0.9940	0.1280
Z	0.9040	0.1010

