

wwPDB EM Validation Summary Report (i)

Apr 23, 2024 - 04:30 am BST

PDB ID	:	6ZP4
EMDB ID	:	EMD-11335
Title	:	SARS-CoV-2 Nsp1 bound to a human 43S preinitiation ribosome complex -
		state 2
Authors	:	Thoms, M.; Buschauer, R.; Ameismeier, M.; Denk, T.; Kratzat, H.; Mackens-
		Kiani, T.; Cheng, J.; Berninghausen, O.; Becker, T.; Beckmann, R.
Deposited on	:	2020-07-08
Resolution	:	2.90 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	a	295	73%	27%
2	р	264	80%	20%
3	d	293	74%	26%
4	Q	115	86%	• 12%
5	q	263	97%	•
6	W	25	96%	•
7	r	249	89%	11%
8	s	194	89%	11%

Continued on next page...

Mol	Chain	Length	Quality of chain	
9	t	208	96%	•
10	с	194	93%	7%
11	n	158	84%	15%
12	m	151	98%	
13	у	83	99%	
14	D	130	98%	
15	Z	133	92%	8%
16	R	84	96%	••
17	Т	59	75%	25%
18	2	1868	6 7% 23%	• 8%
19	W	135	93%	• 5%
20	b	243	92%	8%
21	е	204	92%	• 7%
22	u	165	58% 42%	
23	v	132	84%	16%
24	О	145	82%	18%
25	g	146	94%	• 5%
26	k	152	91%	• 8%
27	х	145	97%	•
28	h	119	82%	18%
29	Р	125	56% 44%	
30	S	69	88%	12%
31	1	56	96%	•
32	U	156	• 37% 63%	
33	V	317	93%	7%

Continued from previous page...

Continued on next page...

Mol	Chain	Length	Quality of chain	
34	i	151	83%	17%
35	j	143	97%	•••
36	G	144	6 1%	39%
37	Ι	325	94% 	6%
38	В	814	55% 66%	34%
39	А	1382	15% 49%	50%
40	С	913	• 69%	• 31%
41	Е	445	36%	• 7%
42	F	357	56% 74%	• 25%
43	Н	352	51%	• 16%
44	K	218	96% 98%	
45	L	564	59% 64% •	34%
46	М	374	71%	• 10%
47	Ν	548	81%	• 18%
48	Х	78	15%	
49	1	75	75%	25%
50	4	333	• 42% •	57%
51	О	315	9%	• 6%
52	Y	472	87%	• 12%
53	Z	113	<mark>6%</mark> 95%	<mark>.</mark>
54	J	180	18% 82%	

Continued from previous page...

2 Entry composition (i)

There are 57 unique types of molecules in this entry. The entry contains 117784 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 40S ribosomal protein SA.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	a	216	Total 1705	C 1083	N 299	0 315	S 8	0	0

• Molecule 2 is a protein called 40S ribosomal protein S3a.

Mol	Chain	Residues		At	AltConf	Trace			
2	р	211	Total 1715	C 1088	N 307	O 306	S 14	0	0

• Molecule 3 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		At	AltConf	Trace			
3	d	216	Total 1674	C 1085	N 287	O 292	S 10	0	0

• Molecule 4 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	Q	101	Total 814	C 507	N 170	0 132	${S \atop 5}$	0	0

• Molecule 5 is a protein called 40S ribosomal protein S4, X isoform.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	q	255	Total 2031	C 1299	N 377	0 347	S 8	0	0

• Molecule 6 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
6	W	24	Total 230	C 139	N 62	O 26	S 3	0	0

• Molecule 7 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
7	r	222	Total 1794	C 1123	N 357	O 308	S 6	0	0

• Molecule 8 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	\mathbf{S}	173	Total 1399	C 898	N 256	0 244	S 1	0	0

• Molecule 9 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		Ate	AltConf	Trace			
9	t	199	Total 1638	C 1027	N 322	O 284	${ m S}{ m 5}$	0	0

• Molecule 10 is a protein called 40S ribosomal protein S9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	С	180	Total 1499	C 955	N 300	0 242	${ m S} { m 2}$	0	0

• Molecule 11 is a protein called 40S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	n	135	Total 1119	C 715	N 211	0 187	S 6	0	0

• Molecule 12 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	m	149	Total 1202	С 770	N 228	O 203	S 1	0	0

• Molecule 13 is a protein called 40S ribosomal protein S21.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	У	82	Total 625	C 384	N 116	0 120	${S \over 5}$	0	0

• Molecule 14 is a protein called 40S ribosomal protein S15a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	D	129	Total 1034	$\begin{array}{c} \mathrm{C} \\ 659 \end{array}$	N 193	O 176	S 6	0	0

• Molecule 15 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	Z	122	Total 999	C 633	N 196	0 165	${ m S}{ m 5}$	0	0

• Molecule 16 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	R	82	Total 640	C 402	N 118	0 113	${f S}{7}$	0	0

• Molecule 17 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
17	Т	4.4	Total	С	Ν	Ο	\mathbf{S}	0	0
11	1	44	354	216	81	56	1	0	0

• Molecule 18 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
18	2	1721	Total 36718	C 16400	N 6603	O 12004	Р 1711	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
2	1772	C	G	conflict	GB 337376

• Molecule 19 is a protein called 40S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	W	128	Total 1011	C 641	N 182	0 184	S 4	0	0

• Molecule 20 is a protein called 40S ribosomal protein S3.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
20	b	224	Total 1745	C 1112	N 314	O 312	S 7	0	0

• Molecule 21 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	е	189	Total 1495	C 934	N 284	O 270	${ m S} 7$	0	0

• Molecule 22 is a protein called 40S ribosomal protein S10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	u	95	Total 799	С 524	N 139	0 130	S 6	0	0

• Molecule 23 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	v	111	Total 861	С 544	N 151	O 159	${ m S} 7$	0	0

• Molecule 24 is a protein called 40S ribosomal protein S15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	0	119	Total 980	C 623	N 183	0 167	S 7	0	0

• Molecule 25 is a protein called 40S ribosomal protein S16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	g	138	Total 1100	C 699	N 208	O 190	${ m S} { m 3}$	0	0

• Molecule 26 is a protein called 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	k	140	Total 1162	C 731	N 234	0 196	S 1	0	0

• Molecule 27 is a protein called 40S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	x	141	Total 1094	$\begin{array}{c} \mathrm{C} \\ 685 \end{array}$	N 210	O 196	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	h	98	Total 780	C 489	N 148	O 139	${f S}$ 4	0	0

• Molecule 29 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
29	Р	70	Total 557	C 358	N 101	O 97	S 1	0	0

• Molecule 30 is a protein called 40S ribosomal protein S28.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
30	q	61	Total	С	Ν	Ο	\mathbf{S}	0	0
00	G	01	479	292	95	90	2		0

• Molecule 31 is a protein called 40S ribosomal protein S29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
31	1	54	Total 450	C 282	N 93	O 70	${ m S}{ m 5}$	0	0

• Molecule 32 is a protein called Ubiquitin-40S ribosomal protein S27a.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
32	U	57	Total 465	C 295	N 89	0 74	S 7	0	0

• Molecule 33 is a protein called Receptor of activated protein C kinase 1.

Mol	Chain	Residues		At	AltConf	Trace			
33	V	296	Total 2314	C 1464	N 404	0 434	S 12	0	0

• Molecule 34 is a protein called 40S ribosomal protein S14.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	i	125	Total 939	С 574	N 187	0 172	S 6	0	0

• Molecule 35 is a protein called 40S ribosomal protein S23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	j	139	Total 1080	C 682	N 214	0 181	${ m S} { m 3}$	0	0

• Molecule 36 is a protein called Eukaryotic translation initiation factor 1A, X-chromosomal.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	G	88	Total 712	C 451	N 129	0 128	$\frac{S}{4}$	0	0

• Molecule 37 is a protein called Eukaryotic translation initiation factor 3 subunit I.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
37	Ι	305	Total 1497	C 887	N 305	O 305	0	0

• Molecule 38 is a protein called Eukaryotic translation initiation factor 3 subunit B.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	В	536	Total 2966	C 1801	N 580	O 580	${ m S}{ m 5}$	0	0

• Molecule 39 is a protein called Eukaryotic translation initiation factor 3 subunit A.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
39	А	692	Total 5380	C 3375	N 980	O 1003	S 22	0	0

• Molecule 40 is a protein called Eukaryotic translation initiation factor 3 subunit C.

Mol	Chain	Residues		At	AltConf	Trace			
40	С	633	Total 5110	C 3228	N 906	0 941	S 35	0	0

• Molecule 41 is a protein called Eukaryotic translation initiation factor 3 subunit E.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	Е	416	Total 3437	C 2202	N 585	O 630	S 20	0	0

• Molecule 42 is a protein called Eukaryotic translation initiation factor 3 subunit F.

Mol	Chain	Residues		At	AltConf	Trace			
42	F	269	Total 2090	C 1317	N 356	O 405	S 12	0	0

• Molecule 43 is a protein called Eukaryotic translation initiation factor 3 subunit H.

Mol	Chain	Residues		At	AltConf	Trace			
43	Н	295	Total 2413	C 1532	N 417	0 449	S 15	0	0

• Molecule 44 is a protein called Eukaryotic translation initiation factor 3 subunit K.

Mol	Chain	Residues		At	AltConf	Trace			
44	К	217	Total 1750	C 1116	N 288	0 334	S 12	0	0

• Molecule 45 is a protein called Eukaryotic translation initiation factor 3 subunit L.

Mol	Chain	Residues		At	AltConf	Trace			
45	L	372	Total 3111	C 2011	N 520	O 563	S 17	0	0

• Molecule 46 is a protein called Eukaryotic translation initiation factor 3 subunit M.

Mol	Chain	Residues		At	AltConf	Trace			
46	М	338	Total 2705	C 1727	N 457	O 504	S 17	0	0

• Molecule 47 is a protein called Eukaryotic translation initiation factor 3 subunit D.

Mol	Chain	Residues		At	AltConf	Trace			
47	Ν	447	Total 3617	C 2279	N 625	O 691	S 22	0	0

• Molecule 48 is a protein called Unknown factor.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
48	Х	78	Total 390	C 234	N 78	O 78	0	0

• Molecule 49 is a RNA chain called tRNA.

Mol	Chain	Residues		A	AltConf	Trace			
49	1	75	Total 1603	С 717	N 298	0 514	Р 74	0	0

• Molecule 50 is a protein called Eukaryotic translation initiation factor 2 subunit 2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
50	4	144	Total 1080	C 679	N 202	0 192	${ m S} 7$	0	0

• Molecule 51 is a protein called Eukaryotic translation initiation factor 2 subunit 1.

Mol	Chain	Residues		Ate	AltConf	Trace			
51	О	296	Total 2138	C 1342	N 384	0 404	S 8	0	0

• Molecule 52 is a protein called Eukaryotic translation initiation factor 2 subunit 3.

Mol	Chain	Residues		Ator	AltConf	Trace		
52	Y	414	Total 2156	C 1296	N 433	O 427	0	0

• Molecule 53 is a protein called Eukaryotic translation initiation factor 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
53	Z	110	Total 830	С 524	N 150	0 154	${ m S} { m 2}$	0	0

• Molecule 54 is a protein called Non-structural protein 1.

Mol	Chain	Residues	Atoms			AltConf	Trace		
54	J	33	Total 261	C 159	N 47	0 54	S 1	0	0

• Molecule 55 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
55	Q	1	Total Zn 1 1	0
55	1	1	Total Zn 1 1	0
55	U	1	Total Zn 1 1	0
55	4	1	Total Zn 1 1	0

• Molecule 56 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
56	Y	1	Total 32	C 10	N 5	0 14	Р з	0
			02	10	0	11	0	

• Molecule 57 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
57	Y	1	Total Mg 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 40S ribosomal protein SA

• Molecule 13: 40S ribosomal protein S21

Chain y: 99% • Molecule 14: 40S ribosomal protein S15a Chain D: •• 98% • Molecule 15: 40S ribosomal protein S24 Chain z: 92% 8% ALA GLY LYS LYS PR0 LYS GLU MET ASN ASP THR • Molecule 16: 40S ribosomal protein S27 Chain R: 96% • Molecule 17: 40S ribosomal protein S30 Chain T: 75% 25% LYS VAL HIS GLY SER SER LEU VAL PRO THR PHE GLY CLYS LYS LYS • Molecule 18: 18S ribosomal RNA Chain 2: 67% 23% 8% • ACCA 000000

• Molecule 19: 40S ribosomal protein S17

Chain w:	93%	• 5%
MET 62 62 71 171 171 171 171 881 881 881 881 881	P.R.D. V.A.L.	
• Molecule 20: 40S	ribosomal protein S3	
Chain b:	92%	8%
MET ALA ALA ALA VAL Q4 Q4 C4 C2 C2 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	PRO ALA MET PRO GLN PRO THR ALA	
• Molecule 21: 40S	ribosomal protein S5	
Chain e:	92%	• 7%
MET THR GLU TRP GLU CLU CLU CLU GLU PRO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PR0 D16 R1 22 R1 30 R2 04	
• Molecule 22: 40S	ribosomal protein S10	
Chain u:	58%	42%
M1 R95 R95 SER SER SER PR0 GLY ARG PR0 PR0 PR0	LYS LYS LEU GLU GLU GLU GLU GLU ARG ARG ARG GLY ARG ASP ARG ASP ARG ASP ARG SER ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	PRU PRU ALA ALA ALA ALA CVS CLV CLV CLV CLV CLV CLV PHE CLU CLU PHE
ARG GLY GLY PHE CLY GLY GLY GLY PRO PRO FIN CLN		
• Molecule 23: 40S	ribosomal protein S12	
Chain v:	84%	16%
MET ALA ALA GLU GLU GLV ALA ALA ALA ALA VAL VAL VAL VI4 VI4	D57 E58 M60 M61 M61 H72 H72 D80 D80 AR2 AR2 AR4 AR4 AR4 C194 C194 C194 C194 C194 C194 C194 C19	q119 1124 F128 K129 CYS CYS LYS LYS
• Molecule 24: 40S	ribosomal protein S15	
Chain o:	82%	18%
MET ALA ALA CALU CALL CAL GLN GLN CLYS CLYS ARG ARG ARG ARG ARC CLYS ARC	F15 M70 C1133 C17 TTHR TTHR ALA ALA ALA ALA ALA ALA LI33 L133 L133 L125 LVS LVS	
• Molecule 25: 40S	ribosomal protein S16	
• Molecule 25: 40S Chain g:	ribosomal protein S16 94%	• 5%

W O R L D W I D E PROTEIN DATA BANK

• Molecule 26:	40S ribosomal	protein S18		
Chain k:		91%		• 8%
MET SER SER L3 K8 K8 K8 K1 A2 CLY ARG THR THR VAL	GLY VAL SER LYS LYS LYS			
• Molecule 27:	40S ribosomal	protein S19		
Chain x:		97%		•
MET P2 N142 LYS LYS HIS				
• Molecule 28:	40S ribosomal	protein S20		
Chain h:		82%		18%
MET ALA ALA ALA LYS ASP ASP ASP ASP TTR TTR TTR TTR TTR TTR TTR VAL	etu PRO CLU VAL ALA ILLE HLS R19 R19 ILLE	1116 ALA ASP ALA		
• Molecule 29:	40S ribosomal	protein S25		
Chain P:	56%		44%	
MET PRO PRO LYS ASP ASP LYS LYS LYS LYS LYS ASP	ALA GLY SER SER ALA LYS LYS ASP ASP PRO	VAL VAL LYS SER GLY GLY GLY LYS LYS LYS LYS LYS TTP	SER LYS LYS LYS VAL ARG ASP LYS LYS LYS	LYS GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA GLY GLY ALA
• Molecule 30:	40S ribosomal	۲۰۰۰ protein S28	SER STA CLY CLYS CLYS CLYS ARC ARC ARC LA4 LA4	LYS CLY CLY CLY ALA ALA ALA ALA CLY CLY CLY ALA ALA ALA ALA
불물물활활활활활활활활 • Molecule 30: Chain S:	46S ribosomal	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	SER SER LYS GLY UAL VAL ARG ARG L44	TAR A CARACTER STATE STA
• Molecule 30: Chain S:	40S ribosomal	protein S28	SER SER LYS GLY VAL VAL ARG ARG ASP LYS LAS	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA
 Molecule 30: Chain S: Molecule 31: 	40S ribosomal 40S ribosomal	ع ه ۱ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	SER SER SER LYS GLY LYS VAL ARG ARG ARG ARG ARG	ALD ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS
Image: Second	40S ribosomal	ع ه ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	SER SER SER LYS GLY VAL VAL ARG ASP LA4 LA4	TTA TARAN TARA TARA TARA TARA TARA TARA
Image: Second	40S ribosomal 40S ribosomal	yrotein S29 protein S29 96%	SER SER LYS GLY VAL VAL VAL ARG ASP LA4 LA4	TTA TTA TTA TTA TTA TTA TTA TTA TTA TTA
	40S ribosomal 40S ribosomal 40S ribosomal 40S ribosomal Ubiquitin-40S	ع protein S28 88% protein S29 96% ribosomal protein	T S27a	TIN ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
	40S ribosomal 40S ribosomal 40S ribosomal 40S ribosomal Ubiquitin-40S	عليم الله الله الله الله الله الله الله الل	1 S27a 63%	TIN

• Molecule 53: Eukaryotic translation initiation factor 1

Chain Z:	95%	• •
MET ALA ALA 14 89 811 011 122 051 112 055 112 1102 F113		
• Molecule 54: Non-structural protein	1	
Chain J:	82%	

LLEU GLIU CALIU CA

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	53769	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	44.8	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	0.332	Depositor
Minimum map value	-0.083	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.011	Depositor
Recommended contour level	0.03	Depositor
Map size (Å)	381.24, 381.24, 381.24	wwPDB
Map dimensions	360, 360, 360	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.059, 1.059, 1.059	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GTP, MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles		
MIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	a	0.41	0/1742	0.51	0/2367	
2	р	0.38	0/1742	0.54	1/2330~(0.0%)	
3	d	0.44	0/1710	0.55	0/2310	
4	Q	0.41	0/828	0.54	0/1109	
5	q	0.38	0/2073	0.54	0/2791	
6	W	0.38	0/231	0.56	0/294	
7	r	0.32	0/1817	0.50	0/2421	
8	S	0.33	0/1418	0.52	0/1895	
9	t	0.38	0/1666	0.51	0/2223	
10	с	0.37	0/1524	0.50	0/2035	
11	n	0.43	0/1139	0.54	1/1524~(0.1%)	
12	m	0.39	0/1226	0.51	0/1649	
13	У	0.38	0/631	0.49	0/844	
14	D	0.41	0/1051	0.54	0/1406	
15	Z	0.36	0/1016	0.53	0/1349	
16	R	0.40	0/653	0.55	1/876~(0.1%)	
17	Т	0.38	0/356	0.48	0/466	
18	2	0.82	4/41061~(0.0%)	1.14	317/64001~(0.5%)	
19	W	0.38	0/1024	0.57	0/1377	
20	b	0.38	0/1773	0.52	0/2387	
21	е	0.37	0/1516	0.52	0/2037	
22	u	0.36	0/823	0.50	0/1111	
23	V	0.29	0/870	0.62	0/1168	
24	0	0.38	0/999	0.49	0/1336	
25	g	0.43	0/1117	0.54	0/1494	
26	k	0.38	0/1180	0.53	0/1581	
27	Х	0.39	0/1113	0.50	0/1493	
28	h	0.37	0/789	0.57	0/1059	
29	Р	0.35	0/563	0.50	0/758	
30	S	0.37	0/481	0.54	0/643	
31	1	0.45	0/461	0.59	0/612	
32	U	0.29	0/474	0.52	0/626	

Mal	Chain	Bond lengths		I	Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	V	0.34	0/2369	0.58	0/3221
34	i	0.38	0/951	0.55	0/1275
35	j	0.41	0/1097	0.53	0/1464
36	G	0.29	0/721	0.50	0/963
37	Ι	0.25	0/1495	0.48	0/2073
38	В	0.26	0/2981	0.50	0/4115
39	А	0.28	0/5464	0.57	4/7396~(0.1%)
40	С	0.29	0/5193	0.56	3/6995~(0.0%)
41	Е	0.29	0/3503	0.64	1/4728~(0.0%)
42	F	0.29	0/2126	0.65	2/2890~(0.1%)
43	Н	0.28	0/2458	0.63	2/3313~(0.1%)
44	Κ	0.30	0/1785	0.62	2/2414~(0.1%)
45	L	0.30	0/3187	0.64	2/4299~(0.0%)
46	М	0.31	0/2743	0.69	4/3697~(0.1%)
47	Ν	0.29	0/3699	0.52	2/5001~(0.0%)
48	Х	0.29	0/389	0.52	0/543
49	1	0.57	0/1794	1.05	7/2796~(0.3%)
50	4	0.31	0/1095	0.55	0/1477
51	0	0.30	0/2167	0.51	1/2943~(0.0%)
52	Y	0.26	0/2161	0.50	0/2985
53	Ζ	0.34	0/843	0.57	1/1134~(0.1%)
54	J	0.40	0/266	0.48	0/358
All	All	0.55	4/123554~(0.0%)	0.83	351/175652~(0.2%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	a	0	1
14	D	0	1
19	W	0	2
21	е	0	1
25	g	0	1
33	V	0	1
40	С	0	1
42	F	0	1
45	L	0	2
50	4	0	2
51	0	0	1
52	Y	0	3

Continued on next page...

Continued from previous page...

Mol	Chain	#Chirality outliers	#Planarity outliers
53	Ζ	0	2
All	All	0	19

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
18	2	367	U	O3'-P	-7.75	1.51	1.61
18	2	1206	G	O3'-P	-5.62	1.54	1.61
18	2	1681	U	O3'-P	-5.41	1.54	1.61
18	2	1850	А	O3'-P	-5.36	1.54	1.61

The worst 5 of 351 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
18	2	501	C	N1-C2-O2	14.65	127.69	118.90
18	2	501	C	C2-N1-C1'	13.15	133.26	118.80
18	2	293	С	N1-C2-O2	12.41	126.35	118.90
18	2	501	С	N3-C2-O2	-11.69	113.71	121.90
18	2	119	U	N3-C2-O2	-11.46	114.18	122.20

There are no chirality outliers.

5 of 19 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
14	D	54	ASP	Peptide
1	а	73	ASP	Peptide
21	е	130	ARG	Peptide
19	W	42	PRO	Peptide
19	W	71	ILE	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM

entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	a	214/295~(72%)	212 (99%)	2(1%)	0	100	100
2	р	209/264~(79%)	199 (95%)	10 (5%)	0	100	100
3	d	214/293~(73%)	202 (94%)	12 (6%)	0	100	100
4	Q	99/115~(86%)	98 (99%)	1 (1%)	0	100	100
5	q	253/263~(96%)	243 (96%)	9 (4%)	1 (0%)	34	66
6	W	22/25~(88%)	22 (100%)	0	0	100	100
7	r	220/249~(88%)	215 (98%)	5 (2%)	0	100	100
8	s	165/194~(85%)	162 (98%)	3 (2%)	0	100	100
9	t	195/208~(94%)	187 (96%)	8 (4%)	0	100	100
10	с	178/194~(92%)	172 (97%)	6 (3%)	0	100	100
11	n	131/158~(83%)	129 (98%)	2 (2%)	0	100	100
12	m	147/151~(97%)	146 (99%)	1 (1%)	0	100	100
13	У	80/83~(96%)	80 (100%)	0	0	100	100
14	D	127/130~(98%)	124 (98%)	3 (2%)	0	100	100
15	Z	120/133~(90%)	111 (92%)	9 (8%)	0	100	100
16	R	80/84~(95%)	74 (92%)	6 (8%)	0	100	100
17	Т	40/59~(68%)	40 (100%)	0	0	100	100
19	W	124/135~(92%)	115 (93%)	9 (7%)	0	100	100
20	b	222/243~(91%)	217 (98%)	5 (2%)	0	100	100
21	е	187/204~(92%)	175 (94%)	12 (6%)	0	100	100
22	u	93/165~(56%)	87 (94%)	6 (6%)	0	100	100
23	v	107/132~(81%)	104 (97%)	3 (3%)	0	100	100
24	О	117/145 (81%)	115 (98%)	2 (2%)	0	100	100
25	g	136/146~(93%)	130 (96%)	6 (4%)	0	100	100
26	k	138/152~(91%)	131 (95%)	7 (5%)	0	100	100
27	x	139/145~(96%)	136 (98%)	3 (2%)	0	100	100
28	h	96/119~(81%)	92 (96%)	4 (4%)	0	100	100
29	Р	68/125~(54%)	67 (98%)	1 (2%)	0	100	100
30	S	59/69~(86%)	54 (92%)	5 (8%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
31	1	52/56~(93%)	48 (92%)	4 (8%)	0	100	100
32	U	53/156~(34%)	47 (89%)	6 (11%)	0	100	100
33	V	290/317~(92%)	260 (90%)	28 (10%)	2(1%)	22	54
34	i	123/151~(82%)	115 (94%)	8 (6%)	0	100	100
35	j	137/143~(96%)	133~(97%)	3~(2%)	1 (1%)	22	54
36	G	86/144 (60%)	84 (98%)	2(2%)	0	100	100
37	Ι	301/325~(93%)	293~(97%)	8 (3%)	0	100	100
38	В	528/814~(65%)	503 (95%)	25~(5%)	0	100	100
39	А	682/1382~(49%)	665~(98%)	17 (2%)	0	100	100
40	С	621/913~(68%)	586 (94%)	34~(6%)	1 (0%)	47	78
41	Е	406/445~(91%)	394 (97%)	12 (3%)	0	100	100
42	F	267/357~(75%)	251 (94%)	16 (6%)	0	100	100
43	Н	289/352~(82%)	275~(95%)	14 (5%)	0	100	100
44	K	215/218~(99%)	197 (92%)	18 (8%)	0	100	100
45	L	370/564~(66%)	336 (91%)	34~(9%)	0	100	100
46	М	326/374~(87%)	315~(97%)	11 (3%)	0	100	100
47	Ν	441/548 (80%)	412 (93%)	29 (7%)	0	100	100
48	Х	76/78~(97%)	75~(99%)	1 (1%)	0	100	100
50	4	140/333~(42%)	115 (82%)	25 (18%)	0	100	100
51	Ο	294/315~(93%)	278 (95%)	16~(5%)	0	100	100
52	Y	408/472~(86%)	334 (82%)	71 (17%)	3 (1%)	22	54
53	Z	108/113~(96%)	95 (88%)	13 (12%)	0	100	100
54	J	31/180~(17%)	29 (94%)	2(6%)	0	100	100
All	All	$10\overline{224/13428}~(76\%)$	9679~(95%)	537 (5%)	8 (0%)	54	82

Continued from previous page...

5 of 8 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
33	V	175	LYS
52	Y	56	THR
5	q	86	PHE
52	Y	51	ALA
33	V	174	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers Perce		ntiles
1	a	180/243~(74%)	180 (100%)	0	100	100
2	р	192/231~(83%)	192 (100%)	0	100	100
3	d	182/225~(81%)	182 (100%)	0	100	100
4	Q	88/98~(90%)	86 (98%)	2(2%)	50	80
5	q	220/225~(98%)	220 (100%)	0	100	100
6	W	23/24~(96%)	23 (100%)	0	100	100
7	r	193/218~(88%)	193 (100%)	0	100	100
8	s	155/174~(89%)	155 (100%)	0	100	100
9	t	174/180~(97%)	174 (100%)	0	100	100
10	с	160/168~(95%)	160 (100%)	0	100	100
11	n	125/142~(88%)	124 (99%)	1 (1%)	81	94
12	m	130/131~(99%)	129 (99%)	1 (1%)	81	94
13	у	66/67~(98%)	66 (100%)	0	100	100
14	D	112/113~(99%)	112 (100%)	0	100	100
15	Z	106/115~(92%)	106 (100%)	0	100	100
16	R	74/76~(97%)	74 (100%)	0	100	100
17	Т	35/48~(73%)	35 (100%)	0	100	100
19	W	$111/122 \ (91\%)$	111 (100%)	0	100	100
20	b	188/202~(93%)	187 (100%)	1 (0%)	88	96
21	е	159/170~(94%)	158 (99%)	1 (1%)	86	96
22	u	86/136~(63%)	86 (100%)	0	100	100
23	V	94/108~(87%)	94 (100%)	0	100	100
24	0	107/130 (82%)	107 (100%)	0	100	100
25	g	114/121~(94%)	114 (100%)	0	100	100
26	k	122/132~(92%)	121 (99%)	1 (1%)	81	94
27	x	111/115~(96%)	111 (100%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
28	h	91/107~(85%)	91 (100%)	0	100	100
29	Р	62/103~(60%)	62 (100%)	0	100	100
30	S	54/62~(87%)	54 (100%)	0	100	100
31	1	47/49~(96%)	47 (100%)	0	100	100
32	U	51/140~(36%)	51 (100%)	0	100	100
33	V	256/275~(93%)	256 (100%)	0	100	100
34	i	98/119 (82%)	98 (100%)	0	100	100
35	j	111/115~(96%)	111 (100%)	0	100	100
36	G	75/123~(61%)	75 (100%)	0	100	100
38	В	90/702~(13%)	90 (100%)	0	100	100
39	А	544/1259~(43%)	540 (99%)	4 (1%)	84	95
40	С	553/811~(68%)	552 (100%)	1 (0%)	93	98
41	Е	380/406~(94%)	375~(99%)	5 (1%)	69	90
42	F	237/289~(82%)	235~(99%)	2 (1%)	81	94
43	Н	269/310~(87%)	265~(98%)	4 (2%)	65	87
44	Κ	192/193~(100%)	191 (100%)	1 (0%)	88	96
45	L	342/515~(66%)	337~(98%)	5 (2%)	65	87
46	М	304/335~(91%)	300~(99%)	4 (1%)	69	90
47	Ν	398/494~(81%)	397~(100%)	1 (0%)	92	98
50	4	109/304~(36%)	106~(97%)	3~(3%)	43	76
51	Ο	190/280~(68%)	189 (100%)	1 (0%)	88	96
52	Y	33/397~(8%)	33~(100%)	0	100	100
53	Ζ	79/96~(82%)	79~(100%)	0	100	100
54	J	27/151~(18%)	27 (100%)	0	100	100
All	All	$7899\overline{/11349}\ (70\%)$	7861 (100%)	38~(0%)	89	96

Continued from previous page...

5 of 38 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
45	L	545	ARG
50	4	261	ARG
46	М	64	MET
46	М	254	LYS
51	0	234	TYR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 146 such sidechains are listed below:

Mol	Chain	Res	Type
45	L	281	HIS
51	0	180	ASN
45	L	364	ASN
46	М	302	GLN
27	Х	128	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
18	2	1711/1868~(91%)	362 (21%)	8 (0%)
49	1	74/75~(98%)	15 (20%)	0
All	All	1785/1943~(91%)	377 (21%)	8 (0%)

5 of 377 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
18	2	17	С
18	2	33	G
18	2	41	G
18	2	44	U
18	2	46	А

5 of 8 RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
18	2	1060	А
18	2	1058	А
18	2	868	G
18	2	369	С
18	2	912	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 6 ligands modelled in this entry, 5 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Res Link		Bo	ond leng	\mathbf{ths}	B	ond ang	les
	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
56	GTP	Y	501	57	26,34,34	1.16	2 (7%)	32,54,54	1.66	7 (21%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
56	GTP	Y	501	57	-	6/18/38/38	0/3/3/3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
56	Y	501	GTP	C5-C6	-4.14	1.39	1.47
56	Y	501	GTP	C2-N3	2.20	1.38	1.33

The worst 5 of 7 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
56	Y	501	GTP	PA-O3A-PB	-4.44	117.60	132.83
56	Y	501	GTP	PB-O3B-PG	-3.61	120.45	132.83
56	Y	501	GTP	C5-C6-N1	3.45	120.04	113.95
56	Y	501	GTP	C2-N1-C6	-3.19	119.23	125.10
56	Y	501	GTP	C8-N7-C5	2.91	108.53	102.99

There are no chirality outliers.

5 of 6 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms	
56	Y	501	GTP	C5'-O5'-PA-O1A	

Continued on next page...

Mol	Chain	Res	Type	Atoms
56	Y	501	GTP	PB-O3B-PG-O1G
56	Y	501	GTP	PB-O3B-PG-O2G
56	Y	501	GTP	PB-O3B-PG-O3G
56	Y	501	GTP	C5'-O5'-PA-O3A

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
39	А	3
40	С	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	С	200:ALA	С	320:LYS	Ν	76.80
1	А	685:LYS	С	707:GLU	Ν	37.30
1	А	639:GLU	С	642:ARG	Ν	9.91
1	A	600:GLU	С	602:LEU	Ν	9.04

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-11335. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

Central slices (i) 6.2

6.2.1Primary map

X Index: 180

Y Index: 180

Z Index: 180

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 157

Y Index: 203

Z Index: 174

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.03. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1065 nm^3 ; this corresponds to an approximate mass of 962 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.345 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.345 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estim	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	2.90	-	-		
Author-provided FSC curve	2.86	3.24	2.91		
Unmasked-calculated*	-	-	-		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-11335 and PDB model 6ZP4. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.03 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.03).

9.4 Atom inclusion (i)

At the recommended contour level, 81% of all backbone atoms, 79% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.03) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.7920	0.4760
1	0.9840	0.5230
2	0.9730	0.5860
4	0.9070	0.4890
А	0.5830	0.3170
В	0.1780	0.2080
С	0.8010	0.4020
D	0.9900	0.6430
E	0.4520	0.1970
F	0.2080	0.1340
G	0.8440	0.5510
Н	0.2990	0.1580
Ι	0.0000	0.0540
J	0.9770	0.6310
K	0.0280	0.1220
L	0.0980	0.1200
М	0.1770	0.1630
N	0.7380	0.4130
0	0.7960	0.4200
Р	0.9280	0.5630
Q	0.9730	0.6160
R	0.9700	0.5950
S	0.9310	0.5630
T	0.9790	0.6060
U	0.8250	0.4630
V	0.9330	0.5490
W	0.9470	0.5850
X	0.7820	0.3710
Y	0.7850	0.3630
Z	0.8820	0.5170
a	0.9510	0.6040
b	0.9580	0.5890
с	0.9740	0.6160
d	0.9820	0.6360
e	0.9750	0.6060

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
g	0.9680	0.6230
h	0.9100	0.5670
i	0.9800	0.6130
j	0.9820	0.6300
k	0.9060	0.5710
1	0.9890	0.6450
m	0.9670	0.6060
n	0.9780	0.6160
0	0.9100	0.5770
р	0.9560	0.6050
q	0.9750	0.6100
r	0.9040	0.5250
S	0.9220	0.5360
\mathbf{t}	0.9410	0.5660
u	0.9480	0.5760
V	0.6000	0.3280
W	0.9440	0.5850
X	0.9610	0.6170
У	0.9710	0.6220
Z	0.9580	0.5790

