

# wwPDB X-ray Structure Validation Summary Report (i)

#### Mar 18, 2024 – 12:12 PM JST

| PDB ID       | : | 5ZE1                                                              |
|--------------|---|-------------------------------------------------------------------|
| Title        | : | Hairpin Forming Complex, RAG1/2-Nicked 12RSS/23RSS complex in 2mM |
|              |   | Mn2+ for 10 min at 4'C                                            |
| Authors      | : | Kim, M.S.; Chuenchor, W.; Chen, X.; Gellert, M.; Yang, W.         |
| Deposited on | : | 2018-02-25                                                        |
| Resolution   | : | 3.00  Å(reported)                                                 |
|              |   |                                                                   |

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| $\mathrm{EDS}$                 | : | 2.36                                                               |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.36                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY\;DIFFRACTION$ 

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| $R_{free}$            | 130704                                                               | 2092 (3.00-3.00)                                                          |
| Clashscore            | 141614                                                               | 2416 (3.00-3.00)                                                          |
| Ramachandran outliers | 138981                                                               | 2333 (3.00-3.00)                                                          |
| Sidechain outliers    | 138945                                                               | 2336 (3.00-3.00)                                                          |
| RSRZ outliers         | 127900                                                               | 1990 (3.00-3.00)                                                          |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |     |     |     |  |  |  |  |  |  |
|-----|-------|--------|------------------|-----|-----|-----|--|--|--|--|--|--|
| 1   | А     | 627    | %<br>72%         |     | 25% | ••  |  |  |  |  |  |  |
| 1   | С     | 627    | 71%              |     | 27% | ·   |  |  |  |  |  |  |
| 2   | В     | 389    | <b>67%</b>       | 19% | •   | 12% |  |  |  |  |  |  |
| 2   | D     | 389    | %<br>65%         | 20% | ·   | 13% |  |  |  |  |  |  |
| 3   | Ν     | 163    | 5%<br>60% 12%    |     | 28% |     |  |  |  |  |  |  |
| 4   | F     | 45     | 36% 58%          |     |     | 7%  |  |  |  |  |  |  |

Continued on next page...



Continued from previous page...

| Mol | Chain | Length | Qu  | ality of chain |    |
|-----|-------|--------|-----|----------------|----|
| E   | т     | 16     | 6%  |                |    |
| 0   | 1     | 10     | 31% | 62%            | 6% |
| 6   | J     | 16     | 50% | 50%            |    |
| 7   | C     | F 4    |     |                |    |
| (   | G     | 54     | 39% | 54%            | 7% |
|     | т     | 20     |     |                |    |
| 8   | L     | 30     | 33% | 60%            | 7% |
|     |       |        | 3%  |                |    |
| 9   | М     | 39     | 64% | 31%            | 5% |



# 2 Entry composition (i)

There are 14 unique types of molecules in this entry. The entry contains 20268 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |               | At        | oms      |          |                                                          | ZeroOcc | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|----------------------------------------------------------|---------|---------|-------|
| 1   | А     | 618      | Total<br>4964 | C<br>3124 | N<br>883 | O<br>923 | $\begin{array}{c} \mathrm{S} \\ \mathrm{34} \end{array}$ | 0       | 0       | 0     |
| 1   | С     | 623      | Total<br>5010 | C<br>3152 | N<br>897 | 0<br>927 | S<br>34                                                  | 0       | 0       | 0     |

• Molecule 1 is a protein called mouse RAG1.

There are 4 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment          | Reference  |
|-------|---------|----------|--------|------------------|------------|
| А     | 382     | GLY      | -      | cloning artifact | UNP P15919 |
| А     | 383     | PRO      | -      | cloning artifact | UNP P15919 |
| С     | 382     | GLY      | -      | cloning artifact | UNP P15919 |
| С     | 383     | PRO      | -      | cloning artifact | UNP P15919 |

• Molecule 2 is a protein called mouse RAG2.

| Mol | Chain | Residues |               | At        | oms      |          |         | ZeroOcc | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|---------|-------|
| 2   | В     | 341      | Total<br>2653 | C<br>1695 | N<br>449 | 0<br>491 | S<br>18 | 0       | 0       | 0     |
| 2   | D     | 340      | Total<br>2657 | C<br>1698 | N<br>451 | O<br>490 | S<br>18 | 0       | 1       | 0     |

There are 6 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| В     | -1      | GLY      | -      | cloning artifact    | UNP P21784 |
| В     | 0       | PRO      | -      | cloning artifact    | UNP P21784 |
| В     | 1       | VAL      | MET    | engineered mutation | UNP P21784 |
| D     | -1      | GLY      | -      | cloning artifact    | UNP P21784 |
| D     | 0       | PRO      | -      | cloning artifact    | UNP P21784 |
| D     | 1       | VAL      | MET    | engineered mutation | UNP P21784 |

• Molecule 3 is a protein called HMGB1 A-B box.



| Mol | Chain | Residues |              | At       | oms      |          |            | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|------------|---------|---------|-------|
| 3   | Ν     | 117      | Total<br>827 | C<br>526 | N<br>138 | O<br>156 | ${ m S} 7$ | 0       | 0       | 0     |

• Molecule 4 is a DNA chain called DNA.

| Mol | Chain | Residues |              | A        | toms     |          |         | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------|---------|---------|-------|
| 4   | F     | 45       | Total<br>928 | С<br>443 | N<br>169 | O<br>272 | Р<br>44 | 0       | 0       | 0     |

• Molecule 5 is a DNA chain called DNA.

| Mol | Chain | Residues |              | Ate      | oms     |         |         | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------|---------|---------|---------|---------|-------|
| 5   | Ι     | 16       | Total<br>322 | C<br>156 | N<br>54 | O<br>97 | Р<br>15 | 0       | 0       | 0     |

• Molecule 6 is a DNA chain called DNA.

| Mol | Chain | Residues | Atoms        |          |         | ZeroOcc | AltConf | Trace |   |   |
|-----|-------|----------|--------------|----------|---------|---------|---------|-------|---|---|
| 6   | J     | 16       | Total<br>321 | C<br>156 | N<br>51 | O<br>99 | Р<br>15 | 0     | 0 | 0 |

• Molecule 7 is a DNA chain called DNA.

| Mol | Chain | Residues | Atoms         |          |          | ZeroOcc  | AltConf | Trace |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------|-------|---|---|
| 7   | G     | 54       | Total<br>1106 | C<br>529 | N<br>191 | 0<br>332 | Р<br>54 | 0     | 0 | 0 |

• Molecule 8 is a DNA chain called DNA.

| Mol | Chain | Residues | Atoms        |          |          | ZeroOcc  | AltConf | Trace |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------|-------|---|---|
| 8   | L     | 30       | Total<br>611 | C<br>290 | N<br>118 | 0<br>173 | Р<br>30 | 0     | 0 | 0 |

• Molecule 9 is a DNA chain called DNA.

| Mol | Chain | Residues | Atoms        |          |          | ZeroOcc  | AltConf | Trace |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------|-------|---|---|
| 9   | М     | 39       | Total<br>805 | C<br>381 | N<br>162 | 0<br>223 | Р<br>39 | 0     | 0 | 0 |

• Molecule 10 is ZINC ION (three-letter code: ZN) (formula: Zn).



| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 10  | А     | 1        | Total Zn<br>1 1 | 0       | 0       |
| 10  | С     | 1        | Total Zn<br>1 1 | 0       | 0       |

• Molecule 11 is MANGANESE (II) ION (three-letter code: MN) (formula: Mn).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 11  | А     | 2        | Total Mn<br>2 2 | 0       | 0       |
| 11  | С     | 2        | Total Mn<br>2 2 | 0       | 0       |

• Molecule 12 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula:  $C_2H_6O_2$ ).



| Mol | Chain | Residues | Ate        | oms        |        | ZeroOcc | AltConf |
|-----|-------|----------|------------|------------|--------|---------|---------|
| 12  | А     | 1        | Total<br>4 | ${ m C} 2$ | O<br>2 | 0       | 0       |

• Molecule 13 is POTASSIUM ION (three-letter code: K) (formula: K).

| Mol | Chain | Residues | Atoms          | ZeroOcc | AltConf |
|-----|-------|----------|----------------|---------|---------|
| 13  | А     | 1        | Total K<br>1 1 | 0       | 0       |
| 13  | С     | 1        | Total K<br>1 1 | 0       | 0       |



• Molecule 14 is water.

| Mol | Chain | Residues | Atoms            | ZeroOcc | AltConf |
|-----|-------|----------|------------------|---------|---------|
| 14  | А     | 11       | Total O<br>11 11 | 0       | 0       |
| 14  | С     | 21       | Total O<br>21 21 | 0       | 0       |
| 14  | D     | 2        | Total O<br>2 2   | 0       | 0       |
| 14  | F     | 8        | Total O<br>8 8   | 0       | 0       |
| 14  | Ι     | 1        | Total O<br>1 1   | 0       | 0       |
| 14  | G     | 4        | Total O<br>4 4   | 0       | 0       |
| 14  | L     | 3        | Total O<br>3 3   | 0       | 0       |
| 14  | М     | 2        | Total O<br>2 2   | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: mouse RAG1



#### 



• Molecule 4: DNA



|--|

| 'hain F:                                                                                                            | 36%                                                                                                               | 58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7%   |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 111<br>111<br>111<br>111<br>111<br>111<br>111<br>111                                                                | A 13<br>A 14<br>A 14<br>A 22<br>A 25<br>C 25<br>A 25<br>C 25<br>C 25<br>C 25<br>C 25<br>C 25<br>C 25<br>C 25<br>C | 127<br>127<br>128<br>139<br>139<br>133<br>133<br>133<br>133<br>133<br>133<br>133<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Molecule 5:                                                                                                         | DNA                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| <sup>6%</sup><br>Chain I:                                                                                           | 31%                                                                                                               | 62%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6%   |
| 42<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13                                    | A16                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Molecule 6: 2                                                                                                       | DNA                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Chain J:                                                                                                            | 50%                                                                                                               | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| C4<br>15<br>15<br>66<br>67<br>03<br>11<br>14<br>115<br>115<br>115                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Molecule 7: 2                                                                                                       | DNA                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Chain G:                                                                                                            | 39%                                                                                                               | 54%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7%   |
| 64<br>17<br>19<br>110<br>111<br>112<br>113<br>113<br>113<br>113                                                     | <b>G15</b><br>C16<br>C16<br>C16<br>C19<br>C19<br>C21<br>C22<br>C21<br>C22<br>T25<br>T30<br>T25                    | 632<br>(332<br>(332<br>(337<br>(347<br>(347<br>(341<br>(341<br>(344)<br>(344)<br>(344)<br>(344)<br>(344)<br>(344)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(349)<br>(34 |      |
| Molecule 8: 2                                                                                                       | DNA                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| bain L:                                                                                                             | 33%                                                                                                               | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7%   |
| A18<br>C19<br>A20<br>G21<br>T22<br>G23<br>G23<br>A28<br>A28<br>A28<br>C27<br>C27<br>C27<br>C27<br>C27<br>C27<br>C27 | C30<br>C32<br>C32<br>C32<br>C32<br>C32<br>A33<br>A40<br>A40<br>A40                                                | 043<br>0446<br>0465<br>0465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| Molecule 9:                                                                                                         | DNA                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Chain M:                                                                                                            | 64                                                                                                                | 4% 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % 5% |
| 21<br>722<br>736<br>635<br>736<br>736<br>741<br>741<br>741                                                          | 642<br>643<br>450<br>451<br>452<br>453<br>453<br>C55<br>C55                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |



# 4 Data and refinement statistics (i)

| Property                                          | Value                                            | Source    |
|---------------------------------------------------|--------------------------------------------------|-----------|
| Space group                                       | P 1 21 1                                         | Depositor |
| Cell constants                                    | 132.76Å 108.60Å 157.09Å                          | Deperitor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$            | $90.00^{\circ}$ $114.20^{\circ}$ $90.00^{\circ}$ | Depositor |
| $\mathbf{P}_{\text{acclution}}(\hat{\mathbf{A}})$ | 36.68 - 3.00                                     | Depositor |
| Resolution (A)                                    | 86.55 - 3.00                                     | EDS       |
| % Data completeness                               | 99.3 (36.68-3.00)                                | Depositor |
| (in resolution range)                             | $90.9 \ (86.55 - 3.00)$                          | EDS       |
| R <sub>merge</sub>                                | (Not available)                                  | Depositor |
| $R_{sym}$                                         | (Not available)                                  | Depositor |
| $< I/\sigma(I) > 1$                               | $0.97 (at 3.01 \text{\AA})$                      | Xtriage   |
| Refinement program                                | PHENIX (1.12_2829: ???)                          | Depositor |
| D D.                                              | 0.197 , $0.232$                                  | Depositor |
| $\Pi, \Pi_{free}$                                 | 0.196 , $0.232$                                  | DCC       |
| $R_{free}$ test set                               | 4046 reflections $(4.98%)$                       | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                           | 73.8                                             | Xtriage   |
| Anisotropy                                        | 0.531                                            | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$       | 0.27, $45.9$                                     | EDS       |
| L-test for twinning <sup>2</sup>                  | $< L >=0.48, < L^2>=0.31$                        | Xtriage   |
| Estimated twinning fraction                       | 0.020 for h,-k,-h-l                              | Xtriage   |
| $F_o, F_c$ correlation                            | 0.91                                             | EDS       |
| Total number of atoms                             | 20268                                            | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                      | 90.0                                             | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.74% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MN, EDO, ZN, K

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Chain | Bo   | nd lengths     | B    | ond angles        |
|------|-------|------|----------------|------|-------------------|
| MIOI | Unain | RMSZ | # Z  > 5       | RMSZ | # Z  > 5          |
| 1    | А     | 0.50 | 0/5067         | 0.65 | 1/6826~(0.0%)     |
| 1    | С     | 0.59 | 2/5114~(0.0%)  | 0.74 | 6/6887~(0.1%)     |
| 2    | В     | 0.46 | 0/2720         | 0.64 | 0/3690            |
| 2    | D     | 0.48 | 0/2725         | 0.69 | 0/3697            |
| 3    | Ν     | 0.38 | 0/841          | 0.46 | 0/1128            |
| 4    | F     | 1.01 | 1/1041~(0.1%)  | 1.15 | 4/1608~(0.2%)     |
| 5    | Ι     | 1.01 | 1/359~(0.3%)   | 1.09 | 0/552             |
| 6    | J     | 1.01 | 0/357          | 1.11 | 0/549             |
| 7    | G     | 0.95 | 2/1237~(0.2%)  | 1.19 | 10/1908~(0.5%)    |
| 8    | L     | 1.10 | 1/686~(0.1%)   | 1.10 | 3/1052~(0.3%)     |
| 9    | М     | 0.96 | 2/907~(0.2%)   | 1.02 | 1/1395~(0.1%)     |
| All  | All   | 0.65 | 9/21054~(0.0%) | 0.81 | 25/29292 $(0.1%)$ |

The worst 5 of 9 bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms   | Ζ      | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|--------|-------------|----------|
| 8   | L     | 17  | DC   | OP3-P   | -10.54 | 1.48        | 1.61     |
| 9   | М     | 17  | DC   | OP3-P   | -10.04 | 1.49        | 1.61     |
| 1   | С     | 962 | GLU  | CG-CD   | 7.87   | 1.63        | 1.51     |
| 9   | М     | 21  | DG   | C3'-O3' | -6.71  | 1.35        | 1.44     |
| 7   | G     | 38  | DT   | C3'-O3' | -5.96  | 1.36        | 1.44     |

The worst 5 of 25 bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 1   | С     | 708 | ASP  | CB-CG-OD2   | 10.88 | 128.09           | 118.30        |
| 7   | G     | 41  | DG   | O5'-P-OP1   | -9.74 | 96.93            | 105.70        |
| 1   | С     | 962 | GLU  | OE1-CD-OE2  | -9.22 | 112.23           | 123.30        |
| 1   | С     | 708 | ASP  | CB-CG-OD1   | -8.59 | 110.57           | 118.30        |
| 9   | М     | 22  | DT   | O4'-C4'-C3' | -7.84 | 101.30           | 106.00        |



There are no chirality outliers.

There are no planarity outliers.

## 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 4964  | 0        | 4933     | 124     | 0            |
| 1   | С     | 5010  | 0        | 4989     | 120     | 0            |
| 2   | В     | 2653  | 0        | 2587     | 49      | 0            |
| 2   | D     | 2657  | 0        | 2588     | 63      | 0            |
| 3   | Ν     | 827   | 0        | 695      | 15      | 0            |
| 4   | F     | 928   | 0        | 511      | 22      | 0            |
| 5   | Ι     | 322   | 0        | 183      | 13      | 0            |
| 6   | J     | 321   | 0        | 184      | 10      | 0            |
| 7   | G     | 1106  | 0        | 614      | 30      | 0            |
| 8   | L     | 611   | 0        | 335      | 15      | 0            |
| 9   | М     | 805   | 0        | 435      | 14      | 0            |
| 10  | А     | 1     | 0        | 0        | 0       | 0            |
| 10  | С     | 1     | 0        | 0        | 0       | 0            |
| 11  | А     | 2     | 0        | 0        | 0       | 0            |
| 11  | С     | 2     | 0        | 0        | 0       | 0            |
| 12  | А     | 4     | 0        | 6        | 0       | 0            |
| 13  | А     | 1     | 0        | 0        | 0       | 0            |
| 13  | С     | 1     | 0        | 0        | 0       | 0            |
| 14  | А     | 11    | 0        | 0        | 0       | 0            |
| 14  | С     | 21    | 0        | 0        | 1       | 0            |
| 14  | D     | 2     | 0        | 0        | 0       | 0            |
| 14  | F     | 8     | 0        | 0        | 0       | 0            |
| 14  | G     | 4     | 0        | 0        | 0       | 0            |
| 14  | Ι     | 1     | 0        | 0        | 0       | 0            |
| 14  | L     | 3     | 0        | 0        | 0       | 0            |
| 14  | М     | 2     | 0        | 0        | 0       | 0            |
| All | All   | 20268 | 0        | 18060    | 430     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

The worst 5 of 430 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.



| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |  |
|------------------|------------------|-----------------------------|----------------------|--|
| 2:D:311:ILE:HG12 | 2:D:331:ILE:HD11 | 1.59                        | 0.84                 |  |
| 7:G:10:DG:H2'    | 7:G:11:DT:C6     | 2.16                        | 0.80                 |  |
| 1:A:552:THR:HG21 | 1:A:667:THR:HG21 | 1.66                        | 0.78                 |  |
| 1:C:653:LYS:HG2  | 1:C:995:THR:HG21 | 1.66                        | 0.77                 |  |
| 2:B:289:LEU:HB2  | 2:B:302:MET:HE3  | 1.70                        | 0.74                 |  |

There are no symmetry-related clashes.

# 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed      | Outliers | Perce | entiles |
|-----|-------|-----------------|------------|--------------|----------|-------|---------|
| 1   | А     | 616/627~(98%)   | 576 (94%)  | 40 (6%)      | 0        | 100   | 100     |
| 1   | С     | 621/627~(99%)   | 589~(95%)  | 32~(5%)      | 0        | 100   | 100     |
| 2   | В     | 335/389~(86%)   | 328~(98%)  | 7(2%)        | 0        | 100   | 100     |
| 2   | D     | 335/389~(86%)   | 326~(97%)  | 9~(3%)       | 0        | 100   | 100     |
| 3   | Ν     | 107/163~(66%)   | 105~(98%)  | 2(2%)        | 0        | 100   | 100     |
| All | All   | 2014/2195~(92%) | 1924 (96%) | $90 \ (4\%)$ | 0        | 100   | 100     |

There are no Ramachandran outliers to report.

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Rotameric | Outliers | Percentiles |  |
|-----|-------|---------------|-----------|----------|-------------|--|
| 1   | А     | 542/550~(98%) | 523~(96%) | 19 (4%)  | 36 71       |  |

Continued on next page...



| Mol | Chain | Analysed        | Rotameric Outliers |         | Percentiles |  |  |
|-----|-------|-----------------|--------------------|---------|-------------|--|--|
| 1   | С     | 547/550~(100%)  | 532~(97%)          | 15 (3%) | 44 77       |  |  |
| 2   | В     | 294/344~(86%)   | 280~(95%)          | 14 (5%) | 25 62       |  |  |
| 2   | D     | 294/344~(86%)   | 278~(95%)          | 16 (5%) | 22 57       |  |  |
| 3   | Ν     | 68/139~(49%)    | 68 (100%)          | 0       | 100 100     |  |  |
| All | All   | 1745/1927~(91%) | 1681 (96%)         | 64 (4%) | 34 70       |  |  |

Continued from previous page...

 $5~{\rm of}~64$  residues with a non-rotameric side chain are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 2   | D     | 210            | ILE  |
| 2   | D     | 235            | ARG  |
| 2   | В     | 168            | THR  |
| 2   | В     | 104            | SER  |
| 2   | D     | 249            | CYS  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 2   | D     | 94             | HIS  |
| 2   | D     | 278            | GLN  |
| 2   | D     | 313            | HIS  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

Of 9 ligands modelled in this entry, 8 are monoatomic - leaving 1 for Mogul analysis.



In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Type | Chain | Dog      | Link | В           | ond leng | gths   | E      | Bond ang | gles     |
|-----|------|-------|----------|------|-------------|----------|--------|--------|----------|----------|
|     | Type |       | lain nes |      | Counts      | RMSZ     | # Z >2 | Counts | RMSZ     | # Z  > 2 |
| 12  | EDO  | А     | 2004     | -    | $3,\!3,\!3$ | 0.51     | 0      | 2,2,2  | 0.06     | 0        |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res  | Link | Chirals | Torsions | Rings |
|-----|------|-------|------|------|---------|----------|-------|
| 12  | EDO  | А     | 2004 | -    | -       | 1/1/1/1  | -     |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (1) torsion outliers are listed below:

| Mol | Chain | Res  | Type | Atoms       |
|-----|-------|------|------|-------------|
| 12  | А     | 2004 | EDO  | O1-C1-C2-O2 |

There are no ring outliers.

No monomer is involved in short contacts.

## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

# 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ > 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95<sup>th</sup> percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | < <b>RSRZ</b> > | #RSRZ>2       | $OWAB(Å^2)$        | Q < 0.9 |
|-----|-------|-----------------|-----------------|---------------|--------------------|---------|
| 1   | А     | 618/627~(98%)   | 0.07            | 4 (0%) 89 72  | 46, 71, 107, 165   | 0       |
| 1   | С     | 623/627~(99%)   | 0.08            | 3 (0%) 91 75  | 46, 69, 107, 132   | 0       |
| 2   | В     | 341/389~(87%)   | 0.01            | 4 (1%) 79 54  | 58, 90, 118, 136   | 0       |
| 2   | D     | 340/389~(87%)   | 0.12            | 4 (1%) 79 54  | 54, 85, 123, 141   | 0       |
| 3   | Ν     | 117/163~(71%)   | 0.13            | 8 (6%) 17 5   | 124, 164, 178, 185 | 0       |
| 4   | F     | 45/45~(100%)    | -0.39           | 0 100 100     | 49, 84, 178, 187   | 2(4%)   |
| 5   | Ι     | 16/16~(100%)    | 0.02            | 1 (6%) 20 6   | 89, 150, 194, 195  | 2(12%)  |
| 6   | J     | 16/16~(100%)    | 0.00            | 1 (6%) 20 6   | 74, 145, 193, 198  | 2 (12%) |
| 7   | G     | 54/54~(100%)    | -0.03           | 0 100 100     | 51, 155, 199, 222  | 2(3%)   |
| 8   | L     | 30/30~(100%)    | -0.55           | 0 100 100     | 51, 79, 133, 138   | 0       |
| 9   | М     | 39/39~(100%)    | -0.19           | 1 (2%) 56 27  | 60, 140, 192, 204  | 0       |
| All | All   | 2239/2395~(93%) | 0.05            | 26 (1%) 79 54 | 46, 79, 164, 222   | 8 (0%)  |

The worst 5 of 26 RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | А     | 408 | LEU  | 4.5  |
| 3   | N     | 143 | PRO  | 3.3  |
| 3   | N     | 13  | MET  | 3.1  |
| 5   | Ι     | 15  | DT   | 3.1  |
| 6   | J     | 1   | DT   | 2.8  |

# 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



# 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

## 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res  | Atoms | RSCC | RSR  | B-factors(Å <sup>2</sup> ) | Q<0.9 |
|-----|------|-------|------|-------|------|------|----------------------------|-------|
| 13  | K    | А     | 2005 | 1/1   | 0.88 | 0.08 | 64,64,64,64                | 0     |
| 11  | MN   | С     | 2002 | 1/1   | 0.89 | 0.17 | 73,73,73,73                | 0     |
| 12  | EDO  | А     | 2004 | 4/4   | 0.93 | 1.02 | 61,65,72,75                | 0     |
| 11  | MN   | А     | 2002 | 1/1   | 0.95 | 0.22 | 68,68,68,68                | 0     |
| 13  | K    | С     | 2004 | 1/1   | 0.95 | 0.09 | 56, 56, 56, 56             | 0     |
| 11  | MN   | А     | 2003 | 1/1   | 0.96 | 0.24 | 72,72,72,72                | 0     |
| 10  | ZN   | С     | 2001 | 1/1   | 0.98 | 0.23 | 71,71,71,71                | 0     |
| 11  | MN   | С     | 2003 | 1/1   | 0.99 | 0.18 | $65,\!65,\!65,\!65$        | 0     |
| 10  | ZN   | А     | 2001 | 1/1   | 0.99 | 0.23 | 66,66,66,66                | 0     |

## 6.5 Other polymers (i)

There are no such residues in this entry.

