

wwPDB EM Validation Summary Report (i)

Oct 20, 2024 - 12:08 AM JST

PDB ID	:	8Z0K
EMDB ID	:	EMD-39706
Title	:	Cryo-EM structure of Cas8-HNH system at full R-loop state
Authors	:	Zhang, H.; Zhu, H.; Li, X.; Liu, Y.
Deposited on	:	2024-04-09
Resolution	:	2.51 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.51 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$		
Clashscore	210492	15764		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	325	94%	6%
1	В	325	95%	••
1	С	325	95%	5%
1	D	325	94%	• • •
1	G	325	90%	9% •
1	Н	325	77% 12% •	10%
2	Е	255	91%	9%
3	F	344	78% 17%	••

Continued on next page...

Continue contraction contrac	nued fron	n previous	page		
Mol	Chain	Length	Quality o	of chain	
	Ŧ				
4	1	37	57%	43%	
	_				
5	J	7	86%		14%
6	L	69	25% 48%	12%	16%
7	М	181	56%	25% •	14%

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 23037 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			AltConf	Trace
1	Δ	205	Total	С	Ν	0	S	0	0
	A	323	2620	1673	431	501	15	0	0
1	D	201	Total	С	Ν	0	S	0	0
	D	321	2588	1655	426	492	15	0	0
1	C	204	Total	С	Ν	0	S	0	0
		024	2613	1669	430	499	15	0	0
1	П	310	Total	С	Ν	0	S	0	0
1	D	519	2580	1653	426	486	15	0	0
1	C	201	Total	С	Ν	0	\mathbf{S}	0	0
1	I G	321	2597	1662	428	492	15	0	0
1	1 H	202	Total	С	Ν	0	S	0	0
		292	2346	1503	384	446	13	0	U

• Molecule 1 is a protein called type I-F CRISPR-associated protein Csy3.

• Molecule 2 is a protein called hypothetical protein J6N51_11000.

Mol	Chain	Residues		At	AltConf	Trace			
2	Е	255	Total 1979	C 1259	N 331	O 377	S 12	0	0

• Molecule 3 is a protein called HNH endonuclease.

Mol	Chain	Residues		At	AltConf	Trace			
3	F	332	Total 2458	C 1545	N 427	0 478	S 8	0	0

• Molecule 4 is a DNA chain called DNA (37-MER).

Mol	Chain	Residues		A	toms	AltConf	Trace		
4	Ι	37	Total 750	C 257	N 125	0	Р 27	0	0
			150	357	135	221	37		

• Molecule 5 is a DNA chain called DNA (5'-D(P*GP*TP*GP*CP*GP*GP*A)-3').

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
5	J	7	Total 148	C 69	N 30	0 42	Р 7	0	0

• Molecule 6 is a RNA chain called RNA (69-MER).

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
6	L	58	Total 1249	C 556	N 229	O 406	Р 58	0	0

• Molecule 7 is a protein called type I-F CRISPR-associated endoribonuclease Cas6/Csy4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	М	155	Total 1109	C 705	N 175	O 226	${ m S} { m 3}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: type I-F CRISPR-associated protein Csy3

• Molecule 1: type I-F CRISPR-associated protein Csy3

Chain H:	77%	1	2% •	10%	1
T11 E17 N18 C24 F32 D51	LYS LYS VAL VAL LEU SER SER SER CLY CLYS CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	K103 E104 8105 M106 W149	R150 N151 R152 K153	E159 V162	E165 D166 N173
5174 F200 E205 Y206 V211 F214	V223 V224 V223 V224 V224 V224 V224 V224	K295 R303 M304 F309	D310 L311 M320	1324 0333	GLU
• Molecule 2:	hypothetical protein $J6N51_{11000}$				
Chain E:	91%			9%	I
M0 L7 L42 L42 E60	L109 1124 1124 1138 1138 1138 1138 1138 1138 1138 113	Y249 L250 I254			
• Molecule 3:	HNH endonuclease				
Chain F:	78%		17%	•••	
M1 L2 K3 K5 K5 K5 L7 L7 L7 L19 L19	SER CIAN CIAN LUS LUE P15 P15 P16 K22 K22 K22 K22 K22 K22 K22 K22 K22 K2	N82 D83 A84 K85 M95	T102 V103 M104	L107 A112	E113 L114 R115 E120
R129 R142 T143 T143 F145 F145 T147	F151 H155 H155 H155 N123 N123 N123 N123 C14 C273 N223 N223 N223 N223 C27 C27 C27 C27 C27 C27 C27 C27 C27 C27	1306 V307 P308 L309 S310	N319 S324	H328 S337	TYR PHE LYS TRP ARG
ASN THR					
• Molecule 4:	DNA (37-MER)				
Chain I:	57%	43%			
T-19 G-18 T-3 T-3 T-1 T-1 T-1 G3 G3	44 65 66 71 11 11 11 11 11 11 11 11 11 11 11 11				
• Molecule 5:	DNA (5'-D(P*GP*TP*GP*CP*GP*GP*.	A)-3')			
Chain J:	86%		1	4%	
GO G2 A6					
• Molecule 6:	RNA (69-MER)				
Chain L:	25% 48%	12%	1	.6%	
G U21 U22 U23 A24 G25 G25 G28 G28 G28	A 30 A 30 C 35 A 42 A 42 A 42 A 42 A 42 A 42 A 42 A 43 A 44 A 45 A 44 A 45 A 44 A 45 A 44 A 45 A 44 A 45 A 45	C67 C68 C69 C70 G71 G72	A U G76	G77 C78 G79 G80	D D D A D
G A A					
	ROTEIN DATA BANK				

 \bullet Molecule 7: type I-F CRISPR-associated endoribonuclease Cas6/Csy4

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	173047	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING ONLY	Depositor
Microscope	JEOL CRYO ARM 300	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	1200	Depositor
Maximum defocus (nm)	1600	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \times 4k)$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
	WI01 Unam		# Z > 5	RMSZ	# Z > 5
1	А	0.36	0/2679	0.59	0/3624
1	В	0.34	0/2646	0.60	0/3579
1	С	0.37	0/2672	0.60	0/3615
1	D	0.36	0/2638	0.61	0/3565
1	G	0.37	0/2655	0.66	0/3588
1	Н	0.37	0/2398	0.69	0/3246
2	Ε	0.36	0/2014	0.62	0/2723
3	F	0.42	0/2505	0.66	0/3409
4	Ι	0.53	0/839	0.84	0/1290
5	J	0.66	0/166	0.92	0/255
6	L	0.38	0/1397	0.88	0/2176
7	М	0.51	0/1125	0.74	0/1535
All	All	0.39	0/23734	0.67	0/32605

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	Η	0	1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	Н	286	ILE	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2620	0	2551	13	0
1	В	2588	0	2528	9	0
1	С	2613	0	2550	11	0
1	D	2580	0	2542	9	0
1	G	2597	0	2552	18	0
1	Н	2346	0	2261	25	0
2	Е	1979	0	1952	16	0
3	F	2458	0	2277	57	0
4	Ι	750	0	416	18	0
5	J	148	0	79	1	0
6	L	1249	0	627	18	0
7	М	1109	0	976	61	0
All	All	23037	0	21311	232	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

The worst 5 of 232 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
7:M:64:ASP:O	7:M:67:ALA:CB	1.82	1.26
7:M:64:ASP:C	7:M:67:ALA:HB3	1.70	1.12
7:M:64:ASP:O	7:M:67:ALA:HB3	0.94	1.11
7:M:64:ASP:HB3	7:M:67:ALA:HB2	1.30	1.10
7:M:64:ASP:CB	7:M:67:ALA:HB2	1.81	1.09

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	А	323/325~(99%)	311~(96%)	12~(4%)	0	100	100
1	В	317/325~(98%)	304 (96%)	11 (4%)	2(1%)	22	39
1	С	322/325~(99%)	311~(97%)	10 (3%)	1 (0%)	37	56
1	D	315/325~(97%)	302 (96%)	12 (4%)	1 (0%)	37	56
1	G	317/325~(98%)	303~(96%)	12 (4%)	2(1%)	22	39
1	Н	286/325~(88%)	260 (91%)	22 (8%)	4 (1%)	9	17
2	Ε	253/255~(99%)	239 (94%)	13~(5%)	1 (0%)	30	49
3	F	326/344~(95%)	292 (90%)	33 (10%)	1 (0%)	37	56
7	М	147/181~(81%)	122 (83%)	19 (13%)	6 (4%)	2	3
All	All	2606/2730~(96%)	2444 (94%)	144 (6%)	18 (1%)	21	35

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

5 of 18 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	Ε	170	ALA
7	М	47	SER
1	В	285	SER
1	С	14	SER
3	F	103	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	285/292~(98%)	285 (100%)	0	100	100
1	В	282/292~(97%)	282 (100%)	0	100	100
1	С	285/292~(98%)	284 (100%)	1 (0%)	89	96
1	D	282/292~(97%)	281 (100%)	1 (0%)	89	96
1	G	284/292~(97%)	284 (100%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	Н	252/292~(86%)	251 (100%)	1 (0%)	89	96
2	Е	211/219~(96%)	211 (100%)	0	100	100
3	F	244/304~(80%)	238~(98%)	6(2%)	42	69
7	М	106/160~(66%)	102 (96%)	4 (4%)	28	53
All	All	2231/2435~(92%)	2218 (99%)	13 (1%)	82	94

Continued from previous page...

 $5~{\rm of}~13$ residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
3	F	306	ILE
1	Н	271	TYR
7	М	43	PHE
7	М	29	HIS
7	М	36	ASP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 11 such side chains are listed below:

Mol	Chain	\mathbf{Res}	Type
3	F	170	ASN
3	F	193	ASN
1	Н	208	ASN
1	G	140	ASN
3	F	82	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
6	L	56/69~(81%)	34~(60%)	1 (1%)

5 of 34 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
6	L	23	U
6	L	24	А
6	L	25	G
6	L	29	G
6	L	30	А

All (1) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
6	L	24	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

