

# wwPDB EM Validation Summary Report (i)

#### Oct 7, 2024 - 02:51 PM JST

| PDB ID       | : | 8Y39                                                                                         |
|--------------|---|----------------------------------------------------------------------------------------------|
| EMDB ID      | : | EMD-38876                                                                                    |
| Title        | : | cryo-EM structure of Staphylococcus aureus(ATCC 29213) 70S ribosome in complex with MCX-190. |
| Authors      | : | Li, Y.; Lu, G.; Li, J.; Pei, X.; Lin, J.                                                     |
| Deposited on | : | 2024-01-28                                                                                   |
| Resolution   | : | 3.60  Å(reported)                                                                            |

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | FAILED                                                             |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| MolProbity                     | : | 4.02b-467                                                          |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20231227.v01 (using entries in the PDB archive December 27th 2023) |
| MapQ                           | : | FAILED                                                             |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.39                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 3.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Ramachandran outliers | 207382 | 16835 |
|-----------------------|--------|-------|
| Sidechain outliers    | 206894 | 16415 |
| RNA backbone          | 6643   | 2191  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

| Mol | Chain | Length | Quality of chain |       |
|-----|-------|--------|------------------|-------|
| 1   | А     | 2921   | 66%              | 33% • |
| 2   | В     | 115    | 60%              | 40%   |
| 3   | С     | 274    | 93%              | 7%    |
| 4   | D     | 215    | 90%              | 10%   |
| 5   | Е     | 206    | 92%              | 8%    |
| 6   | F     | 175    | 78%              | 22%   |
| 7   | G     | 175    | 85%              | 15%   |
| 8   | Н     | 145    | 94%              | 6%    |
| 9   | Ι     | 122    | 88%              | 11% • |

Continued on next page...



| Mol          | Chain  | Length | Quality of chain |       |
|--------------|--------|--------|------------------|-------|
| 10           | J      | 146    | 92%              | 8%    |
| 11           | Κ      | 137    | 87%              | 13%   |
| 12           | L      | 120    | 97%              | •     |
| 13           | М      | 119    | 86%              | 14%   |
| 14           | Ν      | 114    | 83%              | 17%   |
| 15           | О      | 116    | 92%              | 8%    |
| 16           | Р      | 102    | 93%              | 6% •  |
| 17           | Q      | 117    | 88%              | 8% •  |
| 18           | R      | 89     | 88%              | 12%   |
| 19           | S      | 103    | 90%              | 10%   |
| 20           | Т      | 94     | 84%              | 16%   |
| 21           | U      | 82     | 91%              | 9%    |
| 22           | V      | 58     | 86%              | 14%   |
| 23           | W      | 67     | 79%              | 21%   |
| 24           | X      | 58     | 91%              | 9%    |
| 25           | Y      | 59     | 93%              |       |
| 26           | Z      | 48     | 98%              |       |
| 27           | 1      | 47     | 79%              | 21%   |
| 28           | 2      | 43     | 98%              |       |
| 29           | 3      | 64     | 80%              | 11%   |
| 30           | 4      | 37     | 84%              | 16%   |
| 31           | т<br>2 | 15/18  | 710/             | 25%   |
| 20           | a<br>h | 929    | /1%              | 20% • |
| - 32<br>- 22 | U<br>C | 202    | 92%              | 5% •  |
| <u>ა</u> კ   | C      | 217    | 90%              | • 7%  |
| - 34         | d      | 200    | 97%              | •     |

Continued from previous page...

Continued on next page...



| Mol | Chain | Length | Quality of chain |        |
|-----|-------|--------|------------------|--------|
| 35  | е     | 166    | 91%              | • 6%   |
| 36  | f     | 98     | 89%              | 8% •   |
| 37  | g     | 156    | 90%              | 10% •  |
| 38  | h     | 132    | 96%              | ••     |
| 39  | i     | 130    | 95%              | • •    |
| 40  | j     | 102    | 89%              | 6% 5%  |
| 41  | k     | 129    | 84%              | • 12%  |
| 42  | 1     | 149    | 85%              | 5%• 9% |
| 43  | m     | 121    | 91%              | 5% •   |
| 44  | n     | 61     | 95%              | •••    |
| 45  | О     | 89     | 96%              | •••    |
| 46  | р     | 91     | 93%              | • •    |
| 47  | q     | 87     | 83%              | 9% 8%  |
| 48  | r     | 80     | 75% 5%           | 20%    |
| 49  | S     | 108    | 70% 6%           | 24%    |
| 50  | t     | 83     | 94%              |        |

Continued from previous page...



# 2 Entry composition (i)

There are 52 unique types of molecules in this entry. The entry contains 138218 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 23S ribosomal RNA.

| Mol | Chain | Residues |                |            | AltConf    | Trace      |           |   |   |
|-----|-------|----------|----------------|------------|------------|------------|-----------|---|---|
| 1   | А     | 2885     | Total<br>61859 | C<br>27619 | N<br>11312 | O<br>20043 | Р<br>2885 | 0 | 0 |

• Molecule 2 is a RNA chain called 5S ribosomal RNA.

| Mol | Chain | Residues | Atoms         |           |          |          |          | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|----------|---------|-------|
| 2   | В     | 115      | Total<br>2445 | C<br>1094 | N<br>436 | 0<br>801 | Р<br>114 | 0       | 0     |

• Molecule 3 is a protein called Large ribosomal subunit protein uL2.

| Mol | Chain | Residues | Atoms         |           |          |          |                | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|----------------|---------|-------|
| 3   | С     | 274      | Total<br>2090 | C<br>1301 | N<br>415 | O<br>369 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 4 is a protein called Large ribosomal subunit protein uL3.

| Mol | Chain | Residues | Atoms         |           |          |          |                | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|----------------|---------|-------|
| 4   | D     | 215      | Total<br>1627 | C<br>1018 | N<br>299 | O<br>305 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 5 is a protein called Large ribosomal subunit protein uL4.

| Mol | Chain | Residues | Atoms         |          |          |          |                                                         | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------------------------------------------------|---------|-------|
| 5   | Е     | 206      | Total<br>1572 | C<br>986 | N<br>288 | O<br>296 | $\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$ | 0       | 0     |

• Molecule 6 is a protein called Large ribosomal subunit protein uL5.

| Mol | Chain | Residues | Atoms         |          |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 6   | F     | 175      | Total<br>1317 | C<br>835 | N<br>223 | O<br>253 | S<br>6 | 0       | 0     |



• Molecule 7 is a protein called Large ribosomal subunit protein uL6.

| Mol | Chain | Residues |               | Atoms    |          |          |                 |   | Trace |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---|-------|
| 7   | G     | 175      | Total<br>1259 | C<br>788 | N<br>239 | O<br>229 | ${ m S} { m 3}$ | 0 | 0     |

• Molecule 8 is a protein called Large ribosomal subunit protein uL13.

| Mol | Chain | Residues |       | At       | oms      |     |                 | AltConf | Trace |
|-----|-------|----------|-------|----------|----------|-----|-----------------|---------|-------|
| 8   | Н     | 145      | Total | C<br>714 | N<br>208 | 0   | ${ m S}_{ m 3}$ | 0       | 0     |
|     |       |          | 1140  | 114      | 200      | 210 | 3               |         |       |

• Molecule 9 is a protein called Large ribosomal subunit protein uL14.

| Mol | Chain | Residues |              | At       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---------|-------|
| 9   | Ι     | 122      | Total<br>918 | C<br>572 | N<br>174 | 0<br>168 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 10 is a protein called Large ribosomal subunit protein uL15.

| Mol | Chain | Residues | Atoms         |          |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 10  | J     | 146      | Total<br>1086 | C<br>674 | N<br>214 | 0<br>197 | S<br>1 | 0       | 0     |

• Molecule 11 is a protein called Large ribosomal subunit protein uL16.

| Mol | Chain | Residues |               | At       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---------|-------|
| 11  | K     | 137      | Total<br>1071 | C<br>689 | N<br>203 | 0<br>175 | ${S \atop 4}$ | 0       | 0     |

• Molecule 12 is a protein called Large ribosomal subunit protein bL17.

| Mol | Chain | Residues | Atoms        |          |          |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 12  | L     | 120      | Total<br>932 | C<br>576 | N<br>182 | 0<br>173 | S<br>1 | 0       | 0     |

• Molecule 13 is a protein called Large ribosomal subunit protein uL18.

| Mol | Chain | Residues | Atoms        |                                                  |          |          |        | AltConf | Trace |
|-----|-------|----------|--------------|--------------------------------------------------|----------|----------|--------|---------|-------|
| 13  | М     | 119      | Total<br>891 | $\begin{array}{c} \mathrm{C} \\ 557 \end{array}$ | N<br>174 | O<br>159 | S<br>1 | 0       | 0     |

• Molecule 14 is a protein called Large ribosomal subunit protein bL19.



| Mol | Chain | Residues |              | Ato                                              | $\mathbf{ms}$ |          | AltConf | Trace |
|-----|-------|----------|--------------|--------------------------------------------------|---------------|----------|---------|-------|
| 14  | Ν     | 114      | Total<br>889 | $\begin{array}{c} \mathrm{C} \\ 563 \end{array}$ | N<br>175      | O<br>151 | 0       | 0     |

• Molecule 15 is a protein called Large ribosomal subunit protein bL20.

| Mol | Chain | Residues | Atoms        |          |          |          |               | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---------|-------|
| 15  | 0     | 116      | Total<br>942 | C<br>593 | N<br>189 | 0<br>156 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 16 is a protein called Large ribosomal subunit protein bL21.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 16  | Р     | 102      | Total<br>790 | C<br>503 | N<br>142 | 0<br>144 | S<br>1 | 0 | 0 |

• Molecule 17 is a protein called Large ribosomal subunit protein uL22.

| Mol | Chain | Residues |              | Atoms    |          |          |                 |   | Trace |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---|-------|
| 17  | Q     | 112      | Total<br>853 | C<br>532 | N<br>163 | 0<br>155 | ${ m S} { m 3}$ | 0 | 0     |

• Molecule 18 is a protein called Large ribosomal subunit protein uL23.

| Mol | Chain | Residues |              | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 18  | R     | 89       | Total<br>715 | C<br>453 | N<br>127 | 0<br>131 | S<br>4 | 0       | 0     |

• Molecule 19 is a protein called Large ribosomal subunit protein uL24.

| Mol | Chain | Residues |              | At       | $\mathbf{oms}$ |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------------|----------|--------|---------|-------|
| 19  | S     | 103      | Total<br>770 | C<br>486 | N<br>142       | 0<br>141 | S<br>1 | 0       | 0     |

• Molecule 20 is a protein called Large ribosomal subunit protein bL25.

| Mol | Chain | Residues |              | Ato      | ms       | AltConf  | Trace |   |
|-----|-------|----------|--------------|----------|----------|----------|-------|---|
| 20  | Т     | 94       | Total<br>711 | C<br>456 | N<br>127 | O<br>128 | 0     | 0 |

• Molecule 21 is a protein called Large ribosomal subunit protein bL27.



| Mol | Chain | Residues |              | Ato      | ms       | AltConf  | Trace |   |
|-----|-------|----------|--------------|----------|----------|----------|-------|---|
| 21  | U     | 82       | Total<br>615 | C<br>380 | N<br>121 | 0<br>114 | 0     | 0 |

• Molecule 22 is a protein called Large ribosomal subunit protein bL28.

| Mol | Chain | Residues |              | Atom     | ıs      | AltConf | Trace |   |
|-----|-------|----------|--------------|----------|---------|---------|-------|---|
| 22  | V     | 58       | Total<br>445 | С<br>277 | N<br>96 | O<br>72 | 0     | 0 |

• Molecule 23 is a protein called Large ribosomal subunit protein uL29.

| Mol | Chain | Residues |              | Ato      | ms       | AltConf  | Trace |   |
|-----|-------|----------|--------------|----------|----------|----------|-------|---|
| 23  | W     | 67       | Total<br>541 | C<br>333 | N<br>102 | O<br>106 | 0     | 0 |

• Molecule 24 is a protein called Large ribosomal subunit protein uL30.

| Mol | Chain | Residues |              | Atom     | ıs      | AltConf | Trace |   |
|-----|-------|----------|--------------|----------|---------|---------|-------|---|
| 24  | Х     | 58       | Total<br>449 | C<br>280 | N<br>85 | O<br>84 | 0     | 0 |

• Molecule 25 is a protein called Large ribosomal subunit protein bL31B.

| Mol | Chain | Residues |              | Aton     | ıs      | AltConf | Trace |   |
|-----|-------|----------|--------------|----------|---------|---------|-------|---|
| 25  | Y     | 57       | Total<br>353 | C<br>214 | N<br>65 | О<br>74 | 0     | 0 |

• Molecule 26 is a protein called Large ribosomal subunit protein bL32.

| Mol | Chain | Residues |       | Ato | $\mathbf{ms}$ | AltConf | Trace |   |   |
|-----|-------|----------|-------|-----|---------------|---------|-------|---|---|
| 26  | 7     | 48       | Total | С   | Ν             | Ο       | S     | 0 | 0 |
| 20  | 2     | 40       | 361   | 222 | 77            | 59      | 3     | 0 | 0 |

• Molecule 27 is a protein called Large ribosomal subunit protein bL33B.

| Mol | Chain | Residues |              | Atc      | $\mathbf{ms}$ | AltConf | Trace         |   |   |
|-----|-------|----------|--------------|----------|---------------|---------|---------------|---|---|
| 27  | 1     | 47       | Total<br>390 | C<br>238 | N<br>78       | O<br>70 | ${S \atop 4}$ | 0 | 0 |

• Molecule 28 is a protein called Large ribosomal subunit protein bL34.



| Mol | Chain | Residues |              | Atc      | $\mathbf{ms}$ |         |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------------|---------|--------|---------|-------|
| 28  | 2     | 43       | Total<br>367 | C<br>225 | N<br>89       | O<br>52 | S<br>1 | 0       | 0     |

• Molecule 29 is a protein called Large ribosomal subunit protein bL35.

| Mol | Chain | Residues |              | Ate      | oms      | AltConf | Trace           |   |   |
|-----|-------|----------|--------------|----------|----------|---------|-----------------|---|---|
| 29  | 3     | 64       | Total<br>521 | C<br>324 | N<br>113 | O<br>82 | ${ m S} { m 2}$ | 0 | 0 |

• Molecule 30 is a protein called Large ribosomal subunit protein bL36.

| Mol | Chain | Residues |              | Ato      | $\mathbf{ms}$ | AltConf | Trace      |   |   |
|-----|-------|----------|--------------|----------|---------------|---------|------------|---|---|
| 30  | 4     | 37       | Total<br>296 | C<br>186 | N<br>60       | 0<br>45 | ${f S}{5}$ | 0 | 0 |

• Molecule 31 is a RNA chain called 16S ribosomal RNA.

| Mol | Chain | Residues |                | I          | AltConf   | Trace      |           |   |   |
|-----|-------|----------|----------------|------------|-----------|------------|-----------|---|---|
| 31  | a     | 1479     | Total<br>31706 | C<br>14154 | N<br>5809 | O<br>10264 | Р<br>1479 | 0 | 0 |

• Molecule 32 is a protein called Small ribosomal subunit protein uS2.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |        |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---|---|
| 32  | b     | 224      | Total<br>1802 | C<br>1149 | N<br>314 | 0<br>332 | S<br>7 | 0 | 0 |

• Molecule 33 is a protein called Small ribosomal subunit protein uS3.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |               |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------------|---|---|
| 33  | с     | 202      | Total<br>1596 | C<br>1005 | N<br>300 | O<br>289 | ${S \over 2}$ | 0 | 0 |

• Molecule 34 is a protein called Small ribosomal subunit protein uS4.

| Mol | Chain | Residues | Atoms         |           |          |          |               | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------------|---------|-------|
| 34  | d     | 199      | Total<br>1616 | C<br>1020 | N<br>302 | 0<br>292 | $\frac{S}{2}$ | 0       | 0     |

• Molecule 35 is a protein called Small ribosomal subunit protein uS5.



| Mol | Chain | Residues |               | At       | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---------|-------|
| 35  | е     | 156      | Total<br>1160 | С<br>731 | N<br>212 | O<br>215 | ${ m S} { m 2}$ | 0       | 0     |

• Molecule 36 is a protein called Small ribosomal subunit protein bS6.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace           |   |   |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---|---|
| 36  | f     | 95       | Total<br>789 | C<br>498 | N<br>138 | O<br>150 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 37 is a protein called Small ribosomal subunit protein uS7.

| Mol | Chain | Residues | Atoms         |          |          |          |                                                         | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------------------------------------------------|---------|-------|
| 37  | g     | 155      | Total<br>1242 | C<br>775 | N<br>239 | 0<br>224 | $\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$ | 0       | 0     |

• Molecule 38 is a protein called Small ribosomal subunit protein uS8.

| Mol | Chain | Residues | Atoms         |          |          |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---------|-------|
| 38  | h     | 131      | Total<br>1031 | C<br>652 | N<br>183 | 0<br>192 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 39 is a protein called Small ribosomal subunit protein uS9.

| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 39  | i     | 127      | Total<br>1007 | C<br>624 | N<br>201 | 0<br>181 | S<br>1 | 0       | 0     |

• Molecule 40 is a protein called Small ribosomal subunit protein uS10.

| Mol | Chain | Residues |              | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 40  | j     | 97       | Total<br>773 | C<br>488 | N<br>141 | 0<br>143 | S<br>1 | 0       | 0     |

• Molecule 41 is a protein called Small ribosomal subunit protein uS11.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace           |   |   |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---|---|
| 41  | k     | 114      | Total<br>844 | C<br>520 | N<br>160 | 0<br>161 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 42 is a protein called Small ribosomal subunit protein uS12.



| Mol | Chain | Residues |               | At                                               | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|--------------------------------------------------|----------|----------|-----------------|---------|-------|
| 42  | 1     | 135      | Total<br>1058 | $\begin{array}{c} \mathrm{C} \\ 658 \end{array}$ | N<br>214 | 0<br>184 | ${ m S} { m 2}$ | 0       | 0     |

• Molecule 43 is a protein called Small ribosomal subunit protein uS13.

| Mol | Chain | Residues |              | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 43  | m     | 116      | Total<br>922 | C<br>566 | N<br>183 | 0<br>172 | S<br>1 | 0       | 0     |

• Molecule 44 is a protein called Small ribosomal subunit protein uS14B.

| Mol | Chain | Residues |              | Ate      | oms      |         |            | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|---------|------------|---------|-------|
| 44  | n     | 60       | Total<br>501 | C<br>317 | N<br>100 | O<br>79 | ${f S}{5}$ | 0       | 0     |

• Molecule 45 is a protein called Small ribosomal subunit protein uS15.

| Mol | Chain | Residues |              | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 45  | О     | 87       | Total<br>726 | C<br>448 | N<br>149 | 0<br>128 | S<br>1 | 0       | 0     |

• Molecule 46 is a protein called Small ribosomal subunit protein bS16.

| Mol | Chain | Residues |              | At       | $\mathbf{oms}$ |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------------|----------|--------|---------|-------|
| 46  | р     | 87       | Total<br>688 | C<br>433 | N<br>127       | 0<br>127 | S<br>1 | 0       | 0     |

• Molecule 47 is a protein called Small ribosomal subunit protein uS17.

| Mol | Chain | Residues |              | At       | $\mathbf{oms}$ |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------------|----------|--------|---------|-------|
| 47  | q     | 80       | Total<br>657 | C<br>416 | N<br>117       | 0<br>123 | S<br>1 | 0       | 0     |

• Molecule 48 is a protein called Small ribosomal subunit protein bS18.

| Mol | Chain | Residues |              | Atc      | $\mathbf{ms}$ |         |                 | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------------|---------|-----------------|---------|-------|
| 48  | r     | 64       | Total<br>525 | C<br>336 | N<br>98       | O<br>88 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 49 is a protein called Small ribosomal subunit protein uS19.



| Mol | Chain | Residues |              | At                                               | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|--------------|--------------------------------------------------|----------|----------|-----------------|---------|-------|
| 49  | s     | 82       | Total<br>665 | $\begin{array}{c} \mathrm{C} \\ 427 \end{array}$ | N<br>121 | 0<br>115 | ${ m S} { m 2}$ | 0       | 0     |

• Molecule 50 is a protein called Small ribosomal subunit protein bS20.

| Mol | Chain | Residues |              | At       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---------|-------|
| 50  | t     | 81       | Total<br>611 | C<br>370 | N<br>120 | 0<br>119 | ${S \over 2}$ | 0       | 0     |

• Molecule 51 is 7-[4-[3-[](1 {S},2 {R},5 {R},6 {S},7 {S},8 {R},9 {R},11 {R},13 {R},14 {R}) -8-[(2 {S},3 {R},4 {S},6 {R})-4-(dimethylamino)-6-methyl-3-oxidanyl-oxan-2-yl]oxy-2-ethyl -9-methoxy-1,5,7,9,11,13-hexamethyl-4,12,16-tris(oxidanylidene)-3,17-dioxa-15-azabicyclo[1 2.3.0]heptadecan-6-yl]oxycarbonylamino]propoxy]but-1-ynyl]-1-methyl-4-oxidanylidene-quin oline-3-carboxylic acid (three-letter code: A1D6G) (formula:  $C_{50}H_{72}N_4O_{15}$ ).



| Mol | Chain | Residues | A     | Aton | ns |    | AltConf |
|-----|-------|----------|-------|------|----|----|---------|
| 51  | А     | 1        | Total | С    | Ν  | 0  | 0       |
|     | **    | ±        | 69    | 50   | 4  | 15 |         |

• Molecule 52 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| Mol | Chain | Residues | Atoms       | AltConf |
|-----|-------|----------|-------------|---------|
| 52  | А     | 12       | TotalMg1212 | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



 $\bullet$  Molecule 1: 23S ribosomal RNA



| U1287                       | G1290<br>A1291              | G1294          |                          |       | G1309<br>A1310 | A1311 | A1312          | A1337 | U1338<br>111330 | G1340          | A1341 | C1342<br>U1343 | A1344 | U1348          | U1349               | G1357           |       | G1360 | G1361<br>C1362 |       | U1366          | C1370 | U1378           |       | G1384          | C1387 | A1396          | G1397          | A1402 | G1405           |       | A1415<br>111416 |       | A1421<br>A1422 |       | A1432<br>U1433 | U1434          | A1440 |
|-----------------------------|-----------------------------|----------------|--------------------------|-------|----------------|-------|----------------|-------|-----------------|----------------|-------|----------------|-------|----------------|---------------------|-----------------|-------|-------|----------------|-------|----------------|-------|-----------------|-------|----------------|-------|----------------|----------------|-------|-----------------|-------|-----------------|-------|----------------|-------|----------------|----------------|-------|
| A1443                       | A1450                       | U1451          | 01454                    | U1456 | 01457<br>A1458 | A1459 | 01460<br>C1461 | G1462 | A1463           | G1465          |       | A14/1<br>C1472 |       | G1476<br>U1477 | A1478               | G1479<br>G1480  | A1481 | U1482 | A1483<br>G1484 | 10    | G1487<br>A1488 | A1489 | 61490           | U1493 | G1494          | A1497 | 01498<br>01499 | G1500          | 01504 | G1505<br>C1506  | A1507 | C1508<br>G1509  | U1510 | C1511<br>U1512 | A1513 | A1517          | G1522          | G1523 |
| C1524<br>U1525              | G1526<br>A1527              | G1528          | 01 <mark>532</mark><br>^ | 4 U I | 5 5            | A1537 | A1538<br>A1539 | U1540 | C1541           | 75010          | G1550 | U1551<br>U1552 | A1553 | A1554<br>G1555 | G1556               | C1557<br>11558  | G1559 | A1560 | 61561<br>C1562 |       | 01568<br>G1569 | G1570 |                 | A1575 | A1576<br>G1577 | A1578 | C1579<br>A1580 | U1581<br>11582 | G1583 | U1584<br>G1585  | U1586 | C1587<br>111588 | U1589 | C1590<br>G1591 | A1592 | G1593<br>U1594 | C1595<br>G1596 | U1597 |
| U1598<br>G1599              | U1602                       | A1605          | C1606                    | G1613 | A1616          |       | 01623<br>C1624 | U1625 | A1626           | 41628<br>A1628 | U1629 | A1630<br>G1631 | A1632 | A1633<br>A1634 | A1635               | 01636<br>41637  | G1638 | G1639 | 01640<br>G1641 | 2     | C1651<br>A1652 | A1653 | A1054<br>C1655  | C1656 | G1657<br>A1658 | C1659 | A1660<br>C1661 | A1662          | A1666 | A1678           | A1679 | G1687           |       | A1690<br>G1691 | C1692 | U1707          | G1717          | G1718 |
| C1719                       | U1737                       | G1740          | U1757<br>A1759           | G1759 | G1760<br>G1761 | U1762 | 01763<br>A1764 | A1765 | C1766           | C1769          | C1770 |                | A1789 | G1790<br>G1791 | -                   | A1796<br>G1797  |       | A1800 | G1803          | U1804 | U1805<br>U1806 | A1807 | 01808<br>C1809  | A1810 | A1811<br>A1812 | A1813 | G1826          | C1827          | A1829 | 111 835         |       | U1843<br>G1844  |       | A1856          | C1870 | U1871          | A1874<br>A1875 | G1876 |
| A1883                       | A1886                       | A1893          | G1894                    | U1897 | C1898<br>U1899 |       | A1903<br>A1904 | G1905 | A 1 0 0 8       | C1909          |       | A1912          | C1919 | A1923          |                     | G1933<br>G1934  |       | U1938 | A 1939         | ט :   | D Ø            | U1944 | A1946<br>A1946  | C1947 | G1948<br>G1949 | U1950 | C1951          | A1954          | G1956 | G1957<br>111958 |       | A1964<br>A1965  | U1966 | U1967          | 01982 | C1992          | A1993<br>C1994 | G1995 |
| A1 996<br>A1 997            | A1 998<br>G1 999            | U2003          |                          | U2009 | U2018          | G2019 | U2020          | C2023 | A2024           | G2029          |       | G2048<br>U2049 | A2050 | A2057          | A2058               | G2059<br>A2060  | U2061 | G2062 | C2070          | 12000 | G2075<br>A2076 | C2077 | AZUTO           | C2082 | G2083          | A2087 | G2088<br>A2089 | C2090          | G2094 | U2095<br>G2096  |       | G2107<br>112108 | A2109 | G2114          |       | A2117<br>U2118 | U2119<br>G2120 |       |
| G2127<br>G2128              | C2129<br>A2130              | C2131<br>A2132 | G2133                    | U2135 | 02136<br>G2137 | U2138 | A2139<br>C2140 |       | G2143<br>A2144  | N2145<br>U2145 | A2146 | G2147<br>G2148 | U2149 | A2153          | G2154               | C2155<br>C2156  | U2157 | U2158 | 02169<br>G2160 | A2161 | A2162<br>A2163 | C2164 | G2169           | C2170 | G2171<br>C2172 | U2173 | A2174<br>G2175 | C2176          |       | A2185<br>G2186  | G2187 | C2188<br>G2189  | C2190 | G2193          | U2194 | G2195<br>G2196 | G2197<br>A2198 | U2199 |
| A2200                       | C2204<br>C2205              | C2206<br>U2207 | A2208                    | C2210 | U2211<br>G2212 | U2213 | G2214<br>U2215 | U2216 | G2217           | U2221          |       | 02224<br>A2225 | A2226 | G2230          | C2231               | A2232           | A2235 |       | 02238<br>A2239 | U2240 | C2241          | G2245 | A2252           | -     | G2265<br>G2266 |       | G2278          | C2287          | A2296 | <b>C</b> 2306   |       | C2310<br>112311 | C2312 | A2313<br>A2314 | A2315 | G2326          | A2327<br>A2328 | U2329 |
| G2330<br>G2331              | U2332<br>U2333              | G2334<br>G2335 | A2336<br>A2337           | A2338 | 02339          | U2342 | A2345          | U2346 | A2347           | 42349<br>A2349 | G2350 | 02351<br>G2352 | U2353 | A2354          | G2 <mark>358</mark> | C2359<br>A2360  | U2361 | A2362 | A2363<br>G2364 |       | U2370<br>U2371 | G2372 | A23/3<br>C2374  |       | C2377          | A2388 | A2396          | G2397          | G2399 | A7404           |       | C2408<br>C2409  | G2410 | A2411<br>C2412 |       | G2416<br>U2417 | G2418          | C2430 |
| C2433                       | A2434                       | G2437          | G2441                    | U2450 | C2451<br>A2452 | A2453 | C2454<br>G2455 | G2456 | A2457           | A2461          | A2462 | 6.2463         | C2468 | G2472          | G2473               | G2474<br>A2475  |       | C2493 | C2494<br>A2495 | A2496 | G2497          | A2505 | 0.2506<br>C2507 | G2508 | G2521          |       | C2525          | C2528          | A2530 | U2531<br>G2532  | U2533 | C2534           | G2543 | C2544<br>A2545 | U2546 | C2547          | G2552<br>G2553 | C2554 |
| <mark>U2555</mark><br>G2556 | <mark>U2557</mark><br>A2558 | G2559          | G2562                    | A2568 | A2569<br>G2570 |       | U2574          | U2579 | G2580           | U2589          |       | A2592<br>A2593 | G2594 | A2599          | <mark>C2600</mark>  | G2601           | G2605 |       | 6.097.5        | U2612 | C2613          | G2626 | A262/<br>C2628  | A2629 | U2636          |       | U2640<br>A2641 | U2642          | G2648 | U2649<br>G2650  |       | A 2656          | A2661 | A2668          |       | G2672          | A2681<br>G2682 | U2683 |
| A2684<br>C2685              | G2686<br>A2687              | A2692          | C2693                    | G2695 | G2696          | G2700 | U2709          |       | G2712           | U2716          |       | 02728<br>G2729 |       | A2733          | G2 <mark>741</mark> | G2745           |       | U2753 | 62754<br>U2755 | G2756 | A2760          | C2761 | G2769           | U2770 | G2771          | A2776 | A2777          | 02781          | U2783 | A2784           | C2787 | A2788           | A2792 | G2793<br>C2794 |       | A2803<br>G2804 | A2805<br>U2806 | G2807 |
| A2817                       | A2818<br>C2819              | U2820<br>U2821 |                          | U2825 | U2826<br>A2827 | U2828 | A2829<br>A2830 | G2831 | A2832           | C2838          | A2839 | A 2840         | U2844 | G2845<br>A2846 |                     | G2851<br>112852 | U2853 | A2854 | QC 878         | G2887 | A2888          | G2892 | A2899           | C2900 | U2904          | C2905 | 62906          | A2912          | A2914 | C2915<br>112916 |       | A2919<br>112920 | U     | A<br>A         |       |                |                |       |

 $\bullet$  Molecule 2: 5S ribosomal RNA

Chain B:

60%



# Mail Mail U10 U10 U11 U11 U12 U13 U13 U14 U14 U15 U13 U13 U14 U14 U13 U14 U14 U15 U15 U14 U14 U15 U14 U14 U14 U15 U14 U16 U14 U16 U14 U16



• Molecule 3: Large ribosomal subunit protein uL2



• Molecule 8: Large ribosomal subunit protein uL13

Chain H: 94% 6%





• Molecule 9: Large ribosomal subunit protein uL14

| Chain I:                                                         | 88%                                                                                                           | 11% • |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------|
| M1<br>I2<br>03<br>814<br>814<br>N34<br>N34<br>N34<br>T65         | 860<br>860<br>868<br>870<br>871<br>871<br>871<br>871<br>881<br>881<br>198<br>8120<br>8120<br>1122             |       |
| • Molecule 10:                                                   | : Large ribosomal subunit protein uL15                                                                        |       |
| Chain J:                                                         | 92%                                                                                                           | 8%    |
| M1<br>K7<br>R13<br>B80<br>D80                                    | 192<br>192<br>192<br>196<br>196<br>196<br>196<br>196<br>196<br>196<br>196<br>196                              |       |
| • Molecule 11:                                                   | : Large ribosomal subunit protein uL16                                                                        |       |
| Chain K:                                                         | 87%                                                                                                           | 13%   |
| M1<br>L2<br>L3<br>L3<br>K14<br>P15<br>F17<br>T17                 | 118<br>435<br>844<br>844<br>844<br>845<br>844<br>855<br>844<br>855<br>845<br>84                               |       |
| • Molecule 12:                                                   | : Large ribosomal subunit protein bL17                                                                        |       |
| Chain L:                                                         | 97%                                                                                                           | ·     |
| Y3<br>R29<br>R59<br>Q79<br>R102                                  |                                                                                                               |       |
| • Molecule 13:                                                   | : Large ribosomal subunit protein uL18                                                                        |       |
| Chain M:                                                         | 86%                                                                                                           | 14%   |
| M1<br>K9<br>V10<br>K11<br>L12<br>K13<br>K13<br>K13<br>C12<br>C12 | 2.23<br>E27<br>336<br>336<br>456<br>456<br>857<br>857<br>857<br>857<br>857<br>857<br>857<br>857<br>857<br>857 |       |
| • Molecule 14:                                                   | : Large ribosomal subunit protein bL19                                                                        |       |
| Chain N:                                                         | 83%                                                                                                           | 17%   |
| 12<br>K5<br>L6<br>L6<br>L6<br>T1<br>T11<br>K12<br>K12<br>K12     | 414<br>117<br>117<br>128<br>128<br>135<br>135<br>135<br>135<br>135<br>135<br>135<br>135<br>135<br>135         |       |
| • Molecule 15:                                                   | : Large ribosomal subunit protein bL20                                                                        |       |
| Chain O:                                                         | 92%                                                                                                           | 8%    |



#### P2 T8 V9 R51 R51 R78 R78 B96 S96 S96 S96 S96

• Molecule 16: Large ribosomal subunit protein bL21





• Molecule 23: Large ribosomal subunit protein uL29

| Chain W:                                                                              | 79%                          | 21% |
|---------------------------------------------------------------------------------------|------------------------------|-----|
| K2<br>111<br>110<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>11               | R44<br>162<br>865<br>865     |     |
| • Molecule 24: Large rib                                                              | osomal subunit protein uL30  |     |
| Chain X:                                                                              | 91%                          | 9%  |
| A2<br>16<br>17<br>110<br>869<br>K869                                                  |                              |     |
| • Molecule 25: Large rib                                                              | osomal subunit protein bL31B |     |
| Chain Y:                                                                              | 93%                          | • • |
| 129 121 121 121 121 121 121 121 121 121                                               |                              |     |
| • Molecule 26: Large rib                                                              | osomal subunit protein bL32  |     |
| Chain Z:                                                                              | 98%                          | •   |
| A2<br>839<br>149                                                                      |                              |     |
| • Molecule 27: Large rib                                                              | osomal subunit protein bL33B |     |
| Chain 1:                                                                              | 79%                          | 21% |
| R2<br>C12<br>18<br>N22<br>K23<br>K23<br>K23<br>K32<br>K31<br>K32<br>K41<br>K41<br>K41 |                              |     |
| • Molecule 28: Large rib                                                              | osomal subunit protein bL34  |     |
| Chain 2:                                                                              | 98%                          |     |
| 8844<br>844                                                                           |                              |     |
| • Molecule 29: Large rib                                                              | osomal subunit protein bL35  |     |
| Chain 3:                                                                              | 89%                          | 11% |
|                                                                                       |                              |     |





• Molecule 30: Large ribosomal subunit protein bL36

| Chain 4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84%                                                                                                                                                                                                                                                      | 16%                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| MA<br>R4<br>C11<br>C11<br>C12<br>K15<br>K22<br>K22<br>C37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                          |                                                                                                                 |
| • Molecule 31: 16S ribosomal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RNA                                                                                                                                                                                                                                                      |                                                                                                                 |
| Chain a:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71% 25%                                                                                                                                                                                                                                                  | ·                                                                                                               |
| A5<br>68<br>69<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>65<br>64<br>65<br>662<br>662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                       | C C C C C C C C C C C C C C C C C C C                                                                           |
| A120<br>A130<br>C136<br>C136<br>C136<br>G142<br>G142<br>G142<br>G142<br>G156<br>G155<br>G155<br>G156<br>G156<br>G156<br>G156<br>G156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A174<br>A174<br>V185<br>V188<br>V188<br>C188<br>A190<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C18                                                                                                                                      | 6216<br>0217<br>0<br>0<br>0<br>0<br>0<br>223<br>0<br>225<br>0<br>222                                            |
| 0230<br>0233<br>0234<br>0234<br>0248<br>0265<br>0265<br>0265<br>0266<br>0266<br>0266<br>0268<br>0268<br>0268<br>0274<br>0274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A278<br>C279<br>C279<br>A301<br>A301<br>A328<br>A328<br>A337<br>C338<br>A337<br>C338<br>C338<br>C338<br>C338<br>C338<br>C338<br>C338<br>C                                                                                                                | C380<br>A390<br>G396<br>A401<br>A401<br>C406                                                                    |
| 6412<br>6413<br>6414<br>6414<br>6414<br>6414<br>6421<br>6421<br>6421<br>6423<br>6423<br>6423<br>6423<br>6423<br>6423<br>6423<br>6423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U447<br>4456<br>4456<br>4456<br>4459<br>4459<br>4467<br>6468<br>6468<br>6468<br>0485<br>0485<br>0485<br>0485<br>0485<br>0485<br>0485<br>048                                                                                                              | A499<br>4500<br>U502<br>4503<br>4503<br>6504<br>6504<br>6504<br>6514<br>6514<br>4517                            |
| 4518<br>C519<br>C519<br>C526<br>C526<br>C526<br>C526<br>C528<br>C538<br>C538<br>C538<br>C538<br>C538<br>C538<br>C538<br>C53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4554<br>4555<br>4567<br>4567<br>16772<br>16578<br>4531<br>4531<br>4531<br>6586<br>0586<br>0586<br>0586<br>0587<br>0586<br>0596<br>0596<br>0596<br>0596<br>0596<br>0596<br>0596<br>059                                                                    | U634<br>C640<br>C642<br>C642<br>A650<br>A650<br>U660<br>U660                                                    |
| 6664<br>A673<br>6691<br>691<br>0694<br>A703<br>A703<br>A703<br>670<br>6731<br>6733<br>6731<br>6732<br>6731<br>6732<br>6731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A757<br>A756<br>A785<br>A788<br>A788<br>A789<br>A789<br>C793<br>C793<br>C793<br>C793<br>C793<br>C793<br>C793<br>C79                                                                                                                                      | 6826<br>1882<br>1882<br>1882<br>1882<br>1882<br>1882<br>1882                                                    |
| C C 6854<br>6854<br>6864<br>7869<br>7869<br>7880<br>7880<br>7881<br>7881<br>7881<br>7881<br>7883<br>7881<br>7883<br>7894<br>6911<br>6934<br>6935<br>6935<br>6937<br>6937<br>6937<br>6937<br>6937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C340<br>C341<br>C341<br>C341<br>C343<br>C343<br>C343<br>C343<br>C343                                                                                                                                                                                     | 1991<br>1992<br>293<br>293<br>293<br>299<br>0198<br>01998<br>01000<br>01000<br>11001<br>11002<br>11005<br>11005 |
| C1007<br>C1008<br>C1008<br>A A A A C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с                                                                                                                                                              | U1076<br>C1092<br>C1097<br>C1110<br>C1111<br>A1113<br>A1113                                                     |
| G1119<br>C1120<br>C1120<br>C1122<br>C1123<br>C1124<br>C1128<br>G1128<br>G1128<br>G1138<br>G1138<br>G1138<br>C1139<br>C1139<br>C1139<br>C1139<br>C1139<br>C1139<br>C1139<br>C1139<br>C1139<br>C1139<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1128<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138<br>C1138 | U<br>A<br>A<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G                                                                                                                                                         | G1187<br>G1187<br>G1189<br>A1189<br>G1194<br>G1203<br>G1203<br>A1205<br>A1205<br>A1205                          |
| C1218<br>11222<br>11222<br>11222<br>11225<br>01226<br>11236<br>11236<br>11236<br>11238<br>11238<br>11238<br>11247<br>11246<br>11247<br>11250<br>01247<br>11250<br>01247<br>11250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1256<br>A1256<br>C1265<br>C1266<br>A1267<br>A1267<br>C1269<br>C1269<br>C1269<br>A1271<br>A1290<br>C1283<br>A1292<br>U1292<br>U1292<br>U1296<br>A1298                                                                                                    | 61303<br>01307<br>01307<br>01308<br>01310<br>01311<br>01312<br>01313<br>01314<br>01314                          |
| 61326<br>A1329<br>(1331<br>(1331<br>(1331<br>(1333<br>(1333<br>(1333<br>(1333<br>(1338<br>(1338<br>(1338<br>(1338<br>(1338<br>(1338<br>(1338<br>(1338)<br>(1388<br>(1385)<br>(1388)<br>(1388)<br>(1388)<br>(1388)<br>(1388)<br>(1388)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U1374<br>U1374<br>G1380<br>A1385<br>A1385<br>C1388<br>U1389<br>U1389<br>U1389<br>U1391<br>U1401<br>U1401<br>U1401<br>U1401<br>C1393<br>C1393<br>C1393<br>C1393<br>C1393<br>C1393<br>C1393<br>C1409<br>C1409<br>C1409<br>C1409<br>C1409<br>C1409<br>C1409 | G1415<br>1420<br>61429<br>61429<br>61429<br>6145<br>61451<br>61452<br>61452                                     |





#### MET T2 D54 L60 G68 R121 M132

 $\bullet$  Molecule 39: Small ribosomal subunit protein uS9

Chain i: 95% · ·



• Molecule 40: Small ribosomal subunit protein uS10

| Chain j:                                            |     |     |            |     |     |      | 89% | 6% | 5% |
|-----------------------------------------------------|-----|-----|------------|-----|-----|------|-----|----|----|
| MET<br>ALA<br>LYS<br>GLN<br>LYS<br>LYS<br><b>I6</b> | L10 | E23 | K30<br>R31 | L92 | D97 | L102 |     |    |    |

• Molecule 41: Small ribosomal subunit protein uS11

| Chain k:                                                                                               | 84%                                             | · | 12% |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|---|-----|
| MET<br>ALA<br>ALA<br>ALA<br>CLVS<br>CLN<br>VAL<br>LVS<br>ARG<br>ARG<br>ARG<br>LVS<br>LVS<br>LVS<br>LVS | N18<br>E37<br>E68<br>E68<br>R126<br>N126<br>VAL |   |     |

 $\bullet$  Molecule 42: Small ribosomal subunit protein uS12

| Chain l:                                                                                                | 85%                                                                                            | 5% • 9% |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------|
| NET<br>GLY<br>LAU<br>LYS<br>SER<br>SER<br>SER<br>ARG<br>ARG<br>ARG<br>ARG<br>HTTR<br>HTS<br>HTTR<br>HTS | K64<br>867<br>867<br>867<br>869<br>1139<br>1132<br>1133<br>1133<br>1133<br>1133<br>1133<br>113 |         |

 $\bullet$  Molecule 43: Small ribosomal subunit protein uS13

 Chain m:
 91%
 5%

 Image: Second sec

96%

Chain o:



. .



• Molecule 46: Small ribosomal subunit protein bS16

| Chain p:                                                    | 93%                                                                                                                 |    |     | ••• |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----|-----|-----|
| MET<br>A2<br>R32<br>K51<br>K88                              | LYS                                                                                                                 |    |     |     |
| • Molecule                                                  | e 47: Small ribosomal subunit protein uS17                                                                          |    |     |     |
| Chain q:                                                    | 83%                                                                                                                 |    | 9%  | 8%  |
| MET<br>SER<br>GLU<br>ARG<br>D6<br>D20                       | K31<br>K31<br>K34<br>K34<br>K34<br>K34<br>K34<br>K34<br>K34<br>K34<br>K34<br>K34                                    |    |     |     |
| • Molecule                                                  | e 48: Small ribosomal subunit protein bS18                                                                          |    |     |     |
| Chain r:                                                    | 75%                                                                                                                 | 5% | 20% | _   |
| MET<br>ALA<br>GLY<br>GLY<br>PRO<br>ARG<br>ARG<br>GLY<br>GLY | ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG                                                  |    |     |     |
| • Molecule                                                  | e 49: Small ribosomal subunit protein uS19                                                                          |    |     |     |
| Chain s:                                                    | 70% 6%                                                                                                              | 0  | 24% | _   |
| MET<br>CYS<br>GLY<br>LEU<br>LEU<br>HLS<br>ALA               | ASN<br>LYS<br>LYS<br>CLY<br>CLY<br>CLY<br>CLN<br>MIG<br>MIG<br>MIG<br>MIG<br>MIG<br>MIG<br>MIG<br>MIG<br>MIG<br>MIG |    |     |     |
| • Molecule                                                  | e 50: Small ribosomal subunit protein bS20                                                                          |    |     |     |
| Chain t:                                                    | 94%                                                                                                                 |    |     | ••• |
| MET<br>A2<br>840<br>870<br>172                              |                                                                                                                     |    |     |     |



# 4 Experimental information (i)

| Property                           | Value                  | Source    |
|------------------------------------|------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE        | Depositor |
| Imposed symmetry                   | POINT, Not provided    |           |
| Number of particles used           | 27177                  | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF      | Depositor |
| CTF correction method              | NONE                   | Depositor |
| Microscope                         | FEI TITAN KRIOS        | Depositor |
| Voltage (kV)                       | 300                    | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 50                     | Depositor |
| Minimum defocus (nm)               | 500                    | Depositor |
| Maximum defocus (nm)               | 1500                   | Depositor |
| Magnification                      | Not provided           |           |
| Image detector                     | GATAN K3 $(6k \ge 4k)$ | Depositor |



# 5 Model quality (i)

#### 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, OMG, 2MG, 5MU, 2MA, A1D6G

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Chai |      | Bond | lengths            | Bond angles |                 |  |
|----------|------|------|--------------------|-------------|-----------------|--|
|          | Unam | RMSZ | # Z  > 5           | RMSZ        | # Z  > 5        |  |
| 1        | А    | 0.53 | 0/69148            | 0.80        | 1/107836~(0.0%) |  |
| 2        | В    | 0.36 | 0/2733             | 0.72        | 0/4257          |  |
| 3        | С    | 0.65 | 0/2125             | 0.87        | 0/2853          |  |
| 4        | D    | 0.71 | 0/1651             | 0.83        | 0/2215          |  |
| 5        | Е    | 0.67 | 0/1595             | 0.76        | 0/2154          |  |
| 6        | F    | 0.46 | 0/1332             | 0.79        | 0/1798          |  |
| 7        | G    | 0.59 | 0/1277             | 0.77        | 0/1731          |  |
| 8        | Н    | 0.51 | 0/1165             | 0.71        | 0/1570          |  |
| 9        | Ι    | 0.65 | 0/925              | 0.81        | 0/1242          |  |
| 10       | J    | 0.46 | 0/1100             | 0.69        | 0/1467          |  |
| 11       | K    | 0.64 | 0/1095             | 0.76        | 0/1472          |  |
| 12       | L    | 0.46 | 0/936              | 0.69        | 0/1253          |  |
| 13       | М    | 0.59 | 0/900              | 0.77        | 0/1205          |  |
| 14       | Ν    | 0.59 | 0/901              | 0.76        | 0/1209          |  |
| 15       | 0    | 0.44 | 0/954              | 0.64        | 0/1264          |  |
| 16       | Р    | 0.51 | 0/800              | 0.72        | 1/1070~(0.1%)   |  |
| 17       | Q    | 0.61 | 0/861              | 0.78        | 0/1161          |  |
| 18       | R    | 0.53 | 0/723              | 0.71        | 0/966           |  |
| 19       | S    | 0.48 | 0/779              | 0.73        | 0/1043          |  |
| 20       | Т    | 0.45 | 0/719              | 0.67        | 0/969           |  |
| 21       | U    | 0.55 | 0/621              | 0.77        | 0/825           |  |
| 22       | V    | 0.71 | 0/451              | 0.86        | 0/603           |  |
| 23       | W    | 0.51 | 0/542              | 0.70        | 0/722           |  |
| 24       | Х    | 0.51 | 0/451              | 0.63        | 0/606           |  |
| 25       | Y    | 0.37 | 0/361              | 0.67        | 0/500           |  |
| 26       | Ζ    | 0.58 | 0/367              | 0.81        | 0/490           |  |
| 27       | 1    | 0.61 | 0/395              | 0.85        | 0/530           |  |
| 28       | 2    | 0.44 | 0/371              | 0.71        | 0/484           |  |
| 29       | 3    | 0.61 | 0/526              | 0.82        | 1/690~(0.1%)    |  |
| 30       | 4    | 0.73 | $\overline{0/299}$ | 0.91        | 0/393           |  |
| 31       | a    | 0.25 | 0/35498            | 0.84        | 0/55345         |  |
| 32       | b    | 0.26 | 0/1829             | 0.53        | 0/2455          |  |



| Mal | Chain | Bond lengths |          | Bond angles |                 |  |
|-----|-------|--------------|----------|-------------|-----------------|--|
|     | Unam  | RMSZ         | # Z  > 5 | RMSZ        | # Z  > 5        |  |
| 33  | с     | 0.24         | 0/1618   | 0.50        | 0/2173          |  |
| 34  | d     | 0.25         | 0/1646   | 0.50        | 0/2211          |  |
| 35  | е     | 0.28         | 0/1174   | 0.53        | 0/1584          |  |
| 36  | f     | 0.27         | 0/800    | 0.57        | 0/1073          |  |
| 37  | g     | 0.24         | 0/1262   | 0.51        | 0/1698          |  |
| 38  | h     | 0.27         | 0/1043   | 0.51        | 0/1401          |  |
| 39  | i     | 0.25         | 0/1023   | 0.59        | 0/1374          |  |
| 40  | j     | 0.25         | 0/785    | 0.51        | 0/1060          |  |
| 41  | k     | 0.29         | 0/859    | 0.57        | 0/1161          |  |
| 42  | 1     | 0.27         | 0/1075   | 0.57        | 0/1439          |  |
| 43  | m     | 0.24         | 0/929    | 0.59        | 0/1246          |  |
| 44  | n     | 0.25         | 0/511    | 0.52        | 0/678           |  |
| 45  | 0     | 0.24         | 0/735    | 0.53        | 0/982           |  |
| 46  | р     | 0.27         | 0/699    | 0.53        | 0/942           |  |
| 47  | q     | 0.29         | 0/665    | 0.57        | 0/889           |  |
| 48  | r     | 0.30         | 0/534    | 0.63        | 0/715           |  |
| 49  | S     | 0.26         | 0/683    | 0.55        | 0/916           |  |
| 50  | t     | 0.24         | 0/611    | 0.46        | 0/817           |  |
| All | All   | 0.45         | 0/150082 | 0.78        | 3/224737 (0.0%) |  |

There are no bond length outliers.

All (3) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|-------|------------------|---------------|
| 1   | А     | 1555 | G    | C3'-C2'-C1' | -5.30 | 97.26            | 101.50        |
| 16  | Р     | 50   | ALA  | C-N-CD      | 5.12  | 139.16           | 128.40        |
| 29  | 3     | 25   | SER  | O-C-N       | -5.00 | 114.70           | 122.70        |

There are no chirality outliers.

There are no planarity outliers.

#### 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.



#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Favoured      | Allowed  | Outliers | Perce | ntiles |
|-----|-------|---------------|---------------|----------|----------|-------|--------|
| 3   | С     | 272/274~(99%) | 245~(90%)     | 26 (10%) | 1 (0%)   | 30    | 63     |
| 4   | D     | 213/215~(99%) | 200 (94%)     | 13~(6%)  | 0        | 100   | 100    |
| 5   | Ε     | 204/206~(99%) | 190 (93%)     | 14 (7%)  | 0        | 100   | 100    |
| 6   | F     | 173/175~(99%) | 144 (83%)     | 28 (16%) | 1 (1%)   | 22    | 55     |
| 7   | G     | 173/175~(99%) | 157 (91%)     | 16 (9%)  | 0        | 100   | 100    |
| 8   | Н     | 143/145~(99%) | 131 (92%)     | 12 (8%)  | 0        | 100   | 100    |
| 9   | Ι     | 120/122~(98%) | 113 (94%)     | 6 (5%)   | 1 (1%)   | 16    | 51     |
| 10  | J     | 144/146~(99%) | 135 (94%)     | 9 (6%)   | 0        | 100   | 100    |
| 11  | K     | 135/137~(98%) | 128 (95%)     | 7 (5%)   | 0        | 100   | 100    |
| 12  | L     | 118/120 (98%) | 113 (96%)     | 5 (4%)   | 0        | 100   | 100    |
| 13  | М     | 117/119~(98%) | 107 (92%)     | 10 (8%)  | 0        | 100   | 100    |
| 14  | Ν     | 112/114 (98%) | 107 (96%)     | 5 (4%)   | 0        | 100   | 100    |
| 15  | Ο     | 114/116 (98%) | 112 (98%)     | 2 (2%)   | 0        | 100   | 100    |
| 16  | Р     | 100/102~(98%) | 93 (93%)      | 5 (5%)   | 2 (2%)   | 6     | 34     |
| 17  | Q     | 110/117~(94%) | 105 (96%)     | 5 (4%)   | 0        | 100   | 100    |
| 18  | R     | 87/89~(98%)   | 84 (97%)      | 3 (3%)   | 0        | 100   | 100    |
| 19  | S     | 101/103~(98%) | 88 (87%)      | 13 (13%) | 0        | 100   | 100    |
| 20  | Т     | 92/94~(98%)   | $89 \ (97\%)$ | 3 (3%)   | 0        | 100   | 100    |
| 21  | U     | 80/82~(98%)   | 71 (89%)      | 9 (11%)  | 0        | 100   | 100    |
| 22  | V     | 56/58~(97%)   | 50 (89%)      | 6 (11%)  | 0        | 100   | 100    |
| 23  | W     | 65/67~(97%)   | 61 (94%)      | 4 (6%)   | 0        | 100   | 100    |
| 24  | Х     | 56/58~(97%)   | 53~(95%)      | 3 (5%)   | 0        | 100   | 100    |
| 25  | Y     | 55/59~(93%)   | 51 (93%)      | 4 (7%)   | 0        | 100   | 100    |
| 26  | Z     | 46/48~(96%)   | 44 (96%)      | 2 (4%)   | 0        | 100   | 100    |
| 27  | 1     | 45/47~(96%)   | 41 (91%)      | 4 (9%)   | 0        | 100   | 100    |

Continued on next page...



| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 28  | 2     | 41/43~(95%)     | 38~(93%)   | 3~(7%)   | 0        | 100   | 100    |
| 29  | 3     | 62/64~(97%)     | 58 (94%)   | 4 (6%)   | 0        | 100   | 100    |
| 30  | 4     | 35/37~(95%)     | 32 (91%)   | 3~(9%)   | 0        | 100   | 100    |
| 32  | b     | 222/232~(96%)   | 211 (95%)  | 11 (5%)  | 0        | 100   | 100    |
| 33  | с     | 200/217~(92%)   | 190 (95%)  | 10 (5%)  | 0        | 100   | 100    |
| 34  | d     | 197/200~(98%)   | 187 (95%)  | 10 (5%)  | 0        | 100   | 100    |
| 35  | е     | 154/166~(93%)   | 150 (97%)  | 4 (3%)   | 0        | 100   | 100    |
| 36  | f     | 93/98~(95%)     | 87 (94%)   | 6 (6%)   | 0        | 100   | 100    |
| 37  | g     | 153/156~(98%)   | 146 (95%)  | 7(5%)    | 0        | 100   | 100    |
| 38  | h     | 129/132~(98%)   | 126 (98%)  | 3 (2%)   | 0        | 100   | 100    |
| 39  | i     | 125/130~(96%)   | 115 (92%)  | 10 (8%)  | 0        | 100   | 100    |
| 40  | j     | 95/102~(93%)    | 89 (94%)   | 6 (6%)   | 0        | 100   | 100    |
| 41  | k     | 112/129~(87%)   | 102 (91%)  | 10 (9%)  | 0        | 100   | 100    |
| 42  | 1     | 133/149~(89%)   | 122 (92%)  | 10 (8%)  | 1 (1%)   | 16    | 51     |
| 43  | m     | 114/121 (94%)   | 105 (92%)  | 9~(8%)   | 0        | 100   | 100    |
| 44  | n     | 58/61~(95%)     | 57 (98%)   | 1 (2%)   | 0        | 100   | 100    |
| 45  | 0     | 85/89~(96%)     | 82 (96%)   | 3 (4%)   | 0        | 100   | 100    |
| 46  | р     | 85/91~(93%)     | 84 (99%)   | 1 (1%)   | 0        | 100   | 100    |
| 47  | q     | 78/87~(90%)     | 74 (95%)   | 4(5%)    | 0        | 100   | 100    |
| 48  | r     | 62/80~(78%)     | 60 (97%)   | 2(3%)    | 0        | 100   | 100    |
| 49  | s     | 80/108 (74%)    | 73 (91%)   | 7 (9%)   | 0        | 100   | 100    |
| 50  | t     | 79/83~(95%)     | 78~(99%)   | 1 (1%)   | 0        | 100   | 100    |
| All | All   | 5323/5563~(96%) | 4978 (94%) | 339 (6%) | 6 (0%)   | 50    | 79     |

Continued from previous page...

5 of 6 Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 16  | Р     | 51  | PRO  |
| 9   | Ι     | 98  | ILE  |
| 6   | F     | 139 | PRO  |
| 16  | Р     | 50  | ALA  |
| 42  | 1     | 132 | THR  |



#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

| Mol | Chain        | Analysed       | Rotameric | Outliers | Perce | entiles |
|-----|--------------|----------------|-----------|----------|-------|---------|
| 3   | $\mathbf{C}$ | 220/221~(100%) | 202~(92%) | 18 (8%)  | 9     | 34      |
| 4   | D            | 173/173~(100%) | 151 (87%) | 22 (13%) | 3     | 19      |
| 5   | Ε            | 168/168~(100%) | 151 (90%) | 17 (10%) | 6     | 27      |
| 6   | F            | 139/154~(90%)  | 102 (73%) | 37 (27%) | 0     | 3       |
| 7   | G            | 123/153~(80%)  | 96 (78%)  | 27 (22%) | 1     | 5       |
| 8   | Н            | 122/123~(99%)  | 114 (93%) | 8 (7%)   | 14    | 42      |
| 9   | Ι            | 100/100~(100%) | 85 (85%)  | 15 (15%) | 2     | 15      |
| 10  | J            | 109/112~(97%)  | 97~(89%)  | 12 (11%) | 5     | 25      |
| 11  | Κ            | 108/114 (95%)  | 90 (83%)  | 18 (17%) | 2     | 11      |
| 12  | L            | 96/101~(95%)   | 92 (96%)  | 4 (4%)   | 25    | 54      |
| 13  | М            | 86/95~(90%)    | 69 (80%)  | 17 (20%) | 1     | 7       |
| 14  | Ν            | 93/100~(93%)   | 74 (80%)  | 19 (20%) | 1     | 6       |
| 15  | О            | 96/96~(100%)   | 87 (91%)  | 9 (9%)   | 7     | 30      |
| 16  | Р            | 84/86~(98%)    | 79 (94%)  | 5 (6%)   | 16    | 45      |
| 17  | Q            | 89/94~(95%)    | 80 (90%)  | 9 (10%)  | 6     | 27      |
| 18  | R            | 78/80~(98%)    | 67~(86%)  | 11 (14%) | 3     | 17      |
| 19  | S            | 81/88~(92%)    | 71 (88%)  | 10 (12%) | 4     | 20      |
| 20  | Т            | 75/82~(92%)    | 60 (80%)  | 15 (20%) | 1     | 6       |
| 21  | U            | 60/64~(94%)    | 53 (88%)  | 7 (12%)  | 4     | 23      |
| 22  | V            | 44/49~(90%)    | 36 (82%)  | 8 (18%)  | 1     | 8       |
| 23  | W            | 58/60~(97%)    | 44 (76%)  | 14 (24%) | 0     | 4       |
| 24  | Х            | 52/52~(100%)   | 47 (90%)  | 5 (10%)  | 7     | 29      |
| 25  | Y            | 21/56~(38%)    | 19 (90%)  | 2 (10%)  | 7     | 30      |
| 26  | Ζ            | 36/44~(82%)    | 35 (97%)  | 1 (3%)   | 38    | 64      |
| 27  | 1            | 44/45~(98%)    | 34 (77%)  | 10 (23%) | 0     | 4       |
| 28  | 2            | 39/39~(100%)   | 38 (97%)  | 1 (3%)   | 41    | 65      |

Continued on next page...



| Mol | Chain | Analysed        | Rotameric  | Outliers  | Perce | entiles |
|-----|-------|-----------------|------------|-----------|-------|---------|
| 29  | 3     | 55/55~(100%)    | 49 (89%)   | 6 (11%)   | 5     | 25      |
| 30  | 4     | 35/35~(100%)    | 29 (83%)   | 6 (17%)   | 1     | 10      |
| 32  | b     | 194/201~(96%)   | 183 (94%)  | 11 (6%)   | 17    | 46      |
| 33  | с     | 164/175~(94%)   | 158 (96%)  | 6 (4%)    | 29    | 58      |
| 34  | d     | 174/175~(99%)   | 169 (97%)  | 5 (3%)    | 37    | 63      |
| 35  | е     | 122/131~(93%)   | 117 (96%)  | 5 (4%)    | 26    | 55      |
| 36  | f     | 83/86~(96%)     | 75 (90%)   | 8 (10%)   | 7     | 29      |
| 37  | g     | 131/132~(99%)   | 116 (88%)  | 15 (12%)  | 4     | 23      |
| 38  | h     | 112/113~(99%)   | 108 (96%)  | 4 (4%)    | 30    | 59      |
| 39  | i     | 105/107~(98%)   | 101 (96%)  | 4 (4%)    | 28    | 57      |
| 40  | j     | 87/91~(96%)     | 81 (93%)   | 6 (7%)    | 13    | 40      |
| 41  | k     | 90/104 (86%)    | 85 (94%)   | 5 (6%)    | 17    | 47      |
| 42  | 1     | 117/130 (90%)   | 109 (93%)  | 8 (7%)    | 13    | 41      |
| 43  | m     | 100/104 (96%)   | 94 (94%)   | 6 (6%)    | 16    | 45      |
| 44  | n     | 52/53~(98%)     | 50 (96%)   | 2 (4%)    | 28    | 57      |
| 45  | О     | 79/81~(98%)     | 77 (98%)   | 2 (2%)    | 42    | 66      |
| 46  | р     | 74/77~(96%)     | 72 (97%)   | 2 (3%)    | 40    | 65      |
| 47  | q     | 75/82~(92%)     | 67 (89%)   | 8 (11%)   | 5     | 26      |
| 48  | r     | 57/68~(84%)     | 53 (93%)   | 4 (7%)    | 12    | 40      |
| 49  | S     | 71/91~(78%)     | 65 (92%)   | 6 (8%)    | 8     | 33      |
| 50  | t     | 67/69~(97%)     | 64 (96%)   | 3 (4%)    | 23    | 53      |
| All | All   | 4438/4709 (94%) | 3995 (90%) | 443 (10%) | 9     | 28      |

Continued from previous page...

5 of 443 residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 17  | Q     | 51  | LEU  |
| 22  | V     | 52  | ARG  |
| 49  | s     | 69  | HIS  |
| 41  | k     | 68  | GLU  |
| 18  | R     | 13  | THR  |

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 56 such side chains are listed below:



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 14  | Ν     | 43  | GLN  |
| 49  | s     | 22  | GLN  |
| 20  | Т     | 88  | HIS  |
| 41  | k     | 119 | ASN  |
| 33  | с     | 88  | ASN  |

#### 5.3.3 RNA (i)

| Mol | Chain | Analysed        | Backbone Outliers | Pucker Outliers |
|-----|-------|-----------------|-------------------|-----------------|
| 1   | А     | 2878/2921~(98%) | 941 (32%)         | 78~(2%)         |
| 2   | В     | 114/115~(99%)   | 45 (39%)          | 4(3%)           |
| 31  | а     | 1470/1548~(94%) | 382~(25%)         | 0               |
| All | All   | 4462/4584~(97%) | 1368~(30%)        | 82 (1%)         |

5 of 1368 RNA backbone outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | А     | 5              | А    |
| 1   | А     | 13             | А    |
| 1   | А     | 18             | С    |
| 1   | А     | 19             | G    |
| 1   | А     | 23             | G    |

5 of 82 RNA pucker outliers are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | А     | 1826 | G    |
| 1   | А     | 2533 | U    |
| 1   | А     | 2094 | G    |
| 1   | А     | 2347 | А    |
| 1   | А     | 2829 | А    |

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

5 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection.



| Mal | Turne | Chain | Dec  | Tink | Bo       | ond leng | $_{\rm ths}$ | B        | ond ang | les     |
|-----|-------|-------|------|------|----------|----------|--------------|----------|---------|---------|
|     | туре  | Chain | Res  |      | Counts   | RMSZ     | # Z  > 2     | Counts   | RMSZ    | # Z >2  |
| 1   | 2MA   | А     | 2530 | 52,1 | 17,25,26 | 1.07     | 0            | 17,37,40 | 1.29    | 3 (17%) |
| 1   | 2MG   | А     | 2472 | 1    | 18,26,27 | 1.19     | 1 (5%)       | 16,38,41 | 1.17    | 2 (12%) |
| 1   | 5MU   | А     | 792  | 1    | 19,22,23 | 1.48     | 5 (26%)      | 28,32,35 | 2.24    | 8 (28%) |
| 1   | OMG   | А     | 2278 | 1    | 18,26,27 | 1.08     | 1 (5%)       | 19,38,41 | 1.22    | 3 (15%) |
| 1   | 5MU   | А     | 1966 | 1    | 19,22,23 | 1.66     | 5 (26%)      | 28,32,35 | 2.33    | 8 (28%) |

RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type            | Chain | Res  | Link | Chirals | Torsions  | Rings   |
|-----|-----------------|-------|------|------|---------|-----------|---------|
| 1   | 2MA             | А     | 2530 | 52,1 | -       | 0/3/25/26 | 0/3/3/3 |
| 1   | 2MG             | А     | 2472 | 1    | -       | 0/5/27/28 | 0/3/3/3 |
| 1   | $5 \mathrm{MU}$ | А     | 792  | 1    | -       | 0/7/25/26 | 0/2/2/2 |
| 1   | OMG             | А     | 2278 | 1    | -       | 1/5/27/28 | 0/3/3/3 |
| 1   | 5MU             | А     | 1966 | 1    | -       | 0/7/25/26 | 0/2/2/2 |

The worst 5 of 12 bond length outliers are listed below:

| Mol | Chain | Res  | Type | Atoms | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|------|------|-------|-------|-------------|----------|
| 1   | А     | 2472 | 2MG  | C6-N1 | -3.61 | 1.32        | 1.37     |
| 1   | А     | 792  | 5MU  | C4-N3 | -3.27 | 1.32        | 1.38     |
| 1   | А     | 1966 | 5MU  | C4-N3 | -3.22 | 1.32        | 1.38     |
| 1   | А     | 2278 | OMG  | C6-N1 | -3.16 | 1.33        | 1.37     |
| 1   | А     | 1966 | 5MU  | C6-C5 | 3.12  | 1.39        | 1.34     |

The worst 5 of 24 bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms    |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|----------|-------|------------------|---------------|
| 1   | А     | 1966 | 5MU  | N3-C2-N1 | 5.91  | 122.73           | 114.89        |
| 1   | А     | 1966 | 5MU  | C5-C4-N3 | 5.42  | 119.94           | 115.31        |
| 1   | А     | 792  | 5MU  | N3-C2-N1 | 5.30  | 121.93           | 114.89        |
| 1   | А     | 1966 | 5MU  | C4-N3-C2 | -5.20 | 120.62           | 127.35        |
| 1   | А     | 792  | 5MU  | C4-N3-C2 | -5.07 | 120.79           | 127.35        |

There are no chirality outliers.

All (1) torsion outliers are listed below:



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms           |
|-----|-------|----------------|------|-----------------|
| 1   | А     | 2278           | OMG  | C1'-C2'-O2'-CM2 |

There are no ring outliers.

No monomer is involved in short contacts.

#### 5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

#### 5.6 Ligand geometry (i)

Of 13 ligands modelled in this entry, 12 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Type | Turno   | Chain | Dog    | Tiple | B        | ond leng | ths      | Bond angles |      |          |
|----------|---------|-------|--------|-------|----------|----------|----------|-------------|------|----------|
|          | Ullaili | nes   | Counts | RMSZ  | # Z  > 2 | Counts   | RMSZ     | # Z >2      |      |          |
| 51       | A1D6G   | А     | 3000   | 52    | 70,73,73 | 2.37     | 23 (32%) | 96,107,107  | 1.76 | 25 (26%) |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type  | Chain | Res  | Link | Chirals | Torsions      | Rings   |
|-----|-------|-------|------|------|---------|---------------|---------|
| 51  | A1D6G | А     | 3000 | 52   | -       | 11/82/113/113 | 0/5/5/5 |

The worst 5 of 23 bond length outliers are listed below:

| Mol | Chain | Res  | Type  | Atoms   | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|------|-------|---------|------|-------------|----------|
| 51  | А     | 3000 | A1D6G | C65-N64 | 8.53 | 1.45        | 1.33     |
| 51  | А     | 3000 | A1D6G | C11-N13 | 7.12 | 1.49        | 1.34     |
| 51  | А     | 3000 | A1D6G | O10-C11 | 4.94 | 1.43        | 1.35     |
| 51  | А     | 3000 | A1D6G | C22-C21 | 4.64 | 1.55        | 1.44     |
| 51  | А     | 3000 | A1D6G | O67-C65 | 4.63 | 1.43        | 1.36     |



| Mol | Chain | $\mathbf{Res}$ | Type  | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------|-------|-------------|-------|------------------|---------------|
| 51  | А     | 3000           | A1D6G | O42-C43-C45 | 4.15  | 115.49           | 109.14        |
| 51  | А     | 3000           | A1D6G | C52-C39-C37 | -4.13 | 107.29           | 113.61        |
| 51  | А     | 3000           | A1D6G | C02-C03-C68 | -3.97 | 109.76           | 115.23        |
| 51  | А     | 3000           | A1D6G | O10-C11-N13 | 3.94  | 118.03           | 111.11        |
| 51  | А     | 3000           | A1D6G | C44-C43-C45 | -3.84 | 107.37           | 113.40        |

The worst 5 of 25 bond angle outliers are listed below:

There are no chirality outliers.

5 of 11 torsion outliers are listed below:

| Mol | Chain | Res  | Type  | Atoms           |
|-----|-------|------|-------|-----------------|
| 51  | А     | 3000 | A1D6G | O10-C11-N13-C14 |
| 51  | А     | 3000 | A1D6G | O12-C11-N13-C14 |
| 51  | А     | 3000 | A1D6G | C19-C20-C21-C22 |
| 51  | А     | 3000 | A1D6G | N13-C11-O10-C09 |
| 51  | А     | 3000 | A1D6G | C18-C19-C20-C21 |

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.





### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

