

# Full wwPDB X-ray Structure Validation Report (i)

May 23, 2020 – 08:15 pm BST

PDB ID : 1Y1Y

Title : RNA Polymerase II-TFIIS-DNA/RNA complex Authors : Cramer, P.; Kettenberger, H.; Armache, K.-J.

Deposited on : 2004-11-19

Resolution : 4.00 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

 $\begin{array}{ccc} Mol Probity & : & 4.02 \text{b-}467 \\ Xtriage (Phenix) & : & 1.13 \end{array}$ 

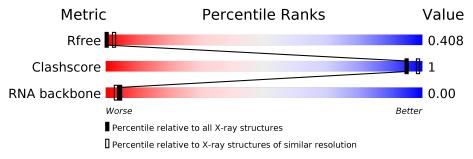
EDS: 2.11

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Refmac: 5.8.0158

CCP4 : 7.0.044 (Gargrove)

Ideal geometry (proteins) : Engh & Huber (2001)


Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwPDB-VP) : 2.11

## 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$ 

The reported resolution of this entry is 4.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric       | Whole archive           | Similar resolution                                     |
|--------------|-------------------------|--------------------------------------------------------|
| Metric       | $(\# \mathrm{Entries})$ | $(\# 	ext{Entries}, 	ext{ resolution range}(	ext{Å}))$ |
| $R_{free}$   | 130704                  | 1087 (4.30-3.70)                                       |
| Clashscore   | 141614                  | 1148 (4.30-3.70)                                       |
| RNA backbone | 3102                    | 1048 (5.00-3.00)                                       |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

| Mol | Chain | Length | Quality of chain |     |
|-----|-------|--------|------------------|-----|
| 1   | Т     | 7      | 100%             |     |
| 2   | Р     | 4      | 100%             |     |
| 3   | A     | 1733   | 82%              | 18% |
| 4   | В     | 1224   | 91%              | 9%  |
| 5   | С     | 318    | 84%              | 16% |
| 6   | D     | 221    | 80%              | 20% |
| 7   | Е     | 215    | 99%              |     |
| 8   | F     | 155    | 54%              | 46% |

Continued on next page...



Continued from previous page...

| Mol | Chain | Length | Quality of chain |    |
|-----|-------|--------|------------------|----|
| 9   | G     | 171    | 99%              | •  |
| 10  | Н     | 146    | 91%              | 9% |
| 11  | I     | 122    | 98%              | •  |
| 12  | J     | 70     | 93%              | 7% |
| 13  | K     | 120    | 95%              | 5% |
| 14  | L     | 70     | 66% 34%          |    |
| 15  | S     | 179    | 95%              |    |



## 2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 4112 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a DNA chain called 5'-D(P\*TP\*AP\*CP\*GP\*CP\*T)-3'.

| $\mathbf{Mol}$ | Chain | Residues | ${f Atoms}$    | ZeroOcc | AltConf | Trace |
|----------------|-------|----------|----------------|---------|---------|-------|
| 1              | Т     | 7        | Total P<br>7 7 | 0       | 0       | 7     |

• Molecule 2 is a RNA chain called 5'-R(P\*AP\*GP\*GP\*C)-3'.

| Mol | Chain | Residues | Atoms          | ZeroOcc | AltConf | Trace |
|-----|-------|----------|----------------|---------|---------|-------|
| 2   | Р     | 4        | Total P<br>4 4 | 0       | 0       | 4     |

• Molecule 3 is a protein called DNA-directed RNA polymerase II largest subunit.

| Mol | Chain | Residues | Atoms                | ZeroOcc | AltConf | Trace |
|-----|-------|----------|----------------------|---------|---------|-------|
| 3   | A     | 1426     | Total C<br>1426 1426 | 0       | 0       | 1426  |

• Molecule 4 is a protein called DNA-directed RNA polymerase II 140 kDa polypeptide.

| Mol | Chain | Residues | Atoms                | ZeroOcc | AltConf | Trace |
|-----|-------|----------|----------------------|---------|---------|-------|
| 4   | В     | 1112     | Total C<br>1112 1112 | 8       | 0       | 1112  |

• Molecule 5 is a protein called DNA-directed RNA polymerase II 45 kDa polypeptide.

| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------------|---------|---------|-------|
| 5   | С     | 266      | Total C<br>266 266 | 0       | 0       | 266   |

• Molecule 6 is a protein called DNA-directed RNA polymerase II 32 kDa polypeptide.

| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------------|---------|---------|-------|
| 6   | D     | 177      | Total C<br>177 177 | 0       | 0       | 177   |



• Molecule 7 is a protein called DNA-directed RNA polymerases I, II, and III 27 kDa polypeptide.

| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------------|---------|---------|-------|
| 7   | Е     | 214      | Total C<br>214 214 | 0       | 0       | 214   |

• Molecule 8 is a protein called DNA-directed RNA polymerases I, II, and III 23 kDa polypeptide.

| Mol | Chain | Residues | ${f Atoms}$      | ZeroOcc | AltConf | Trace |
|-----|-------|----------|------------------|---------|---------|-------|
| 8   | F     | 84       | Total C<br>84 84 | 0       | 0       | 84    |

• Molecule 9 is a protein called DNA-directed RNA polymerase II 19 kDa polypeptide.

| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------------|---------|---------|-------|
| 9   | G     | 171      | Total C<br>171 171 | 0       | 0       | 171   |

• Molecule 10 is a protein called DNA-directed RNA polymerases I, II, and III 14.5 kDa polypeptide.

| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------------|---------|---------|-------|
| 10  | Н     | 133      | Total C<br>133 133 | 0       | 0       | 133   |

• Molecule 11 is a protein called DNA-directed RNA polymerase II subunit 9.

| Mol | Chain | Residues | Ator         | ns       | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------|---------|-------|
| 11  | I     | 119      | Total<br>119 | C<br>119 | 0       | 0       | 119   |

• Molecule 12 is a protein called DNA-directed RNA polymerases I/II/III subunit 10.

| Mol | Chain | Residues | Atoms            | ZeroOcc | AltConf | Trace |
|-----|-------|----------|------------------|---------|---------|-------|
| 12  | J     | 65       | Total C<br>65 65 | 0       | 0       | 65    |

• Molecule 13 is a protein called DNA-directed RNA polymerase II 13.6 kDa polypeptide.

| Mol | Chain | Residues | Atoms             | Ze | eroOcc | AltConf | Trace |
|-----|-------|----------|-------------------|----|--------|---------|-------|
| 13  | K     | 114      | Total C<br>114 11 | 1  | 0      | 0       | 114   |

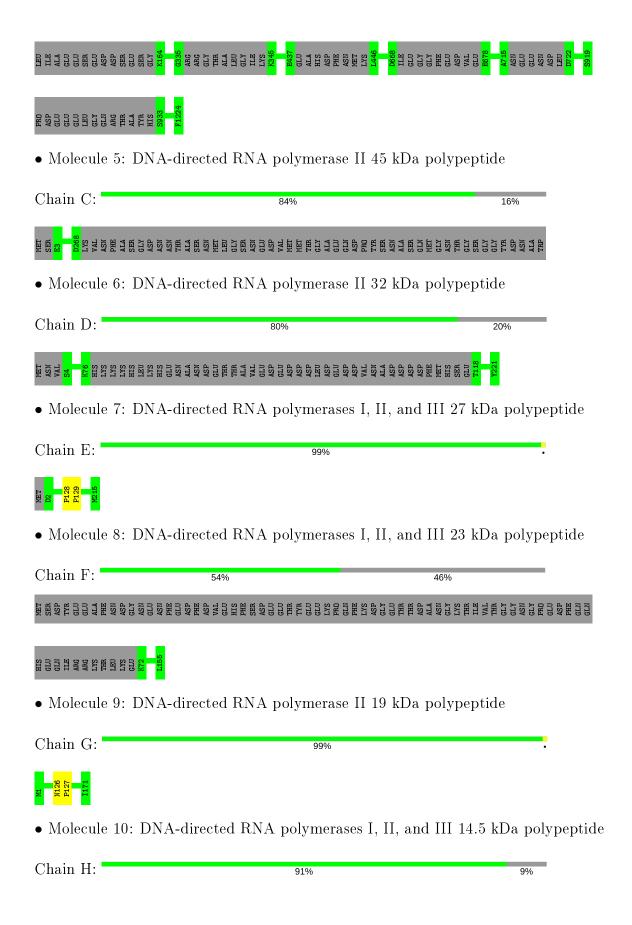


• Molecule 14 is a protein called DNA-directed RNA polymerases I, II, and III 7.7 kDa polypeptide.

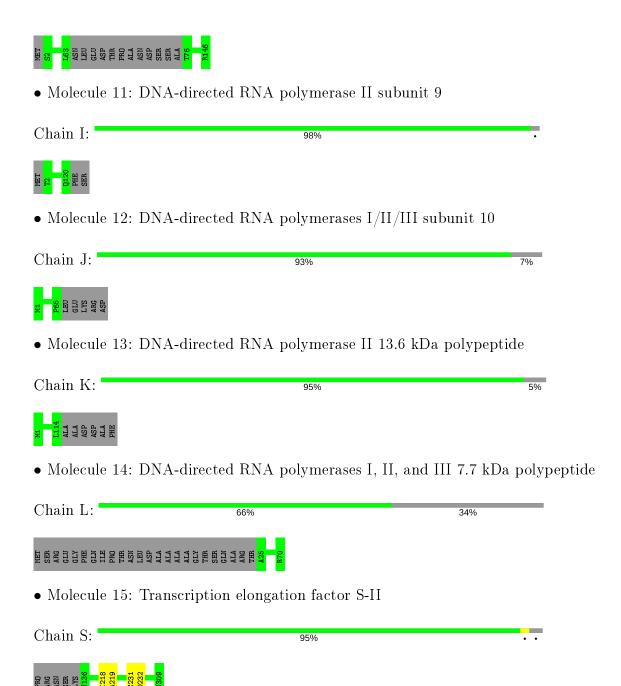
| Mol | Chain | Residues | ${f Atoms}$      | ZeroOcc | AltConf | Trace |
|-----|-------|----------|------------------|---------|---------|-------|
| 14  | L     | 46       | Total C<br>46 46 | 0       | 0       | 46    |

• Molecule 15 is a protein called Transcription elongation factor S-II.

| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------------|---------|---------|-------|
| 15  | S     | 174      | Total C<br>174 174 | 0       | 0       | 174   |




### 3 Residue-property plots (i)


These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

| посп                     | 11 111     | ет  | пос        | iei,                                                                      | ar         | ез         | 5110        | J W I       | 11 1 | .11     | gr         | ∃y.            |            |            |            |     |     |     |      |      |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     |            |            |     |      |            |     |            |
|--------------------------|------------|-----|------------|---------------------------------------------------------------------------|------------|------------|-------------|-------------|------|---------|------------|----------------|------------|------------|------------|-----|-----|-----|------|------|--------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|------------|------------|-----|------|------------|-----|------------|
| • Mo                     | lecu       | lle | 1:         | 5'-I                                                                      | D(F        | )*         | ΤF          | <b>)</b> */ | 4F   | )*(     | CP         | *(             | GР         | *(         | Р          | *C  | P   | *T  | `)-( | 3,   |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     |            |            |     |      |            |     |            |
| Chair                    | n T:       | _   |            |                                                                           |            |            |             |             |      |         |            |                |            |            | 100        | %   |     |     |      |      |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     |            |            |     |      |            |     |            |
| There                    | e ar       | e n | 0 0        | utl                                                                       | ier        | re         | esio        | due         | es   | re      | CO         | rde            | $_{ m ed}$ | fo         | r t        | his | s c | ha  | in   |      |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     |            |            |     |      |            |     |            |
| • Mo                     | lecu       | lle | 2:         | 5'-F                                                                      | R(F        | <b>)</b> * | ΑF          | )*(         | GF   | )*(     | GF         | *(             | C)-        | -3,        |            |     |     |     |      |      |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     |            |            |     |      |            |     |            |
| Chair                    | n P:       |     |            |                                                                           |            |            |             |             |      |         |            |                |            | ;          | 100        | %   |     |     |      |      |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     |            |            |     |      |            |     |            |
| There                    | e ar       | e n | O O        | utl                                                                       | ier        | re         | esio        | due         | es   | re      | CO         | $d \mathbf{c}$ | $_{ m ed}$ | fo         | r t        | his | s c | ha  | in   |      |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     |            |            |     |      |            |     |            |
| • Mo                     | lecu       | le  | 3:         | DN                                                                        | A-         | di         | rec         | cte         | d I  | RN      | ΙA         | p              | ol         | ym         | er         | ase | e I | Ιl  | ar   | ges  | st s         | sul       | bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ni¹        | t   |            |            |     |      |            |     |            |
| Chair                    | n A:       | -   |            |                                                                           |            | _          |             |             |      |         |            | 8              | 2%         |            | _          |     |     |     |      |      |              | _         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          | _   |            | 18%        | _   | _    |            |     |            |
| MET<br>V2<br>K186        | LYS<br>ASP | ALA | GLY<br>ASP | ALA<br>D195                                                               | 0.447      | P448       | L1176       | LEU         | GLU  | ALA     | GIN        | SER            | ASP        | Q1187      | V1243      | PRO | SER | LEU | ALA  |      | GLU<br>A1254 | D4.4 E.E. | GER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GLN        | H   | GEU        | ILE<br>GLU | ASP | NI S | ASP<br>GLY | GLY | VAL.       |
| PRO<br>TYR<br>SER<br>ASN | S S S      |     | ASN<br>ALA | ASP                                                                       | ASP        | LYS        | S D         | MET         | 思思   |         | VAL        | ASP            | GLY        | SER        | ASP<br>ATA | MET | GLY | GLY | [首]  | TYR. | GLY          | ALA       | TYL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GLY        | ALA | 題題         |            | GLY | TYR  | GLY        | ALA | 5 E        |
| SER<br>PRO<br>GLY<br>PHE | GLY<br>VAL | SER | GLY        | SER                                                                       | THR        | PRO        | TYR         | SER<br>PRO  | THR  | PRO     | ALA<br>TYR | SER            | THE        | SER<br>PRO | SER        | SER | THR | SER | SER  | SER  | PRO<br>THR   | SER       | SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TYR        | PRO | SER        | PRO<br>SER | TYR | PRO  | THR<br>SER | PRO | JVB<br>TVB |
|                          |            |     |            |                                                                           |            |            |             |             |      |         |            |                |            |            |            |     |     |     |      |      |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     |            |            |     |      |            |     |            |
| SER<br>PRO<br>THR        | PRO        | SER | THR        | PRO                                                                       | TYR        | PRO        | SER         | PRO         | TYR  | PRO     | AER SER    | PRO            | TYR        | SER        | HE 65      | PRO | TYR | SER | E E  | PRO  | SER          | SER       | THE STATE OF THE S | SER        | SER | TYR        | PRO        | SER | SER  | TYR        | PRO | CFR        |
| PRO<br>SER<br>TYR<br>SER | DET E      | PRO | TYR        | PR<br>E                                                                   | SER        | SER        | SER         | PRO<br>EEE  | SER  | SER     | TYR        | PRO            | SER        | SES SES    | TYR        | PRO | SER | PRO | TYR  | PRO  | E ES         | PRO       | TYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SER        | 田田  | SER        | SER        | SER | 品目   | SER        | GLY | LIA<br>GFB |
| PRO<br>GLY<br>SER<br>PRO | ALA        |     | GLN        | DIS<br>BIN<br>BIN<br>BIN<br>BIN<br>BIN<br>BIN<br>BIN<br>BIN<br>BIN<br>BIN | LYS        | ASN        | ASN         | GLU         | SER  | Pire    |            |                |            |            |            |     |     |     |      |      |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     |            |            |     |      |            |     |            |
| • Mo                     | lecu       | lle | 4:         | DN                                                                        | A-         | di         | rec         | cte         | d I  | -<br>RN | ΙA         | р              | ol         | ym         | ıer        | ase | e I | Ι 1 | 140  | ) k  | Dε           | ıp        | ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ур         | ep  | oti        | de         |     |      |            |     |            |
| Chair                    | n B:       |     |            |                                                                           |            |            |             |             |      |         |            |                | Ç          | 91%        |            |     |     |     |      |      |              | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     |            | •          | 9%  | )    |            |     |            |
| MET<br>SER<br>ASP<br>LEU | ALA<br>ASN | GLU | TYR        | ASP                                                                       | ASP<br>PRO | TYR        | GL Y<br>PHE | GEU<br>DZO  | 170  | LEU     | GLU        | LEU            | GLN        | HIS        | THE        | SER | ASP | ILE | ARG  | TYR  | GEO<br>190   | V 4 2 4   | ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | THR<br>TYL | GLU | ALA<br>ILE | ASP<br>VAL | PRO | ARG  | GLU<br>LEU | LYS | TIP OIL    |











## 4 Data and refinement statistics (i)

| Property                                       | Value                                                 | Source    |
|------------------------------------------------|-------------------------------------------------------|-----------|
| Space group                                    | C 2 2 21                                              | Depositor |
| Cell constants                                 | $220.20 \text{\AA}  395.70 \text{Å}  282.10 \text{Å}$ | Danasitan |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$         | $90.00^{\circ}$ $90.00^{\circ}$ $90.00^{\circ}$       | Depositor |
| Resolution (Å)                                 | 50.00 - 4.00                                          | Depositor |
| Resolution (A)                                 | 39.19 - 3.98                                          | EDS       |
| % Data completeness                            | (Not available) (50.00-4.00)                          | Depositor |
| (in resolution range)                          | 98.1 (39.19-3.98)                                     | EDS       |
| $R_{merge}$                                    | (Not available)                                       | Depositor |
| $R_{sym}$                                      | 0.07                                                  | Depositor |
| $< I/\sigma(I) > 1$                            | 4.11 (at 4.00Å)                                       | Xtriage   |
| Refinement program                             | unknown                                               | Depositor |
| D D                                            | 0.281 , (Not available)                               | Depositor |
| $R, R_{free}$                                  | 0.413 , $0.408$                                       | DCC       |
| $R_{free}$ test set                            | 2038 reflections (1.97%)                              | wwPDB-VP  |
| Wilson B-factor (Å <sup>2</sup> )              | 106.8                                                 | Xtriage   |
| Anisotropy                                     | 0.380                                                 | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3)$ , $B_{sol}(Å^2)$ | 0.34, 98.7                                            | EDS       |
| L-test for twinning <sup>2</sup>               | $< L > = 0.48, < L^2> = 0.31$                         | Xtriage   |
| Estimated twinning fraction                    | 0.004  for  1/2 +h-1/2 +k,-3/2 +h-1/2 +k,-l           | Xtriage   |
| Estimated twinning fraction                    | 0.015  for  1/2 *h + 1/2 *k, 3/2 *h - 1/2 *k, -1      | Atriage   |
| $F_o, F_c$ correlation                         | 0.65                                                  | EDS       |
| Total number of atoms                          | 4112                                                  | wwPDB-VP  |
| Average B, all atoms (Å <sup>2</sup> )         | 87.0                                                  | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.11% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of <|L|>,  $< L^2>$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



 $<sup>^{1} {\</sup>rm Intensities}$  estimated from amplitudes.

### 5 Model quality (i)

#### 5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

There are no protein, RNA or DNA chains available to summarize Z scores of covalent bonds and angles.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | Τ     | 7     | 0        | 0        | 0       | 0            |
| 2   | Р     | 4     | 0        | 0        | 0       | 0            |
| 3   | A     | 1426  | 0        | 0        | 1       | 0            |
| 4   | В     | 1112  | 0        | 0        | 0       | 0            |
| 5   | С     | 266   | 0        | 0        | 0       | 0            |
| 6   | D     | 177   | 0        | 0        | 0       | 0            |
| 7   | Ε     | 214   | 0        | 0        | 1       | 0            |
| 8   | F     | 84    | 0        | 0        | 0       | 0            |
| 9   | G     | 171   | 0        | 0        | 1       | 0            |
| 10  | Н     | 133   | 0        | 0        | 0       | 0            |
| 11  | I     | 119   | 0        | 0        | 0       | 0            |
| 12  | J     | 65    | 0        | 0        | 0       | 0            |
| 13  | K     | 114   | 0        | 0        | 0       | 0            |
| 14  | L     | 46    | 0        | 0        | 0       | 0            |
| 15  | S     | 174   | 0        | 0        | 2       | 0            |
| All | All   | 4112  | 0        | 0        | 5       | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.



All (5) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1          | Atom-2          | $egin{aligned} 	ext{Interatomic} \ 	ext{distance} \ (	ext{Å}) \end{aligned}$ | $egin{array}{c} { m Clash} \\ { m overlap} \ ({ m \AA}) \end{array}$ |
|-----------------|-----------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 15:S:218:ILE:CA | 15:S:219:ALA:CA | 2.73                                                                         | 0.66                                                                 |
| 9:G:126:ASN:CA  | 9:G:127:PRO:CA  | 2.78                                                                         | 0.62                                                                 |
| 3:A:447:GLN:CA  | 3:A:448:PRO:CA  | 2.83                                                                         | 0.56                                                                 |
| 15:S:231:CYS:CA | 15:S:232:ASP:CA | 2.86                                                                         | 0.53                                                                 |
| 7:E:128:PRO:CA  | 7:E:129:PRO:CA  | 2.90                                                                         | 0.49                                                                 |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

There are no protein backbone outliers to report in this entry.

#### 5.3.2 Protein sidechains (i)

There are no protein residues with a non-rotameric sidechain to report in this entry.

#### 5.3.3 RNA (i)

| Mol | Chain | Analysed | Backbone Outliers | Pucker Outliers |
|-----|-------|----------|-------------------|-----------------|
| 2   | Р     | 0/4      | _                 | _               |

There are no RNA backbone outliers to report.

There are no RNA pucker outliers to report.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no carbohydrates in this entry.



### 5.6 Ligand geometry (i)

There are no ligands in this entry.

### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



### 6 Fit of model and data (i)

#### 6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

#### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

#### 6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

### 6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

#### 6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

