

wwPDB X-ray Structure Validation Summary Report (i)

Feb 27, 2023 – 06:22 pm GMT

PDB ID : 6XUL

Title : Apo Ab 5b1

Authors: Diskin, R.; Borenstein-Katz, A.

Deposited on : 2020-01-20

Resolution : 2.41 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467 Xtriage (Phenix) : 1.13

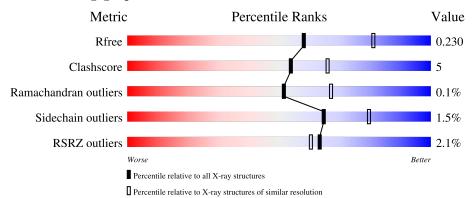
EDS : 2.32.1

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Refmac : 5.8.0158

CCP4 : 7.0.044 (Gargrove)

Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.32.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$

The reported resolution of this entry is 2.41 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\# \mathrm{Entries})$	$\begin{array}{c} {\rm Similar\ resolution} \\ (\#{\rm Entries},{\rm resolution\ range}({\rm \AA})) \end{array}$
R_{free}	130704	4647 (2.44-2.40)
Clashscore	141614	5161 (2.44-2.40)
Ramachandran outliers	138981	5073 (2.44-2.40)
Sidechain outliers	138945	5074 (2.44-2.40)
RSRZ outliers	127900	4543 (2.44-2.40)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	A	230	83%	12%	5%
1	С	230	84%	10%	5%
1	Е	230	85%	10%	5%
1	G	230	85%	10%	5%
1	Н	230	83%	11%	5%

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
1	J	230	83%	11% 5%
2	В	218	89%	11%
2	D	218	87%	12%
2	F	218	88%	11%
2	I	218	87%	13%
2	K	218	83%	16%
2	L	218	84%	14% •

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 20926 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

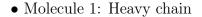
• Molecule 1 is a protein called Heavy chain.

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf	Trace
1	A	218	Total	С	N	О	S	0	1	0
1	A	210	1665	1051	288	319	7	0	1	
1	С	218	Total	С	N	О	S	0	1	0
1		210	1665	1051	288	319	7	0	1	
1	Е	218	Total	С	N	О	S	0	1	0
1	l Li	210	1665	1051	288	319	7	0	1	
1	G	219	Total	С	N	О	S	0	0	0
1	G	219	1668	1052	289	321	6	0	0	
1	J	218	Total	С	N	О	S	0	1	0
1		210	1665	1051	288	319	7	0	1	
1	Н	218	Total	С	N	О	S	0	1	0
1	11	210	1665	1051	288	319	7	0	1	U

• Molecule 2 is a protein called Light chain.

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf	Trace
2	В	217	Total	С	N	О	S	0	1	0
2	Ъ	211	1651	1026	284	336	5	0	1	U
2	D	217	Total	С	N	О	S	0	1	0
	D	211	1651	1026	284	336	5	U	1	U
2	F	217	Total	С	N	О	S	0	1	0
2	I.	211	1651	1026	284	336	5	U	1	U
2	I	217	Total	\mathbf{C}	N	O	S	0	2	0
	1	211	1659	1031	287	336	5	O	2	U
2	K	217	Total	С	N	О	S	0	0	0
2	11	211	1648	1024	284	336	4	U	U	U
2	L	217	Total	С	N	О	S	0	1	0
	П	211	1651	1026	284	336	5	0	1	U

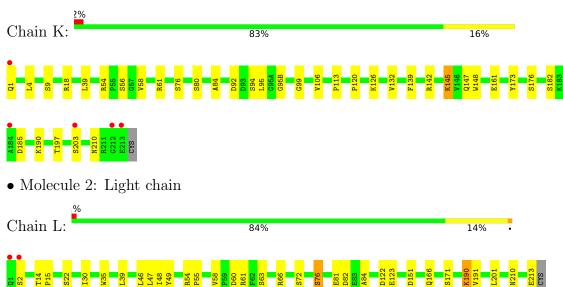
• Molecule 3 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	138	Total O 138 138	0	0
3	В	130	Total O 130 130	0	0
3	С	103	Total O 103 103	0	0
3	D	54	Total O 54 54	0	0
3	Е	98	Total O 98 98	0	0
3	F	62	Total O 62 62	0	0
3	G	125	Total O 125 125	0	0
3	I	89	Total O 89 89	0	0
3	J	85	Total O 85 85	0	0
3	К	35	Total O 35 35	0	0
3	Н	62	Total O 62 62	0	0
3	L	41	Total O 41 41	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Heavy chain Chain A: • Molecule 1: Heavy chain Chain C: 84% 10% 5% • Molecule 1: Heavy chain Chain E: 85% 5% 10% • Molecule 1: Heavy chain Chain G: 85% 10%



• Molecule 2: Light chain

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 32	Depositor
Cell constants	155.02Å 155.02Å 121.78Å	Donositon
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
Resolution (Å)	47.88 - 2.41	Depositor
rtesolution (A)	47.88 - 2.41	EDS
% Data completeness	99.7 (47.88-2.41)	Depositor
(in resolution range)	99.7 (47.88-2.41)	EDS
R_{merge}	0.15	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.36 (at 2.42Å)	Xtriage
Refinement program	PHENIX 1.16_3549	Depositor
R, R_{free}	0.168 , 0.230	Depositor
, and the second	0.168 , 0.230	DCC
R_{free} test set	1976 reflections (1.57%)	wwPDB-VP
Wilson B-factor (Å ²)	40.3	Xtriage
Anisotropy	0.358	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	$0.31 \; , 44.3$	EDS
L-test for twinning ²	$< L > = 0.48, < L^2> = 0.31$	Xtriage
	0.026 for -h,-k,l	
Estimated twinning fraction	0.032 for h,-h-k,-l	Xtriage
	0.017 for -k,-h,-l	
F_o, F_c correlation	0.96	EDS
Total number of atoms	20926	wwPDB-VP
Average B, all atoms (\mathring{A}^2)	49.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 51.67 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 5.4292e-05. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z >5	RMSZ	# Z > 5	
1	A	0.48	0/1709	0.63	0/2323	
1	С	0.42	0/1709	0.60	0/2323	
1	Е	0.45	0/1709	0.61	0/2323	
1	G	0.45	0/1709	0.61	0/2323	
1	Н	0.41	0/1709	0.59	0/2323	
1	J	0.44	0/1709	0.59	1/2323~(0.0%)	
2	В	0.42	0/1691	0.60	0/2300	
2	D	0.38	0/1691	0.57	0/2300	
2	F	0.41	0/1691	0.59	0/2300	
2	I	0.42	0/1702	0.59	0/2314	
2	K	0.38	0/1685	0.53	0/2292	
2	L	0.38	0/1691	0.57	0/2300	
All	All	0.42	0/20405	0.59	1/27744~(0.0%)	

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\mathbf{Observed}(^{o})$	$\operatorname{Ideal}(^{o})$
1	J	16	ARG	NE-CZ-NH2	-5.03	117.79	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	1665	0	1624	21	0
1	С	1665	0	1624	19	0
1	Е	1665	0	1624	16	0
1	G	1668	0	1625	17	0
1	Н	1665	0	1624	19	0
1	J	1665	0	1624	17	0
2	В	1651	0	1588	17	0
2	D	1651	0	1588	17	0
2	F	1651	0	1588	16	0
2	I	1659	0	1601	15	0
2	K	1648	0	1584	20	0
2	L	1651	0	1588	19	0
3	A	138	0	0	7	0
3	В	130	0	0	6	0
3	С	103	0	0	5	0
3	D	54	0	0	4	0
3	Е	98	0	0	7	1
3	F	62	0	0	4	0
3	G	125	0	0	9	1
3	Н	62	0	0	3	0
3	I	89	0	0	2	0
3	J	85	0	0	4	0
3	K	35	0	0	6	0
3	L	41	0	0	6	0
All	All	20926	0	19282	207	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

The worst 5 of 207 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	$egin{aligned} ext{Clash} \ ext{overlap } (ext{Å}) \end{aligned}$
1:E:193:THR:OG1	3:E:301:HOH:O	1.85	0.92
2:F:168:SER:OG	3:F:301:HOH:O	1.88	0.91
2:L:201:LEU:O	3:L:301:HOH:O	1.88	0.90
1:C:43:LYS:O	3:C:301:HOH:O	1.93	0.86
2:B:144:ALA:O	3:B:301:HOH:O	1.95	0.85

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} ({\rm \AA}) \end{array}$	Clash overlap (Å)
3:E:348:HOH:O	3:G:421:HOH:O[2_545]	2.08	0.12

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	A	215/230 (94%)	211 (98%)	4 (2%)	0	100	100
1	\mathbf{C}	215/230 (94%)	207 (96%)	8 (4%)	0	100	100
1	E	215/230 (94%)	205 (95%)	10 (5%)	0	100	100
1	G	215/230 (94%)	209 (97%)	5 (2%)	1 (0%)	29	40
1	Н	215/230 (94%)	209 (97%)	6 (3%)	0	100	100
1	J	215/230 (94%)	209 (97%)	6 (3%)	0	100	100
2	В	216/218 (99%)	211 (98%)	5 (2%)	0	100	100
2	D	216/218 (99%)	207 (96%)	9 (4%)	0	100	100
2	F	216/218 (99%)	208 (96%)	8 (4%)	0	100	100
2	I	217/218 (100%)	209 (96%)	6 (3%)	2 (1%)	17	24
2	K	215/218 (99%)	207 (96%)	8 (4%)	0	100	100
2	L	216/218 (99%)	205 (95%)	11 (5%)	0	100	100
All	All	2586/2688 (96%)	2497 (97%)	86 (3%)	3 (0%)	51	67

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	G	126	PRO
2	I	77	GLY
2	I	212	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	in Analysed Rotameric		Outliers	Percentiles
1	A	$184/194\ (95\%)$	182 (99%)	2 (1%)	73 86
1	С	184/194~(95%)	183 (100%)	1 (0%)	88 95
1	E	184/194~(95%)	183 (100%)	1 (0%)	88 95
1	G	184/194 (95%)	182 (99%)	2 (1%)	73 86
1	Н	184/194~(95%)	181 (98%)	3 (2%)	62 78
1	J	184/194 (95%)	180 (98%)	4 (2%)	52 69
2	В	187/187 (100%)	186 (100%)	1 (0%)	88 95
2	D	187/187 (100%)	185 (99%)	2 (1%)	73 86
2	F	187/187 (100%)	184 (98%)	3 (2%)	62 78
2	I	188/187 (100%)	186 (99%)	2 (1%)	73 86
2	K	186/187 (100%)	182 (98%)	4 (2%)	52 69
2	L	187/187 (100%)	179 (96%)	8 (4%)	29 44
All	All	2226/2286 (97%)	2193 (98%)	33 (2%)	65 79

5 of 33 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	L	63	SER
2	L	72	SER
2	L	213	GLU
2	I	2	SER
1	G	197	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 6 such sidechains are listed below:

Mol	Chain	Res	Type
2	I	137	ASN
2	K	210	ASN
2	L	95(C)	HIS
2	D	189	HIS

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
2	В	17	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	$\#\mathrm{RSRZ}{>}2$	$OWAB(\AA^2)$	Q < 0.9
1	A	218/230 (94%)	-0.20	2 (0%) 84 82	21, 34, 58, 94	0
1	С	218/230 (94%)	-0.06	7 (3%) 47 45	26, 41, 84, 111	0
1	E	218/230 (94%)	0.14	18 (8%) 11 10	23, 43, 97, 121	0
1	G	219/230 (95%)	-0.19	2 (0%) 84 82	24, 36, 64, 91	0
1	Н	218/230 (94%)	-0.28	3 (1%) 75 73	32, 49, 82, 106	0
1	J	218/230 (94%)	-0.22	5 (2%) 60 57	31, 49, 84, 109	0
2	В	217/218 (99%)	-0.36	2 (0%) 84 82	26, 38, 58, 91	0
2	D	217/218 (99%)	-0.15	3 (1%) 75 73	33, 53, 85, 100	0
2	F	217/218 (99%)	-0.19	5 (2%) 60 57	31, 50, 81, 118	0
2	I	217/218 (99%)	-0.40	1 (0%) 91 89	29, 41, 58, 96	0
2	K	217/218 (99%)	-0.16	5 (2%) 60 57	37, 63, 83, 102	0
2	L	217/218 (99%)	-0.27	2 (0%) 84 82	41, 62, 81, 117	0
All	All	2611/2688 (97%)	-0.20	55 (2%) 63 60	21, 46, 81, 121	0

The worst 5 of 55 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	L	1	GLN	5.0
2	В	1	GLN	4.8
1	J	215	SER	4.7
2	K	212	GLY	4.5
1	Е	189	LEU	4.3

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

