

wwPDB EM Validation Summary Report (i)

Dec 15, 2022 – 05:05 pm GMT

PDB ID	:	6XU7
EMDB ID	:	EMD-10623
Title	:	Drosophila melanogaster Testis polysome ribosome
Authors	:	Hopes, T.; Agapiou, M.; Norris, K.; McCarthy, C.G.P.; OConnell, M.J.;
		Fontana, J.; Aspden, J.L.
Deposited on	:	2020-01-17
Resolution	:	4.90 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.3
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	AA	218	99%	•
2	CA	253	94%	5%•
3	AB	220	98%	•
4	CB	414	95%	5%
5	AC	227	<u>5%</u> 99%	·
6	CC	392	95%	5%
7	Ag	318	98%	·
8	AU	102	98%	•

Mol	Chain	Length	Quality of chain	
9	AO	134	97%	•
10	AX	143	97%	•
11	AM	119	61%	
12	AS	137	96%	
13	Ad	52	92%	8%
14	AN	150	99%	•
15	AL	155	99%	
16	AR	120	11%	
17	AP	124	98%	•
18	AV	82	7% 99%	
19	AY	126	7%100%	
20	AZ	74	95%	5%
21	Aa	107	95%	•••
22	Ab	84	99%	
23	AD	227	99%	
24	Ae	58	95%	•••
25	Af	80	44%	•
26	AJ	181	97%	•
27	Ca	149	92%	7% •
28	CN	203	90%	10%
29	CI	217	97%	•
30	CD	290	97%	•
31	CQ	187	95%	• •
32	CR	203	95%	5%
33	CS	173	91%	9% •

Continued from previous page...

Mol	Chain	Length	Quality of chain	
34	CT	158	95%	•••
35	CP	185	93%	7%
36	CX	120	98%	•
37	CY	131	99%	·
38	CZ	134	98%	•
39	Cr	134	85%	13% •
40	Ch	123	99%	·
41	Cb	75	91%	8% •
42	Cc	100	98%	·
43	Cd	111	95%	5%
44	Ce	132	• 90%	9% •
45	Cf	157	94%	••
46	Ci	113	<u>6%</u> 93%	7%
47	Ck	70	97%	•
48	Cl	50	90%	8% •
49	Cm	52	100%	
50	Cn	25	96%	•
51	Ср	91	97%	<mark></mark>
52	Со	104	96%	•
53	CJ	182	5% 	•
54	СН	190	99%	·
55	CE	228	93%	7%
56	CG	241	95%	5%
57	A9	30	60% 33%	7%
58	A7	120	58% 38%	•

Continued from previous page...

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chai	<u>n</u>
59	A8	123	28% 50%	23%
60	Cz	217	95% 97%	·
61	B2	1995	<u>6%</u> 56%	36% 5% ·
62	A5	3974	3 5% 3 9%	19% 7%
63	Ac	62	98%	
64	AW	129	98%	
65	CW	58	95%	5%
66	Cg	104	93%	6% ·
67	CU	96	98%	••
68	AK	90	96%	· .
69	AT	143	79%	11% • 8%
70	AF	189	96%	•••
71	CF	226	95%	·
72	AE	261	9 9%	•
73	AG	231	99%	
74	AH	194	96%	· .
75	AI	207	98%	
76	AQ	148	98%	
77	СО	205	• 94%	5% •
78	CL	210	91%	8% •
79	CV	134	98%	
80	CM	159	98%	
81	В	75	6 0%	35% 5%
82	v	12	50%	50%
83	Cj	87	66%	33% •

2 Entry composition (i)

There are 83 unique types of molecules in this entry. The entry contains 219005 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 40S ribosomal protein SA.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	AA	218	Total 1737	C 1113	N 298	0 321	${ m S}{ m 5}$	0	0

• Molecule 2 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	CA	253	Total 1935	C 1206	N 395	O 326	S 8	0	0

• Molecule 3 is a protein called 40S ribosomal protein S3a.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	AB	220	Total 1798	C 1138	N 328	0 324	S 8	0	0

• Molecule 4 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	СВ	414	Total 3287	C 2083	N 621	O 565	S 18	0	0

• Molecule 5 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	AC	227	Total 1746	C 1126	N 302	0 311	S 7	0	0

• Molecule 6 is a protein called 60S ribosomal protein L4.

Mol	Chain	Residues		Ate		AltConf	Trace		
6	CC	392	Total 3109	C 1959	N 622	0 522	S 6	0	0

• Molecule 7 is a protein called Guanine nucleotide-binding protein subunit beta-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	Ag	318	Total 2511	C 1577	N 444	0 480	S 10	0	0

• Molecule 8 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	AU	102	Total 815	C 505	N 161	0 145	${S \over 4}$	0	0

• Molecule 9 is a protein called 40S ribosomal protein S14a.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	AO	134	Total 1003	C 616	N 196	0 187	S 4	0	0

• Molecule 10 is a protein called 40S ribosomal protein S23.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	AX	143	Total 1131	C 712	N 226	0 191	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 11 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	AM	119	Total 924	C 582	N 165	0 171	S 6	0	0

• Molecule 12 is a protein called 40S ribosomal protein S18.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	AS	137	Total 1128	C 707	N 220	0 198	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called 40S ribosomal protein S29.

Mol	Chain	Residues		Ato	ms			AltConf	Trace
13	Ad	52	Total 433	C 269	N 87	0 72	${S \atop 5}$	0	0

• Molecule 14 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	AN	150	Total 1202	C 767	N 229	O 203	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called 40S ribosomal protein S11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	AL	155	Total 1274	C 803	N 254	0 211	S 6	0	0

• Molecule 16 is a protein called 40S ribosomal protein S17.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	AR	120	Total 981	C 618	N 183	O 176	${S \atop 4}$	0	0

• Molecule 17 is a protein called GEO07301p1.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	AP	124	Total 1016	C 652	N 189	O 169	S 6	0	0

• Molecule 18 is a protein called 40S ribosomal protein S21.

Mol	Chain	Residues	Atoms					AltConf	Trace
18	AV	82	Total 617	C 373	N 114	0 125	${ m S}{ m 5}$	0	0

There are 13 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AV	2	GLN	GLU	conflict	UNP 076927
AV	8	PHE	ASN	conflict	UNP 076927
AV	25	GLY	HIS	conflict	UNP 076927
AV	32	ILE	VAL	conflict	UNP 076927
AV	34	MET	LEU	conflict	UNP 076927
AV	35	ASN	SER	conflict	UNP 076927
AV	36	VAL	ILE	conflict	UNP 076927
AV	58	ALA	GLU	conflict	UNP 076927
AV	68	SER	CYS	conflict	UNP 076927
AV	70	LEU	VAL	conflict	UNP 076927
AV	75	ALA	LYS	conflict	UNP 076927
AV	79	VAL	ILE	conflict	UNP 076927

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference	
AV	80	SER	THR	conflict	UNP 076927	

• Molecule 19 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues	Atoms					AltConf	Trace
19	AY	126	Total	С	Ν	Ο	S	0	0
10	111	120	1016	644	196	171	5		0

• Molecule 20 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
20	AZ	74	Total 608	C 390	N 112	O 106	0	0

• Molecule 21 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues	Atoms					AltConf	Trace
21	Aa	107	Total 867	C 539	N 182	0 140	S 6	0	0

• Molecule 22 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues	Atoms					AltConf	Trace
22	Ab	84	Total 653	C 412	N 123	O 110	S 8	0	0

• Molecule 23 is a protein called 40S ribosomal protein S3.

Mol	Chain	Residues		At	AltConf	Trace			
23	AD	227	Total 1782	C 1127	N 319	O 326	S 10	0	0

• Molecule 24 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
24	Ae	58	Total 469	C 289	N 105	O 75	0	0

• Molecule 25 is a protein called Ubiquitin-40S ribosomal protein S27a.

Mol	Chain	Residues	Atoms					AltConf	Trace
25	Af	80	Total 659	C 417	N 128	O 109	${f S}{5}$	0	0

• Molecule 26 is a protein called 40S ribosomal protein S9.

Mol	Chain	Residues	Atoms					AltConf	Trace
26	AJ	181	Total 1503	C 957	N 298	0 247	S 1	0	0

• Molecule 27 is a protein called 60S ribosomal protein L27a.

Mol	Chain	Residues	Atoms					AltConf	Trace
27	Ca	149	Total 1204	C 769	N 242	0 189	$\frac{S}{4}$	0	0

• Molecule 28 is a protein called 60S ribosomal protein L15.

Mol	Chain	Residues		At	AltConf	Trace			
28	CN	203	Total 1710	C 1072	N 362	0 271	${ m S}{ m 5}$	0	0

• Molecule 29 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues		At	AltConf	Trace			
29	CI	217	Total 1785	C 1125	N 343	O 304	S 13	0	0

• Molecule 30 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		At	AltConf	Trace			
30	CD	290	Total 2334	C 1471	N 434	0 423	S 6	0	0

• Molecule 31 is a protein called 60S ribosomal protein L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	CQ	187	Total 1518	C 957	N 306	0 251	${S \atop 4}$	0	0

• Molecule 32 is a protein called 60S ribosomal protein L19.

Mol	Chain	Residues		At	AltConf	Trace			
32	CR	203	Total 1683	C 1047	N 350	O 277	S 9	0	0

• Molecule 33 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	CS	173	Total 1454	C 935	N 275	0 240	$\frac{S}{4}$	0	0

• Molecule 34 is a protein called RE62581p.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	CT	158	Total 1297	C 829	N 253	0 212	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	CP	185	Total 1505	C 928	N 305	O 263	S 9	0	0

• Molecule 36 is a protein called IP17216p.

Mol	Chain	Residues		At	AltConf	Trace			
36	CX	120	Total 984	C 625	N 192	0 165	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 37 is a protein called GEO07453p1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	CY	131	Total 1078	C 676	N 224	0 176	${ m S} { m 2}$	0	0

• Molecule 38 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	CZ	134	Total 1115	C 723	N 209	0 180	${ m S} { m 3}$	0	0

• Molecule 39 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
39	Cr	134	Total 1051	C 670	N 205	O 176	0	0

• Molecule 40 is a protein called FI02809p.

Mol	Chain	Residues		At	oms		AltConf	Trace	
40	Ch	123	Total 1015	C 646	N 202	0 164	${ m S} { m 3}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	Cb	75	Total 619	C 378	N 133	0 107	S 1	0	0

• Molecule 42 is a protein called RE25263p.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	Cc	100	Total 770	C 486	N 132	0 147	${ m S}{ m 5}$	0	0

• Molecule 43 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	Cd	111	Total 924	C 573	N 180	0 169	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 44 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	Ce	132	Total 1110	C 698	N 230	0 177	${ m S}{ m 5}$	0	0

• Molecule 45 is a protein called GEO07455p1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
45	Cf	157	Total 1244	C 781	N 255	O 203	${S \atop 5}$	0	0

• Molecule 46 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	Ci	113	Total 934	C 585	N 193	O 153	${ m S} { m 3}$	0	0

• Molecule 47 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		At	oms	AltConf	Trace		
47	Ck	70	Total 576	C 366	N 108	O 100	${ m S} { m 2}$	0	0

• Molecule 48 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
48	Cl	50	Total 437	C 276	N 98	O 63	0	0

• Molecule 49 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
49	Cm	52	Total 429	C 267	N 89	O 67	S 6	0	0

• Molecule 50 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
50	Cn	25	Total 236	C 143	N 63	O 27	${ m S} { m 3}$	0	0

• Molecule 51 is a protein called 60S ribosomal protein L37a.

Mol	Chain	Residues		At	oms			AltConf	Trace
51	Ср	91	Total 710	C 441	N 140	0 122	${ m S} 7$	0	0

• Molecule 52 is a protein called TA01007p.

Mol	Chain	Residues		At	AltConf	Trace			
52	Со	104	Total 874	C 548	N 180	0 138	S 8	0	0

• Molecule 53 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues		At	oms			AltConf	Trace
53	CJ	182	Total 1468	C 926	N 278	O 258	S 6	0	0

• Molecule 54 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues		At	AltConf	Trace			
54	CH	190	Total 1499	C 947	N 265	0 278	${ m S} 9$	0	0

• Molecule 55 is a protein called Ribosomal protein L6, isoform A.

Mol	Chain	Residues		At	AltConf	Trace			
55	CE	228	Total 1845	C 1185	N 351	0 305	$\frac{S}{4}$	0	0

• Molecule 56 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues		At	AltConf	Trace			
56	CG	241	Total 1936	C 1237	N 368	O 327	${f S}$ 4	0	0

• Molecule 57 is a RNA chain called 2S ribosomal RNA.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
57	A9	30	Total 639	C 286	N 111	0 213	Р 29	0	0

• Molecule 58 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
58	A7	120	Total 2554	C 1141	N 456	0 838	Р 119	0	0

• Molecule 59 is a RNA chain called 5.8S ribosomal RNA.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
59	A8	123	Total 2621	C 1173	N 474	0 852	P 122	0	0

• Molecule 60 is a protein called 60S ribosomal protein L10a-2.

Mol	Chain	Residues		At	oms			AltConf	Trace
60	Cz	217	Total 1702	C 1084	N 303	O 305	S 10	0	0

• Molecule 61 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues		I	AltConf	Trace			
61	B2	1936	Total 39355	C 17526	N 6780	0 13114	Р 1935	0	0

• Molecule 62 is a RNA chain called 28S ribosomal RNA.

Mol	Chain	Residues			AltConf	Trace			
62	A5	3707	Total 77175	C 34473	N 13566	O 25431	Р 3705	0	0

There are 10 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A5	1301	А	U	conflict	GB NR_133562.1
A5	1319	A	U	conflict	GB NR_133562.1
A5	1320	U	G	conflict	GB NR_133562.1
A5	1321	G	U	conflict	GB NR_133562.1
A5	1322	U	G	conflict	GB NR_133562.1
A5	1686	А	-	insertion	GB NR_133562.1
A5	1710	G	-	insertion	GB NR_133562.1
A5	2158A	С	-	insertion	GB NR_133562.1
A5	2279	С	G	conflict	GB NR_133562.1
A5	3569	С	-	insertion	GB NR_133562.1

• Molecule 63 is a protein called 40S ribosomal protein S28.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
63	Ac	62	Total 498	C 307	N 100	O 89	S 2	0	0

• Molecule 64 is a protein called 40S ribosomal protein S15Aa.

Mol	Chain	Residues		At	oms			AltConf	Trace
64	AW	129	Total 1028	C 656	N 189	0 176	${f S}{7}$	0	0

• Molecule 65 is a protein called 60S ribosomal protein L24.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
65	CW	58	Total 483	C 314	N 89	0 76	${ m S}$	0	0

• Molecule 66 is a protein called RH48056p.

Mol	Chain	Residues		At	oms	AltConf	Trace		
66	Cg	104	Total 852	C 530	N 177	0 139	S 6	0	0

• Molecule 67 is a protein called Ribosomal protein L22-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	CU	96	Total 811	C 531	N 137	0 139	${S \atop 4}$	0	0

• Molecule 68 is a protein called 40S ribosomal protein S10b.

Mol	Chain	Residues		At	oms	AltConf	Trace		
68	AK	90	Total 760	C 500	N 130	0 127	${ m S} { m 3}$	0	0

• Molecule 69 is a protein called 40S ribosomal protein S19a.

Mol	Chain	Residues		At	oms			AltConf	Trace
69	AT	132	Total 1041	C 659	N 200	0 179	${ m S} { m 3}$	0	0

• Molecule 70 is a protein called 40S ribosomal protein S5a.

Mol	Chain	Residues		At	oms			AltConf	Trace
70	ΑF	189	Total	С	Ν	0	\mathbf{S}	0	0
10	111	105	1490	929	284	268	9	0	

• Molecule 71 is a protein called 60S ribosomal protein L7.

Mol	Chain	Residues		At	AltConf	Trace			
71	CF	226	Total 1895	C 1216	N 368	O 308	${ m S} { m 3}$	0	0

• Molecule 72 is a protein called 40S ribosomal protein S4.

Mol	Chain	Residues		At	oms			AltConf	Trace
72	AE	261	Total 2054	C 1314	N 380	O 353	${f S}$ 7	0	0

• Molecule 73 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		Ate	AltConf	Trace			
73	AG	231	Total 1866	C 1172	N 372	0 315	${f S}{7}$	0	0

• Molecule 74 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
74	AH	194	Total 1566	C 1006	N 278	0 281	S 1	0	0

• Molecule 75 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		At	AltConf	Trace			
75	AI	207	Total 1665	C 1037	N 329	O 296	${ m S} { m 3}$	0	0

• Molecule 76 is a protein called 40S ribosomal protein S16.

Mol	Chain	Residues	Atoms					AltConf	Trace
76	AQ	148	Total 1183	C 753	N 223	O 204	${ m S} { m 3}$	0	0

• Molecule 77 is a protein called 60S ribosomal protein L13a.

Mol	Chain	Residues	Atoms					AltConf	Trace
77	CO	205	Total 1668	C 1063	N 331	O 268	S 6	0	0

• Molecule 78 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues	Atoms					AltConf	Trace
78	CL	210	Total 1695	C 1066	N 342	0 284	${ m S} { m 3}$	0	0

• Molecule 79 is a protein called 60S ribosomal protein L23.

Mol	Chain	Residues		At	AltConf	Trace			
79	CV	134	Total 998	C 629	N 190	0 173	S 6	0	0

• Molecule 80 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues	Atoms					AltConf	Trace
80	CM	159	Total 1302	C 826	N 256	0 218	${ m S} { m 2}$	0	0

• Molecule 81 is a RNA chain called P-tRNA.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
81	В	75	Total 1605	С 717	N 296	0 518	Р 74	0	0

• Molecule 82 is a RNA chain called mRNA.

Mol	Chain	Residues		Ate	AltConf	Trace			
82	V	12	Total 255	C 113	N 43	0 87	Р 12	0	0

• Molecule 83 is a protein called Probable 60S ribosomal protein L37-B.

Mol	Chain	Residues		At	AltConf	Trace			
83	Сј	87	Total 696	C 422	N 154	0 115	${ m S}{ m 5}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 40S ribosomal protein SA

• Molecule 6: 60S ribosomal protein L4 Chain CC: 95% 5% • Molecule 7: Guanine nucleotide-binding protein subunit beta-like protein 19% Chain Ag: 98% (28 27 • Molecule 8: 40S ribosomal protein S20 13% Chain AU: 98% • Molecule 9: 40S ribosomal protein S14a 13% Chain AO: 97% Q20 V21 D23 G24 G24 E26 E26 • Molecule 10: 40S ribosomal protein S23 Chain AX: 97% • Molecule 11: 40S ribosomal protein S12 61% Chain AM: 98% 121 N22 A24 A24 L25 q26 q26 F27 V28 V28 L29 K30 K31 S32 D64 E65 P66 N67

• Molecule 18: 40S ribosomal protein S21

Chain AV:	7%	
M1 V39 T43 D48	x 23 x 23 x 23 x 23 x 23 x 23 x 23 x 23	
• Molecule	e 19: 40S ribosomal protein S24	
Chain AY:	100%	
T4 R17 K50 V51	R62 1126 1128 € ● ● ● ●	
• Molecule	e 20: 40S ribosomal protein S25	
Chain AZ:	15% 95% 5%	
R40 D41 K42 L43 N44	L48 K59 C33 C33 C33 C33 C33 C33 C33 C33 C33 C3	
• Molecule	e 21: 40S ribosomal protein S26	
Chain Aa:	10% 95% · ·	
T2 R5 R10	R85 L64 L64 L64 R100 F102 R100 R105 H105 R106 R106 R106	
• Molecule	e 22: 40S ribosomal protein S27	
Chain Ab:	15% 99%	
M1 K5 M33 P38	G39 G52 V 53 A57 G58 G58 G58 G58 G77 G77 G77 G77	
• Molecule	e 23: 40S ribosomal protein S3	
Chain AD:	99%	
A3 A32 E33 D34 E40	Math v V41 V41 V41 V41 K4 E45 K64 E45 K64 E63 K64 R69 K64 R69 A94 A95 A95 A95 A95 A120 A120 A120 A120 R183 C111 A120 A120 A120 A120 K174 K187 R186 K216 P196 K216 P202 C201 F217 K2216 F217 K2216 F217 K2216 F218 K2216 F217 K2216 F217 K2216 F218 K2216	P224 E225 T226 E227 Y228 Y228 K229
• Molecule	e 24: 40S ribosomal protein S30	
Chain Ae:	16% 95% · ·	
V74 H75 G76 A79 C86	G86 K96 N112 V1115 V1116 V118 V128 N130 S131	
	PROTEIN DATA BANK	

• Molecule 25: Ubiquitin-40S ribosomal protein S27a

• Molecule 32: 60S ribosomal protein L19

10%		
Chain CR:	95%	5%
M1 C17 C17 C17 M95 M95 M121 M121 M121 M121 M123 M123 M123 M123 M123 M123 M123 M124 M	4104 V165 7167 8167 8168 8168 A169 1187 1187 8190 8192 8192 8192 8192 8193 8195 8193 8195 8193 8195 8193 8195 8193 8195 8193 8195 8195 8195 8195 8195 8195 8195 8195	K197 A198 A199 A201 A201 G202 H203
• Molecule 33: 60S ribosoma	l protein L18a	
Chain CS:	91%	9% •
65 L17 K53 K53 F54 F54 F54 C109 R111 R111 R111 R1119 R1119 R1119 R1119 R1119 R1119 R1119 R1119 R1119 R1113	R138 H159 R170 R170 R170 R170 R173 R173	
• Molecule 34: RE62581p		
Chain CT:	95%	•••
N3 84 84 84 84 84 84 84 84 84 84 84 84 84		
• Molecule 35: 60S ribosoma	l protein L17	
Chain CP:	93%	7%
62 R6 K27 K27 K27 K63 R64 066 066 066 066 066 066 066 066 066 0	E155 1156 1156 1156 1156 8158 8158 8150 1161 1161 1161 1163 8168 8168 8168 8168	8171 K172 Q176 K179 K181 K184 R184 S185 S185
• Molecule 36: IP17216p		
Chain CX:	98%	
A158 V165 A189 A189		
• Molecule 37: GEO07453p1		
Chain CY:	99%	
K132 K132		
• Molecule 38: 60S ribosoma	l protein L27	
Chain CZ:	98%	

B

• Molecule 39: 60S ribosomal protein L28

Chain Cr:	85%	13% •
A2 N8 W9 D24 V25 K27 K27 F28 P28 N35	L36 A37 841 H49 H49 K69 K78 K78 N73 N73 N73 N73 N73 N73 N73 N73 N73 N73	
• Molecule 40: H	FI02809p	
Chain Ch:	99%	<mark>.</mark>
M1 G38 G39 A40 A101 A123		
• Molecule 41: 6	60S ribosomal protein L29	
Chain Cb:	91%	8% •
A2 121 K23 R23 P24 P24 L25 R25 R25 R35 K38		
• Molecule 42: H	RE25263p	
Chain Cc:	98%	·
A10 L20 N51 E109 E109		
• Molecule 43: 6	60S ribosomal protein L31	
Chain Cd:	95%	5%
114 132 132 133 133 133 133 133 135 156		
• Molecule 44: 6	60S ribosomal protein L32	
Chain Ce:	90%	9% •
M1 P5 F19 K34 K34 C39 C39 C39 C39 C39 C39 C39 C30 C39 C30 C30 C30 C30 C30 C30 C30 C30 C30 C30	D41 V44 V44 V42 V62 L53 N91 N123 C133 C133 C133 C133	
• Molecule 45: 0	GEO07455p1	

Chain Cf:	94%	• •
M1 A2 D3 A17 A17 A23	A37 H47 H47 Y104 P105 P105 P105 P105 P105 P105 P105 P105	
• Molecule 46	: 60S ribosomal protein L36	
Chain Ci:	93%	7%
HI L7 L1 T17 Y26	T26 134 433 433 433 433 433 434 1108 1112 1113	
• Molecule 47	: 60S ribosomal protein L38	
Chain Ck:	97%	
M1 C C C C C C C C C C C C C C C C C C C		
• Molecule 48	: 60S ribosomal protein L39	
Chain Cl:	90%	8% •
A2 F7 R8 V37 R42 R42 K50		
• Molecule 49	: Ubiquitin-60S ribosomal protein L40	
Chain Cm:	100%	
177 K128		
• Molecule 50	: 60S ribosomal protein L41	
Chain Cn:	96%	·
M1 R17 K25		
• Molecule 51	: 60S ribosomal protein L37a	
Chain Cp:	97%	•••
A2 K7 W69 R84 Q92		

 \bullet Molecule 59: 5.8S ribosomal RNA

Chain A8: 28% 50% 23% A1 A2 C3 C3 C3 C5 C3 C3 A4 A7 A8 A8 C10 C10 C10 C10 C10 C10 A51 A52 C53 C53 G55 U56 G57 C58 G59 U60 A93 C94 A95 U96 U97 U98 C100 A101 A101 C103 C103 C103 A8: U8/ G8! A86 CG: AG: A8 A8 • Molecule 60: 60S ribosomal protein L10a-2 95% Chain Cz: 97% (23 (24 F28 L 29 E 30 /53 327 **T31** V32 E33 K4 V5 S6 5 8

Pel Pel Action of the second o

••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•
N184	S186	I187	N188	F189	L190	V191	S192	L193	L194	K195	K196	N197	W198	Q 199	N200	V201	R202	S203	L204	H205	S208	S209	M210	G211	P212	P213	Q214	R215	L216	Y217

• Molecule 61: 18S ribosomal RNA

U527 U530 U530 U536 U536 A537 A537 A541 C540 C540 C541 C541	A543 U547 U550 U550 U554 U554 A555 A555	U562 C565 A568 U576 A577 A577 A578 A578 A578 A588 A588 A588	1687 1588 4591 6592 6592 6593 4503 4505 4605 4605 4605 4605 4605 4605
U620 4621 4622 4623 4623 6625 4632 4633 4633	U640 A641 A641 U642 U644 U645 G645 G645 G645 U648 U648 U648	9654 9667 9661 9661 9661 9666 9666 9666 9666	A676 G681 A685 A685 U697 U697 A698 A700 A700 A703 A703 U704 U704 U704
C716 A717 U718 U719 G720 U723 U723	A733 0740 0740 0740 0744 0745 0745 0745 0745	A750 A751 U752 U752 U752 A756 C756 C756 C760 C761 A763 A764 A763 A765 A765 A765 A765 A765 C766 C766 C766	A771 6772 6773 A774 A776 A776 A776 C777 C777 C777 C778 6783 6783 6784 C786 C786 C788 C788 C788 C788 C788 C788
C791 U792 U793 G794 A795 A795 A796 A799 C798 C798 C798 C798 C799 C798 C799	4802 4803 4803 4805 4806 4806 4806 4810 4811 4811 4811	A815 A816 A816 C817 C817 U821 U820 U823 C825 C825 C825 C825 C825 C825 C825 C825	U833 6824 6834 6835 6835 0838 0838 0838 0843 0843 0843 0843 0851 6853 0855 0855 0855 0855 0855 0855
A856 U857 U858 A860 A860 A860 U862 U862 U862 U865 C864 A865 C9665	U867 A868 A869 U870 U873 A871 A871 A872 U873 G874 G875 G875 G875	C C C C C C C C C C C C C C C C C C C	A911 A912 U913 C915 C915 C915 C916 C916 C916 C921 C921 C922 C922 C925 C925 C926 U928 U928 U928 U928
A931 A949 U949 U950 U955	C964 C965 U966 C967 U968 C967 A968 A976 A976 C977 C977	U979 A960 C981 C982 C983 U993 C985 A996 U992 M991 U992 U994 C995 C995 C995 C995	U997 U998 U9999 G1000 G1000 C1002 C1003 C1003 C1003 A1006 A1006 A1006 A1006 G1013 G1013 G1013 G1014 G1014 G1014 G1014 G1014 G1014 G1015
A1017 C1018 U1019 A1022 U1022 U1022 C1023 U1025 U1025 G1025 A1027	U1028 C1029 A1033 G1031 G1033 U1033 U1033 C1035 G1035 A1041	A1046 A1047 A1047 A1048 C1050 C1051 U1055 C1053 A1055 C1055 C1055 C1055 C1055 C1055 C1052 C1052 C1052	C1064 A1066 A1066 A1066 A1067 A1067 A1072 C1077 C1077 C1077 C1077 C1077 C1077 C1077 C1077 C1077 C1077 C1077 C1078 U1079 C1080 C1081 A1079
A1083 A1084 U1085 C1086 G1087 A1086 G1087 U1089 U1090 G1091 U1092 C1093	A1094 A1096 A1096 A1097 U1098 G109 A1101 A1101 A1101 A1103 A1103 A1103 A1103 U1103	A1106 G1107 G1107 G1109 G1109 G1110 G1111 A1115 A1115 G1118 C1118 C1119 A1121 A1121 C1119 A1122 C1112	01124 A1125 A1126 A1126 C1127 C1128 A1129 C128 A1130 C1131 C1131 C1131 C1135 C1137 C1138 C1138 C1138 U1138 U1138 U1138 U1138 U1138
U1143 C1144 C1145 U1145 U1147 C1148 C1148 C1148 G1150 A1151 A1152 G1152 G1152	U1154 U1155 U1156 C1156 C1156 C1156 U1156 C1161 A1162 C1161 A1165 C1163	U1166 A1167 G1168 C1169 C1169 C1174 C1177 C1177 A1177 U1178 U1178 U1182 A1181 A1182 U1183 A1182 A1182	A1193 A1194 UA196 UA196 A1196 A1196 UA198 UA198 UA199 UA199 UA199 UA200 G1207 A1210 A1210 A1210 C1213 C1213 C1213
61214 A1215 61228 61226 61226 C1227 C1227 C1228 U1230 U1230 A1231	(1232 (1233 (1234 U1235 C1236 A1240 A1240 C1241 €1242 C1245	A1249 U1254 U1254 U1256 A1260 A1260 U1263 U1266 A1266 A1266 A1266 A1266 G1270 G1270 G1272	G1276 A1277 A1277 C1279 C1279 U1281 U1281 U1282 U1284 U1294 A1292 A1295 U1294 A1295 C1297 C1297
A1298 A1301 C1306 C1306 C1306 C1307 U1308 U1308 U1309 U1311 U1311	A1315 A1315 A1316 A1317 A1320 01322 01322 01322 01325 C1325 C1325 C1325	C1327 C1328 C1328 C13331 C13331 C1334 C13345 C13345 C13345 C13345 C13345 C13345 C13345 C13345 C13345 C13345 A1350 A1350 A1350	C1351 U1352 C1355 C1355 C1355 C1355 C1355 C1356 C1356 C1356 C1366 C1366 C1366 C1366 C1366 C1366 C1366
C1370 A1371 A1372 A1373 C1374 C1374 C1376 A1377 A1377 A1377 C1376 C1376 C1376 C1377	U1381 U1382 U1382 A1384 C1384 C1385 C1385 C1385 C1385 C1385 C1385 C1385 C1385	A1392 A1392 U1395 U1395 U1395 A1396 A1396 A1396 A1396 A1396 A1399 A1400 C1401 U1405 C1407 A1406 C1407 A1408 C1407 A1408 C1407 A1408 C1407 C1407 C1407 C1406 C1407 C1406 C1407 C1406 C1407 C1406 C1407 C1406 C1407 C1406 C1407 C1406 C1407 C1407 C1406 C1407	A1410 U1411 A1411 A1412 C1413 C1413 A1416 A1416 A1416 A1418 A1420 C1428 C1428 C1428 C1428 C1428 C1428 C1428 C1428 C1428 C1432 C1432 C1432
A1435 A1436 A1436 A1438 A1438 C1442 C1447 C1447 C1447	01449 01450 01451 01453 01453 01454 01455 01455 01456 01458 01459 01458	01460 01462 01463 01464 A1465 A1465 A1465 01478 01473 01473 01473 01473 01473 01473	C1480 C1481 C1482 C1483 C1484 A1486 A1486 C1486 C1486 C1499 C1499 C1499 C1499 C1499 C1499 C1499 C1499 C1499 C1500 A1500 A1500 A1500 A1500 A1500
C1510 C1511 C1512 C1513 U1514 U1515 A1516 A1516 A1516 A1518 A1519 A1519 U1520	61521 61522 61522 61523 61524 61526 61526 61528 61528 01528 01530 01531 01531	A1533 C1534 C1535 C1535 C1535 A1539 A1549 A1544 A1544 A1544 A1544 A1544 A1544 A1549 A1549 A1549 A1569 A1569	U1551 U1553 C1555 C1555 C1555 C1555 U1557 U1557 U1570 U1570 U1570 U1572 U1572 A1572 A1572 A1572 A1572 A1572 A1572

• Molecule 67: Ribosomal protein L22-like protein

• Molecule 80: 60S ribosomal protein L14

Chain CM:		98%	
● Molecule 81: P-	t R N A		
• Molecule 01. 1			
Chain B:	60%	35%	5%
<mark>≼88≇8 ≊88</mark> 8 • Molecule 82: ml	RNA	A88 A59 C60 U63 V71 V71 C70 C73 C74 A75	
Chain v:	50%	50%	
025 026 029 032 033 033 033 033 033 035 035 035 035 035			
• Molecule 83: Pr	obable 60S ribosomal pro	otein L37-B	
Chain Cj:	66%	33%	

Chain CJ:	66%	33%		
T2 K3 S7 K10 N13 H16 H16	118 118 118 118 129 129 129 129 129 129 129 129 129 129	K54 G55 R56 R65 R63 M64 M64 N65 F73 N76 N76 N76 T88		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	10392	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING ONLY	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	80	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON II (4k x 4k)	Depositor
Maximum map value	0.643	Depositor
Minimum map value	-0.491	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.020	Depositor
Recommended contour level	0.035	Depositor
Map size (Å)	426.00003, 426.00003, 426.00003	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.065, 1.065, 1.065	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	I	Bond lengths	Bond angles			
	Ullaill	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	AA	0.33	0/1777	0.62	1/2422~(0.0%)		
2	CA	0.78	2/1970~(0.1%)	0.81	0/2635		
3	AB	0.31	0/1825	0.64	0/2448		
4	CB	0.69	0/3356	0.84	4/4494~(0.1%)		
5	AC	0.34	0/1785	0.66	2/2415~(0.1%)		
6	CC	0.70	4/3163~(0.1%)	0.83	7/4253~(0.2%)		
7	Ag	0.30	0/2574	0.58	0/3506		
8	AU	0.31	0/825	0.57	0/1111		
9	AO	0.35	0/1016	0.71	0/1364		
10	AX	0.42	0/1152	0.66	0/1540		
11	AM	0.29	0/937	0.65	1/1260~(0.1%)		
12	AS	0.31	0/1146	0.71	3/1535~(0.2%)		
13	Ad	0.37	0/443	0.71	0/589		
14	AN	0.38	0/1225	0.63	0/1641		
15	AL	0.40	0/1296	0.60	0/1725		
16	AR	0.31	0/993	0.63	0/1333		
17	AP	0.31	0/1036	0.65	0/1383		
18	AV	0.34	0/622	0.61	0/835		
19	AY	0.31	0/1032	0.62	0/1373		
20	AZ	0.31	0/616	0.67	2/826~(0.2%)		
21	Aa	0.43	0/883	0.68	0/1184		
22	Ab	0.30	0/668	0.61	0/898		
23	AD	0.34	0/1808	0.66	0/2427		
24	Ae	0.33	0/475	0.68	1/625~(0.2%)		
25	Af	0.32	0/672	0.62	0/887		
26	AJ	0.33	0/1526	0.65	1/2037~(0.0%)		
27	Ca	0.73	1/1235~(0.1%)	0.87	2/1640~(0.1%)		
28	CN	0.89	3/1750~(0.2%)	0.91	1/2335~(0.0%)		
29	CI	0.41	0/1827	0.63	$\overline{2}/2447~(0.1\%)$		
30	CD	0.38	0/2379	0.62	$2\overline{/3196}\ (0.1\%)$		
31	CQ	0.65	1/1544~(0.1%)	0.76	0/2069		
32	CR	0.48	$1\overline{/1703}\ (0.1\%)$	0.62	0/2255		
33	CS	0.54	0/1491	0.75	1/1998~(0.1%)		
34	CT	0.61	0/1326	0.87	6/1773~(0.3%)		

Mal Chain		I	Bond lengths	Bond angles			
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5		
35	CP	0.76	0/1529	0.80	2/2042~(0.1%)		
36	CX	0.44	0/1001	0.67	1/1348 (0.1%)		
37	CY	0.50	0/1094	0.63	0/1456		
38	CZ	0.39	1/1141 (0.1%)	0.60	2/1517~(0.1%)		
39	Cr	0.55	1/1069~(0.1%)	0.94	2/1432 (0.1%)		
40	Ch	0.40	0/1024	0.64	0/1353		
41	Cb	0.49	0/628	0.89	2/832~(0.2%)		
42	Cc	0.38	0/779	0.65	1/1048 (0.1%)		
43	Cd	0.69	0/939	0.76	0/1262		
44	Ce	0.94	2/1132~(0.2%)	0.98	3/1508~(0.2%)		
45	Cf	0.66	0/1270	0.86	2/1696~(0.1%)		
46	Ci	0.38	0/944	0.73	0/1250		
47	Ck	0.37	0/583	0.66	1/774~(0.1%)		
48	Cl	0.74	0/445	0.95	1/589~(0.2%)		
49	Cm	0.37	0/435	0.60	0/575		
50	Cn	0.55	0/237	0.80	0/300		
51	Ср	0.70	1/719~(0.1%)	0.74	0/954		
52	Со	0.53	0/887	0.69	0/1162		
53	CJ	0.32	0/1494	0.67	1/2001~(0.0%)		
54	CH	0.39	0/1519	0.66	1/2042~(0.0%)		
55	CE	0.38	0/1883	0.75	3/2514~(0.1%)		
56	CG	0.38	0/1968	0.66	1/2637~(0.0%)		
57	A9	1.05	0/714	1.39	7/1112~(0.6%)		
58	A7	1.05	9/2854~(0.3%)	1.38	41/4447~(0.9%)		
59	A8	1.58	29/2932~(1.0%)	2.00	170/4568~(3.7%)		
60	Cz	0.31	0/1727	0.70	2/2308~(0.1%)		
61	B2	1.30	34/43887~(0.1%)	1.20	319/68161~(0.5%)		
62	A5	1.62	1753/86239~(2.0%)	1.90	4119/134149~(3.1%)		
63	Ac	0.29	0/502	0.61	0/670		
64	AW	0.37	0/1046	0.59	1/1402~(0.1%)		
65	CW	0.60	0/495	0.72	0/658		
66	Cg	0.60	0/863	0.84	3/1152~(0.3%)		
67	CU	0.33	0/828	0.62	1/1110~(0.1%)		
68	AK	0.35	0/786	0.64	2/1064~(0.2%)		
69	AT	0.35	0/1060	0.87	15/1421~(1.1%)		
70	AF	1.95	2/1510~(0.1%)	0.75	5/2026~(0.2%)		
71	CF	0.71	0/1931	0.81	2/2587~(0.1%)		
72	AE	0.30	0/2096	0.58	0/2819		
73	AG	0.28	0/1891	0.54	0/2519		
74	AH	0.32	0/1593	0.68	$1/21\overline{45}~(0.0\%)$		
75	AI	0.35	0/1689	0.67	1/2250~(0.0%)		
76	AQ	0.33	0/1202	0.70	1/1608~(0.1%)		
77	CO	0.69	0/1700	0.80	1/2277~(0.0%)		

Mal	Chain	I	Bond lengths	Bond angles			
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5		
78	CL	0.60	2/1726~(0.1%)	0.86	1/2308~(0.0%)		
79	CV	0.61	0/1014	0.71	0/1362		
80	CM	0.39	0/1326	0.67	0/1780		
81	В	0.56	0/1796	1.21	11/2800~(0.4%)		
82	V	0.52	0/283	1.10	0/439		
83	Cj	0.57	0/707	0.68	0/932		
All	All	1.20	1846/235193~(0.8%)	1.41	4762/344825~(1.4%)		

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	CA	0	9
3	AB	0	2
4	CB	0	9
5	AC	0	1
6	CC	0	6
8	AU	0	1
10	AX	0	2
12	AS	0	1
13	Ad	0	2
21	Aa	0	3
23	AD	0	2
24	Ae	0	2
26	AJ	0	2
27	Ca	0	8
28	CN	0	11
29	CI	0	2
30	CD	0	4
31	CQ	0	5
32	CR	0	5
33	CS	0	10
34	CT	0	5
35	CP	0	6
39	Cr	0	11
41	Cb	0	5
43	Cd	0	4
44	Ce	0	7
45	Cf	0	4
46	Ci	0	4

Mol	Chain	#Chirality outliers	#Planarity outliers
47	Ck	0	1
48	Cl	0	3
50	Cn	0	1
51	Ср	0	1
52	Со	0	3
53	CJ	0	1
55	CE	0	7
56	CG	0	7
63	Ac	0	1
65	CW	0	2
66	Cg	0	2
69	AT	0	3
70	AF	0	1
71	CF	0	3
72	AE	0	2
73	AG	0	1
74	AH	0	3
75	AI	0	1
77	CO	0	8
78	CL	0	9
80	CM	0	1
All	All	0	194

Continued from previous page...

The worst 5 of 1846 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
61	B2	1727	U	C2-N3	115.56	2.18	1.37
61	B2	1727	U	N1-C2	91.04	2.20	1.38
61	B2	1727	U	N3-C4	90.77	2.20	1.38
61	B2	1727	U	N1-C6	84.49	2.13	1.38
61	B2	1727	U	C4-C5	80.97	2.16	1.43

The worst 5 of 4762 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
62	A5	1366	G	N1-C6-O6	18.38	130.93	119.90
59	A8	34	С	C6-N1-C2	-17.41	113.34	120.30
62	A5	1526	G	C6-C5-N7	-17.19	120.09	130.40
62	A5	3143	U	N3-C2-O2	-16.65	110.55	122.20
62	A5	3408	С	C6-N1-C2	-16.63	113.65	120.30

There are no chirality outliers.

Mol	Chain	Res	Type	Group
2	CA	179	ILE	Peptide
2	CA	185	ALA	Peptide
2	CA	196	TRP	Peptide
2	CA	197	PRO	Peptide
2	CA	3	ARG	Peptide

5 of 194 planarity outliers are listed below:

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	AA	216/218~(99%)	188 (87%)	27~(12%)	1 (0%)	29	68
2	CA	251/253~(99%)	197 (78%)	52 (21%)	2 (1%)	19	60
3	AB	218/220~(99%)	186 (85%)	29~(13%)	3 (1%)	11	46
4	CB	412/414~(100%)	327 (79%)	84 (20%)	1 (0%)	47	81
5	AC	225/227~(99%)	200 (89%)	25 (11%)	0	100	100
6	CC	390/392~(100%)	308 (79%)	82 (21%)	0	100	100
7	Ag	316/318~(99%)	276 (87%)	40 (13%)	0	100	100
8	AU	100/102~(98%)	93 (93%)	7~(7%)	0	100	100
9	AO	132/134~(98%)	112 (85%)	19 (14%)	1 (1%)	19	60
10	AX	141/143~(99%)	112 (79%)	29 (21%)	0	100	100
11	AM	117/119~(98%)	100 (86%)	17 (14%)	0	100	100
12	AS	135/137~(98%)	120 (89%)	15~(11%)	0	100	100
13	Ad	50/52~(96%)	38 (76%)	12 (24%)	0	100	100
14	AN	148/150~(99%)	137 (93%)	11 (7%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
15	AL	153/155~(99%)	127 (83%)	26~(17%)	0	100	100
16	AR	118/120~(98%)	107 (91%)	11 (9%)	0	100	100
17	AP	122/124~(98%)	108 (88%)	14 (12%)	0	100	100
18	AV	80/82~(98%)	67 (84%)	13~(16%)	0	100	100
19	AY	124/126~(98%)	106 (86%)	18 (14%)	0	100	100
20	AZ	72/74~(97%)	59 (82%)	13~(18%)	0	100	100
21	Aa	105/107~(98%)	85 (81%)	20~(19%)	0	100	100
22	Ab	82/84~(98%)	66 (80%)	16 (20%)	0	100	100
23	AD	225/227~(99%)	191 (85%)	33~(15%)	1 (0%)	34	72
24	Ae	56/58~(97%)	39~(70%)	17 (30%)	0	100	100
25	Af	78/80~(98%)	64 (82%)	14 (18%)	0	100	100
26	AJ	179/181~(99%)	156 (87%)	22~(12%)	1 (1%)	25	65
27	Ca	147/149~(99%)	112 (76%)	34~(23%)	1 (1%)	22	62
28	CN	201/203~(99%)	153 (76%)	46~(23%)	2 (1%)	15	54
29	CI	215/217~(99%)	184 (86%)	31~(14%)	0	100	100
30	CD	288/290~(99%)	247 (86%)	40 (14%)	1 (0%)	41	76
31	CQ	185/187~(99%)	152 (82%)	32~(17%)	1 (0%)	29	68
32	CR	201/203~(99%)	182 (90%)	19 (10%)	0	100	100
33	CS	171/173~(99%)	127 (74%)	41 (24%)	3(2%)	8	41
34	CT	156/158~(99%)	118 (76%)	37~(24%)	1 (1%)	25	65
35	CP	183/185~(99%)	153 (84%)	30~(16%)	0	100	100
36	CX	118/120~(98%)	94 (80%)	23~(20%)	1 (1%)	19	60
37	CY	129/131~(98%)	111 (86%)	18 (14%)	0	100	100
38	CZ	132/134~(98%)	112 (85%)	20~(15%)	0	100	100
39	Cr	132/134~(98%)	92 (70%)	37~(28%)	3(2%)	6	36
40	Ch	121/123~(98%)	107 (88%)	14 (12%)	0	100	100
41	Cb	73/75~(97%)	56 (77%)	17~(23%)	0	100	100
42	Cc	98/100 ($98%$)	94 (96%)	4 (4%)	0	100	100
43	Cd	$109/111 \ (\overline{98\%})$	89 (82%)	20 (18%)	0	100	100
44	Ce	130/132~(98%)	$99 \ (76\%)$	31 (24%)	0	100	100
45	Cf	155/157~(99%)	119 (77%)	34 (22%)	2 (1%)	12	48

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
46	Ci	111/113~(98%)	82 (74%)	29~(26%)	0	100	100
47	Ck	68/70~(97%)	63~(93%)	5~(7%)	0	100	100
48	Cl	48/50~(96%)	33~(69%)	14 (29%)	1 (2%)	7	38
49	Cm	50/52~(96%)	41 (82%)	9~(18%)	0	100	100
50	Cn	23/25~(92%)	21 (91%)	2 (9%)	0	100	100
51	Ср	89/91~(98%)	72 (81%)	17~(19%)	0	100	100
52	Co	102/104~(98%)	79 (78%)	23~(22%)	0	100	100
53	CJ	180/182~(99%)	147 (82%)	32~(18%)	1 (1%)	25	65
54	CH	188/190~(99%)	165 (88%)	23 (12%)	0	100	100
55	CE	226/228~(99%)	178 (79%)	46 (20%)	2 (1%)	17	56
56	CG	239/241~(99%)	205 (86%)	31 (13%)	3 (1%)	12	48
60	Cz	215/217~(99%)	192 (89%)	23~(11%)	0	100	100
63	Ac	60/62~(97%)	53 (88%)	7 (12%)	0	100	100
64	AW	127/129~(98%)	109 (86%)	18 (14%)	0	100	100
65	CW	56/58~(97%)	45 (80%)	11 (20%)	0	100	100
66	Cg	102/104~(98%)	88 (86%)	14 (14%)	0	100	100
67	CU	94/96~(98%)	76 (81%)	18 (19%)	0	100	100
68	AK	88/90~(98%)	68 (77%)	19~(22%)	1 (1%)	14	52
69	AT	128/143~(90%)	104 (81%)	20~(16%)	4(3%)	4	30
70	AF	187/189~(99%)	158 (84%)	28~(15%)	1 (0%)	29	68
71	CF	224/226~(99%)	188 (84%)	32~(14%)	4(2%)	8	41
72	AE	259/261~(99%)	225 (87%)	34~(13%)	0	100	100
73	AG	229/231~(99%)	211 (92%)	18 (8%)	0	100	100
74	AH	192/194~(99%)	161 (84%)	31~(16%)	0	100	100
75	AI	205/207~(99%)	162 (79%)	40 (20%)	3 (2%)	10	46
76	AQ	146/148~(99%)	117 (80%)	28~(19%)	1 (1%)	22	62
77	CO	203/205~(99%)	161 (79%)	38~(19%)	4 (2%)	7	39
78	CL	208/210~(99%)	151 (73%)	54 (26%)	3 (1%)	11	46
79	CV	132/134~(98%)	115 (87%)	17 (13%)	0	100	100
80	CM	157/159~(99%)	131 (83%)	26 (17%)	0	100	100
83	Cj	85/87 (98%)	57 (67%)	25~(29%)	3(4%)	3	28

Continued from previous page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
All	All	11610/11775~(99%)	9628 (83%)	1926 (17%)	56~(0%)	32 68

5 of 56 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	AB	120	TRP
69	AT	40	ALA
71	CF	237	PHE
77	CO	113	PRO
30	CD	20	PHE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	AA	190/190~(100%)	190 (100%)	0	100 100
2	CA	195/195~(100%)	192~(98%)	3~(2%)	65 80
3	AB	199/199~(100%)	198 (100%)	1 (0%)	88 93
4	CB	349/349~(100%)	339~(97%)	10 (3%)	42 64
5	AC	188/188~(100%)	188 (100%)	0	100 100
6	CC	323/323~(100%)	317~(98%)	6(2%)	57 75
7	Ag	280/280~(100%)	273~(98%)	7 (2%)	47 68
8	AU	95/95~(100%)	94 (99%)	1 (1%)	73 85
9	AO	103/103~(100%)	100~(97%)	3~(3%)	42 64
10	AX	116/116~(100%)	114 (98%)	2(2%)	60 78
11	AM	104/104~(100%)	103~(99%)	1 (1%)	76 86
12	AS	123/123~(100%)	122~(99%)	1 (1%)	81 89
13	Ad	45/45~(100%)	43 (96%)	2(4%)	28 53
14	AN	130/130~(100%)	128~(98%)	2(2%)	65 80
15	AL	138/138~(100%)	137 (99%)	1 (1%)	84 90
16	AR	108/108 (100%)	108 (100%)	0	100 100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
17	AP	111/111~(100%)	108~(97%)	3~(3%)	44	65
18	AV	67/67~(100%)	66~(98%)	1 (2%)	65	80
19	AY	105/106~(99%)	105 (100%)	0	100	100
20	AZ	67/67~(100%)	65~(97%)	2(3%)	41	63
21	Aa	94/94~(100%)	91~(97%)	3~(3%)	39	61
22	Ab	72/72~(100%)	71 (99%)	1 (1%)	67	81
23	AD	192/192~(100%)	191 (100%)	1 (0%)	88	93
24	Ae	47/47~(100%)	46 (98%)	1 (2%)	53	72
25	Af	70/70~(100%)	69 (99%)	1 (1%)	67	81
26	AJ	161/161~(100%)	159 (99%)	2 (1%)	71	84
27	Ca	122/122~(100%)	120 (98%)	2(2%)	62	79
28	CN	174/174~(100%)	169 (97%)	5 (3%)	42	64
29	CI	187/187~(100%)	183 (98%)	4 (2%)	53	72
30	CD	241/241~(100%)	238 (99%)	3 (1%)	71	84
31	CQ	164/164~(100%)	161 (98%)	3 (2%)	59	77
32	CR	176/176~(100%)	171 (97%)	5 (3%)	43	65
33	CS	156/156~(100%)	153 (98%)	3(2%)	57	75
34	CT	137/137~(100%)	137 (100%)	0	100	100
35	CP	160/160~(100%)	155 (97%)	5(3%)	40	62
36	CX	106/106~(100%)	105 (99%)	1 (1%)	78	88
37	CY	116/116~(100%)	115 (99%)	1 (1%)	78	88
38	CZ	121/121 (100%)	121 (100%)	0	100	100
39	Cr	112/112~(100%)	107 (96%)	5 (4%)	27	53
40	Ch	112/112~(100%)	111 (99%)	1 (1%)	78	88
41	Cb	67/67~(100%)	66 (98%)	1 (2%)	65	80
42	Cc	84/84 (100%)	83 (99%)	1 (1%)	71	84
43	Cd	103/103~(100%)	101 (98%)	2(2%)	57	75
44	Ce	120/120 (100%)	117 (98%)	3 (2%)	47	68
45	Cf	123/123~(100%)	118 (96%)	5 (4%)	30	55
46	Ci	100/100~(100%)	96 (96%)	4 (4%)	31	56
47	Ck	65/65~(100%)	65 (100%)	0	100	100

Continued from previous page...

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
• • • • • • • • • • • •	J	r · · · · · · · · · · · · · · ·	r ~g ~···

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
48	Cl	45/45~(100%)	43~(96%)	2~(4%)	28	53
49	Cm	48/48~(100%)	48 (100%)	0	100	100
50	Cn	23/23~(100%)	23~(100%)	0	100	100
51	Cp	74/74~(100%)	72~(97%)	2(3%)	44	65
52	Co	94/94~(100%)	93~(99%)	1 (1%)	73	85
53	CJ	155/155~(100%)	155 (100%)	0	100	100
54	CH	169/169~(100%)	168~(99%)	1 (1%)	86	92
55	CE	197/197~(100%)	191~(97%)	6 (3%)	41	63
56	CG	210/210~(100%)	208~(99%)	2(1%)	76	86
60	Cz	190/190~(100%)	186~(98%)	4 (2%)	53	72
63	Ac	54/54~(100%)	54 (100%)	0	100	100
64	AW	113/113~(100%)	111 (98%)	2(2%)	59	77
65	CW	52/52~(100%)	51 (98%)	1 (2%)	57	75
66	Cg	96/96~(100%)	93~(97%)	3(3%)	40	62
67	CU	90/90~(100%)	88 (98%)	2(2%)	52	71
68	AK	81/81 (100%)	80 (99%)	1 (1%)	71	84
69	AT	107/116~(92%)	107 (100%)	0	100	100
70	AF	160/160~(100%)	156~(98%)	4 (2%)	47	68
71	CF	200/200~(100%)	197~(98%)	3 (2%)	65	80
72	AE	220/220~(100%)	219 (100%)	1 (0%)	88	93
73	AG	200/200~(100%)	199 (100%)	1 (0%)	88	93
74	AH	175/175~(100%)	171~(98%)	4 (2%)	50	70
75	AI	175/175~(100%)	175 (100%)	0	100	100
76	AQ	122/122~(100%)	121 (99%)	1 (1%)	81	89
77	CO	175/175~(100%)	173~(99%)	2 (1%)	73	85
78	CL	173/173~(100%)	167 (96%)	6 (4%)	36	60
79	CV	101/101 (100%)	98~(97%)	3 (3%)	41	63
80	CM	138/138 (100%)	136 (99%)	2 (1%)	67	81
83	Cj	71/71 (100%)	43 (61%)	28 (39%)	0	0
All	All	10126/10136~(100%)	9935~(98%)	191 (2%)	59	75

 $5~{\rm of}~191$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
55	CE	16	LYS
72	AE	157	ASN
55	CE	193	VAL
66	Cg	34	TYR
77	CO	48	HIS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 11 such sidechains are listed below:

Mol	Chain	Res	Type
69	AT	88	HIS
69	AT	128	GLN
83	Cj	30	GLN
79	CV	135	ASN
22	Ab	49	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
57	A9	29/30~(96%)	10 (34%)	1 (3%)
58	A7	119/120~(99%)	30 (25%)	1 (0%)
59	A8	122/123~(99%)	58 (47%)	2(1%)
61	B2	1792/1995~(89%)	726 (40%)	26 (1%)
62	A5	3566/3974~(89%)	1650 (46%)	86 (2%)
81	В	74/75~(98%)	27 (36%)	1 (1%)
82	V	11/12~(91%)	6 (54%)	0
All	All	5713/6329~(90%)	2507~(43%)	117 (2%)

5 of 2507 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
57	A9	7	G
57	A9	9	С
57	A9	10	U
57	A9	11	А
57	A9	15	А

5 of 117 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
62	A5	1161	С
62	A5	3808	А

Continued from previous page...

Mol	Chain	Res	Type
62	A5	1594	U
62	A5	3765	А
62	A5	3516	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
61	B2	2
62	A5	2

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	B2	1236:C	O3'	1237:G	Р	6.91
1	A5	2896:U	O3'	2897:G	Р	5.92
1	B2	1817:C	O3'	1818:U	Р	4.83
1	A5	2819:A	O3'	2820:G	Р	3.80

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-10623. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 200

Y Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 185

Y Index: 230

Z Index: 200

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.035. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2920 nm^3 ; this corresponds to an approximate mass of 2638 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.204 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.204 \AA^{-1}

8.2 Resolution estimates (i)

B osolution ostimato $(\hat{\lambda})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	4.90	-	-
Author-provided FSC curve	4.91	7.80	5.21
Unmasked-calculated*	-	-	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-10623 and PDB model 6XU7. Per-residue inclusion information can be found in section 3 on page 19.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.035 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

This section was not generated.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.035).

9.4 Atom inclusion (i)

At the recommended contour level, 91% of all backbone atoms, 88% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.035) and Q-score for the entire model and for each chain.

Chain	Atom inclusion
All	0.8817
A5	0.9388
A7	0.9894
A8	0.9721
A9	0.9937
AA	0.7251
AB	0.7433
AC	0.7883
AD	0.6776
AE	0.7875
AF	0.7635
AG	0.7643
AH	0.6971
AI	0.7826
AJ	0.8010
AK	0.7473
AL	0.7055
AM	0.3326
AN	0.8460
AO	0.7318
AP	0.6865
AQ	0.7637
AR	0.7051
AS	0.7846
AT	0.8008
AU	0.7190
AV	0.7745
AW	0.8308
AX	0.8324
AY	0.8000
AZ	0.7264
Aa	0.8039
Ab	0.7402
Ac	0.7140
Ad	0.8333

Continued from previous page...

Chain	Atom inclusion
Ae	0.7022
Af	0.5086
Ag	0.7054
В	0.8548
B2	0.9250
CA	0.8975
CB	0.8973
CC	0.9161
CD	0.8994
CE	0.8215
CF	0.9144
CG	0.7963
CH	0.8878
CI	0.8416
CJ	0.8378
CL	0.8481
CM	0.8287
CN	0.9359
CO	0.9085
CP	0.8192
CQ	0.9350
CR	0.8132
CS	0.9055
CT	0.8936
CU	0.8667
CV	0.9168
CW	0.9316
CX	0.9053
CY	0.9489
CZ	0.8871
Ca	0.9275
Cb	0.9282
Cc	0.8355
Cd	0.9236
Ce	0.9315
Cf	0.8969
Cg	0.8781
Ch	0.9157
Ci	0.8246
Cj	0.8844
Ck	0.8615
Cl	0.9303

Chain	Atom inclusion
Cm	0.8530
Cn	0.9442
Со	0.8878
Ср	0.9050
Cr	0.8506
Cz	0.0410
V	0.8745

Continued from previous page...

