

wwPDB Geometry-Only Validation Summary Report (i)

May 23, 2024 – 09:13 AM EDT

PDB ID : 1WQZ

Title: Complicated water orientations in the minor groove of B-DNA decamer

D(CCATTAATGG)2 observed by neutron diffraction measurements

Authors: Arai, S.; Chatake, T.; Ohhara, T.; Kurihara, K.; Tanaka, I.; Suzuki, N.; Fuji-

moto, Z.; Mizuno, H.; Niimura, N.

Deposited on : 2004-10-07

Resolution : 3.00 Å(reported)

This is a wwPDB Geometry-Only Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

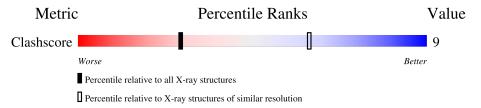
The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity: 4.02b-467

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $NEUTRON\ DIFFRACTION$

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\# \mathrm{Entries})$	$\begin{array}{c} {\rm Similar\ resolution} \\ (\#{\rm Entries},{\rm resolution\ range}(\mathring{\rm A})) \end{array}$
Clashscore	141614	2416 (3.00-3.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

Mol	Chain	Length	Quality of chain				
1	A	10	50%	50%			
1	В	10	40%	60%			

2 Entry composition (i)

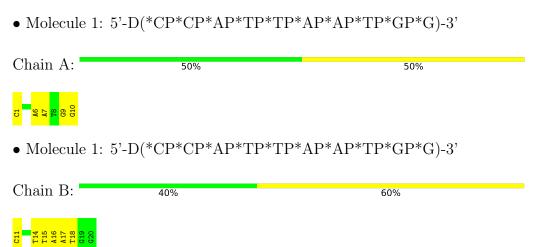
There are 2 unique types of molecules in this entry. The entry contains 715 atoms, of which 188 are hydrogens and 96 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a DNA chain called 5'-D(*CP*CP*AP*TP*AP*AP*AP*TP*GP*G)-3'.

Mol	Chain	Residues		Atoms			ZeroOcc	AltConf	Trace			
1	Λ	10	Total	С	D	Н	N	О	Р	0	0	0
1	A	A 10	317	98	21	94	37	58	9	U	U	
1	D	10	Total	С	D	Н	N	О	Р	0	0	0
1	D	10	317	98	21	94	37	58	9	0	0	U

• Molecule 2 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	A	15	Total D O 45 30 15	0	0
2	В	12	Total D O 36 24 12	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS was not executed.

4 Model quality (i)

4.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: DOD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.70	0/226	0.86	0/347	
1	В	0.82	0/226	0.95	$1/347 \ (0.3\%)$	
All	All	0.76	0/452	0.91	1/694 (0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a maintain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	A	0	1
1	В	0	2
All	All	0	3

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	${f Z}$	$\operatorname{Observed}({}^o)$	$\operatorname{Ideal}({}^{o})$
1	В	14	DT	C1'-O4'-C4'	-5.61	104.49	110.10

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	A	1	DC	Sidechain
1	В	11	DC	Sidechain
1	В	15	DT	Sidechain

4.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	223	94	115	4	0
1	В	223	94	115	4	0
2	A	45	0	0	0	0
2	В	36	0	0	0	0
All	All	527	188	230	6	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

The worst 5 of 6 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	$egin{aligned} ext{Clash} \ ext{overlap } (ext{Å}) \end{aligned}$
1:A:6:DA:C2	1:B:16:DA:C2	2.67	0.83
1:B:16:DA:H2"	1:B:17:DA:O5'	2.00	0.56
1:B:17:DA:H2"	1:B:18:DT:OP2	2.05	0.52
1:A:6:DA:C2	1:B:16:DA:N1	2.82	0.47
1:A:9:DG:H1'	1:A:10:DG:C8	2.47	0.44

There are no symmetry-related clashes.

4.3 Torsion angles (i)

4.3.1 Protein backbone (i)

There are no protein molecules in this entry.

4.3.2 Protein sidechains (i)

There are no protein molecules in this entry.

4.3.3 RNA (i)

There are no RNA molecules in this entry.

4.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

4.5 Carbohydrates (i)

There are no monosaccharides in this entry.

4.6 Ligand geometry (i)

There are no ligands in this entry.

4.7 Other polymers (i)

There are no such residues in this entry.

4.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

