

Nov 27, 2022 – 03:41 PM EST

PDB ID 6W6L : EMDB ID : EMD-21435 Title : Cryo-EM structure of the human ribosome-TMCO1 translocon Authors : Keenan, R.J.; McGilvray, P.T. Deposited on 2020-03-17 : 3.84 Å(reported) Resolution : Based on initial models 5A63, 6OM0, 6FTI :

This is a Full wwPDB EM Validation Report for a publicly released PDB entry. We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.84 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	257	96%	·
2	В	403	98%	•
3	С	427	85%	15%
4	D	157	57% 36%	7%
5	Е	119	88%	11% •
6	F	297	82%	16%
7	G	288	• 75% •	24%
8	Н	248	89%	• 9%

Mol	Chain	Length	Quality of chain	
9	Ι	266	88% 1	12%
10	J	192	99%	
11	K	214	30%	
12	T,	178	8%	5%
13	M	211		
10	N	211	50/0	
15	0	210	04% 30%	
10	0	204	98%	· ·
16	Р	203	94%	••
17	Q	184	82% • 17	'%
18	R	188	98%	••
19	\mathbf{S}	196	• • 20%	
20	Т	176	98%	•••
21	U	160	98%	•••
22	V	128	14% 76% • 23%	
23	W	140	92%	8%
24	Х	157	• 39% 61%	
25	Y	156	74% • 25%	
26	Z	145	90%	8%
27	a	136	98%	••
28	b	148	98%	••
29	с	159	60% • 40%	
30	d	115	81% • 179	%
31	е	125	• 84% • 15	5%
32	f	135	95%	•••
33	g	110	98%	

		1 .		
Mol	Chain	Length	Quality of chain	
34	h	117	• 93%	•••
35	i	123	94%	5%•
36	j	105	91%	• 8%
37	k	97	85%	• 13%
38	1	70	96%	
39	m	51	94%	•••
40	О	25	20%	
41	р	106	6% 92%	• 7%
42	q	92	• 99%	·
43	r	137	88%	• 11%
44	\mathbf{t}	3579	73%	24% ••
45		70	51% 61%	36% ••
	u	76		
46	v	76	58%	38% •
46 47	u v y	76 76 27	58% 19% 100%	38% •
46 47 48	v v y 1	76 76 27 476	58% 19% 100%	38% ·
46 47 48 49	u v y 1 2	76 76 27 476 68	58% 19% 100%	38% • • 11% 9%
46 47 48 49 50	u v y 1 2 3	76 76 27 476 68 96	58% 19% 100% 88% 91% 29% • 70%	38% · • 11% 9%
46 47 48 49 50 51	u v y 1 2 3 4	76 76 27 476 68 96 224	58% 19% 100% 88% 91% 29% • 70% 96%	38% • • 11%
46 47 48 49 50 51 52	u v y 1 2 3 4 5	76 76 27 476 68 96 224 563	58% 19% 100% 88% 91% 29% • 70% 96% 39% 84%	38% · · 11% 9% ··
$ \begin{array}{r} 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ \end{array} $	u v y 1 2 3 4 5 7	76 76 27 476 68 96 224 563 483	58% 19% 100% 88% 91% 29% • 70% 96% 39% 84% 17% 56% •	38% • • 11% 9% •• •• 8% 8% 40%

2 Entry composition (i)

There are 57 unique types of molecules in this entry. The entry contains 259082 atoms, of which 110309 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues			AltConf	Trace				
1	А	246	Total 3870	C 1183	Н 1983	N 387	0 311	S 6	0	0

• Molecule 2 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues			AltConf	Trace				
2	В	396	Total 6535	C 2036	Н 3338	N 601	O 546	S 14	0	0

• Molecule 3 is a protein called 60S ribosomal protein L4.

Mol	Chain	Residues			AltConf	Trace				
3	С	363	Total 5952	C 1817	Н 3064	N 577	0 480	S 14	0	0

• Molecule 4 is a RNA chain called 5.8S ribosomal RNA.

Mol	Chain	Residues			AltConf	Trace				
4	D	157	Total 5029	C 1489	Н 1692	N 587	0 1104	Р 157	0	0

• Molecule 5 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues			AltConf	Trace				
5	Е	119	Total 3825	C 1132	Н 1284	N 454	O 836	Р 119	0	0

• Molecule 6 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues	Atoms						AltConf	Trace
6	F	248	Total	С	Η	Ν	0	\mathbf{S}	0	0
0	Ľ	240	4010	1271	1998	358	370	13	0	0

• Molecule 7 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues			AltConf	Trace				
7	G	220	Total 3689	C 1138	Н 1917	N 335	O 295	$\frac{S}{4}$	0	0

• Molecule 8 is a protein called 60S ribosomal protein L7.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
8	Н	225	Total 3866	C 1202	Н 1996	N 358	O 301	S 9	0	0

• Molecule 9 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
9	Ι	234	Total 3898	C 1197	Н 2018	N 362	0 317	$\frac{S}{4}$	0	0

• Molecule 10 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues			Atom	S			AltConf	Trace
10	J	191	Total 3131	C 960	Н 1605	N 285	0 275	S 6	0	0

• Molecule 11 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
11	K	152	Total 2508	C 789	Н 1270	N 233	O 208	S 8	0	0

• Molecule 12 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues			Atom	S			AltConf	Trace
12	L	169	Total 2739	$\begin{array}{c} \mathrm{C} \\ 855 \end{array}$	Н 1386	N 252	0 240	S 6	0	0

• Molecule 13 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
13	М	205	Total 3421	C 1036	Н 1764	N 344	0 273	$\frac{S}{4}$	0	0

• Molecule 14 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues			Atom	S			AltConf	Trace
14	Ν	138	Total 2328	C 725	Н 1197	N 217	O 182	S 7	0	0

• Molecule 15 is a protein called 60S ribosomal protein L15.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
15	0	203	Total 3450	C 1072	H 1749	N 359	O 266	$\frac{S}{4}$	0	0

• Molecule 16 is a protein called 60S ribosomal protein L13a.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
16	Р	195	Total 3352	C 1034	Н 1746	N 315	O 252	${ m S}{ m 5}$	0	0

• Molecule 17 is a protein called 60S ribosomal protein L17.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
17	Q	153	Total 2511	C 776	Н 1269	N 241	0 216	S 9	0	0

• Molecule 18 is a protein called 60S ribosomal protein L18.

Mol	Chain	Residues			Atom	S			AltConf	Trace
18	R	187	Total 3141	C 944	Н 1628	N 314	O 250	${S \over 5}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L19.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
19	S	156	Total 2750	C 816	Н 1439	N 278	O 209	S 8	0	0

• Molecule 20 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
20	Т	175	Total 2942	C 921	Н 1493	N 283	0 234	S 11	0	0

• Molecule 21 is a protein called 60S ribosomal protein L21.

Mol	Chain	Residues			Atom	S			AltConf	Trace
21	U	157	Total 2636	C 815	Н 1352	N 250	0 214	${ m S}{ m 5}$	0	0

• Molecule 22 is a protein called 60S ribosomal protein L22.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
22	V	99	Total 1639	C 518	Н 831	N 141	0 147	${ m S} { m 2}$	0	0

• Molecule 23 is a protein called 60S ribosomal protein L23.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
23	W	129	Total 2000	C 613	Н 1031	N 182	O 169	${ m S}{ m 5}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L24.

Mol	Chain	Residues		L	Atom	S			AltConf	Trace
24	Х	61	Total 1032	C 327	Н 521	N 100	O 82	${ m S} { m 2}$	0	0

• Molecule 25 is a protein called 60S ribosomal protein L23a.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
25	Y	117	Total 1987	C 612	Н 1029	N 180	O 165	S 1	0	0

• Molecule 26 is a protein called 60S ribosomal protein L26.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
26	Z	133	Total 2298	C 694	Н 1192	N 224	0 185	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues			Atom	S			AltConf	Trace
27	a	134	Total 2282	C 712	Н 1179	N 207	0 181	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called 60S ribosomal protein L27a.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
28	b	147	Total 2375	C 736	Н 1213	N 237	O 186	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
29	с	96	Total 1641	C 489	Н 854	N 174	0 121	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
30	d	95	Total 1512	C 468	Н 774	N 131	O 133	S 6	0	0

• Molecule 31 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
31	е	106	Total 1803	$\begin{array}{c} \mathrm{C} \\ 555 \end{array}$	Н 924	N 170	0 152	${ m S} { m 2}$	0	0

• Molecule 32 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues			Atom	S			AltConf	Trace
32	f	129	Total 2224	$\begin{array}{c} \mathrm{C} \\ 673 \end{array}$	Н 1160	N 220	O 166	${ m S}{ m 5}$	0	0

• Molecule 33 is a protein called 60S ribosomal protein L35a.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
33	g	109	Total 1788	C 555	Н 912	N 174	0 144	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
34	h	112	Total 1867	C 555	Н 979	N 183	0 144	S 6	0	0

• Molecule 35 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues			Atom	S			AltConf	Trace
35	i	122	Total 2163	C 641	Н 1148	N 205	O 168	S 1	0	0

• Molecule 36 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
36	j	97	Total 1664	C 497	Н 870	N 168	0 124	${ m S}{ m 5}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L37.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
37	k	84	Total 1407	C 423	Н 718	N 152	O 109	${ m S}{ m 5}$	0	0

• Molecule 38 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		L	Atom	S			AltConf	Trace
38	1	69	Total 1206	C 366	Н 637	N 103	O 99	S 1	0	0

• Molecule 39 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		ŀ	Atom	S			AltConf	Trace
39	m	50	Total 927	C 281	Н 483	N 98	O 64	S 1	0	0

• Molecule 40 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues		A	Atom	s			AltConf	Trace
40	О	25	Total 529	C 145	Н 289	N 64	O 28	${ m S} { m 3}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L36a.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
41	р	99	Total 1696	C 510	Н 882	N 167	0 131	${ m S}{ m 6}$	0	0

• Molecule 42 is a protein called 60S ribosomal protein L37a.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
42	q	91	Total 1464	C 445	Н 756	N 136	O 120	S 7	0	0

• Molecule 43 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
43	r	122	Total 2021	C 607	Н 1041	N 204	O 165	S 4	0	0

• Molecule 44 is a RNA chain called 28S ribosomal RNA.

Mol	Chain	Residues			Ato	ms			AltConf	Trace
44	t	3510	Total 113261	C 33507	H 38018	N 13757	O 24469	P 3510	0	0

• Molecule 45 is a RNA chain called tRNA.

Mol	Chain	Residues			Ator	ns			AltConf	Trace
45	u	75	Total 2402	C 710	Н 809	N 278	O 530	Р 75	0	0

• Molecule 46 is a RNA chain called tRNA.

Mol	Chain	Residues			Ator	ns			AltConf	Trace
46	V	76	Total 2440	C 721	Н 822	N 287	0 534	Р 76	0	0

• Molecule 47 is a protein called Nascent chain mixture.

Mol	Chain	Residues		A	toms			AltConf	Trace
47	У	27	Total 245	C 81	Н 110	N 27	O 27	0	0

• Molecule 48 is a protein called Protein transport protein Sec61 subunit alpha isoform 1.

Mol	Chain	Residues			Atom	s			AltConf	Trace
48	1	426	Total 6775	C 2189	Н 3452	N 535	O 578	S 21	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	145	SER	ALA	conflict	UNP P61619
1	343	HIS	TYR	conflict	UNP P61619

• Molecule 49 is a protein called Protein transport protein Sec61 subunit gamma.

Mol	Chain	Residues		ŀ	AltConf	Trace				
49	2	62	Total 1021	C 326	Н 527	N 86	O 79	${ m S} { m 3}$	0	0

• Molecule 50 is a protein called Protein transport protein Sec61 subunit beta.

Mol	Chain	Residues		A	Atom	s			AltConf	Trace
50	3	29	Total 474	C 157	Н 245	N 36	0 34	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 51 is a protein called Transmembrane protein 147.

Mol	Chain	Residues			Atom	S			AltConf	Trace
51	4	221	Total 3526	C 1175	Н 1769	N 272	0 294	S 16	0	0

• Molecule 52 is a protein called Nicalin.

Mol	Chain	Residues			Atom	s			AltConf	Trace
52	5	516	Total 8173	C 2595	Н 4083	N 722	O 756	S 17	0	0

• Molecule 53 is a protein called Coiled-coil domain-containing protein 47.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
53	7	290	Total 4775	C 1475	Н 2400	N 435	0 447	S 18	0	0

• Molecule 54 is a protein called Calcium load-activated calcium channel.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
54	6	174	Total 2850	C 887	Н 1463	N 239	0 249	S 12	0	0

• Molecule 55 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
55	В	1	Total Mg 1 1	0
55	D	6	Total Mg 6 6	0
55	Е	9	Total Mg 9 9	0
55	k	1	Total Mg 1 1	0
55	О	1	Total Mg 1 1	0
55	t	10	TotalMg1010	0

• Molecule 56 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
56	k	1	Total Zn 1 1	0
56	р	1	Total Zn 1 1	0
56	q	1	Total Zn 1 1	0

• Molecule 57 is water.

Mol	Chain	Residues	Atoms	AltConf
57	u	1	Total O 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 60S ribosomal protein L8

Chain E:	88%	11% •
61 67 411 422 423 724 033 033 035	U40 488 468 064 0110 0110 01110	
• Molecule 6: 60S	ribosomal protein L5	
Chain F:	82%	• 16%
MET PHE VAL LYS LYS N9 W55	E186 E186 K188 K188 C10 C10 C10 C10 C10 C10 C10 C10	VAL VAL CYS CLNS CLNS CLYS ALA ALA ALA ALA ALA ALA ALA ALA ALA
Ĕ g		
• Molecule 7: 60S	ribosomal protein L6	
Chain G:	75%	24%
MET ALA ALA CLY CLY CLU CLU CLY CLYS CLY CLYS CLY	LYS PRO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALE ATE LYS SER LYS SER LYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS
THR VAL 193 123 H128 N205 N205 A13 L222 L222 L222	ARG HIS GLU GLU GLV GLY GLY FILE PHE PHE P233 F288	
• Molecule 8: 60S	ribosomal protein L7	
Chain H:	89%	• 9%
MET ALV CLV CLV CLV CLU CLV CLV CLV CLV CLV CLV CLV VAL ALA VAL	PR0 CLU CLU CLU CLS CLVS CLVS CLVS ARG ARG ARG ARG ARG ARG ARG ARG	
• Molecule 9: 60S	ribosomal protein L7a	
Chain I:	88%	12%
MET PRO GLYS GLYS LYS LYS LYS CLYS CLYS VAL ALA PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	ALA ALA VAL LYS LYS LYS LYS CLN ALU ALU ALU AL2 A123 G124 G126 G126 C126 C126 C126 C126 C126 C126 C126 C	A262 THR LTYS LLEU GLY
• Molecule 10: 60S	5 ribosomal protein L9	
Chain J:	99%	
MI K21 141 4139 4139 A190 C10 C10		

• Molecule 11: 60S ribosomal protein L10

• Molecule 23: 60S ribosomal protein L23

Chain W:	92%	8%
MET SER LYS ARG GLY GLY SER SER	dIY 1139 A140 A140	
• Molecule 24	4: 60S ribosomal protein L24	
Chain X:	39% 61%	_
MET K2 D25 B25 R47 G62 GLN	SER SER CLU CLU CLU CLU CLU CLYS CLYS ARG ARG ARG ARA ARG CLN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	GLU GLU GLN ALA ALA ALA ALA ALA CLV GLU
ALA LYS LYS ALA LYS GLN ALA SER LYS LYS	THR MALA MALA ALA ALA ALA ALA ALA PRO CLYS CLYS CLYS CLYS CLYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 25	5: 60S ribosomal protein L23a	
Chain Y:	74% • 25%	
MET ALA PRO LYS ALA ALA LYS GLU ALA PRO	ALA ALA PRO PRO PRO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 26	5: 60S ribosomal protein L26	
Chain Z:	90%	8%
M1 K28 K132 G133 G133 F18	TYR LIVS GLU GLU IILE CLU CLU GLU GLU	
• Molecule 27	7: 60S ribosomal protein L27	
Chain a:	98%	
MET GLY K3 R17 F136		
• Molecule 28	8: 60S ribosomal protein L27a	
Chain b:	98%	
MET P2 R87 R105 A148		
• Molecule 29	9: 60S ribosomal protein L29	
Chain c:	60% · 40%	

MET A2 A2 A3 A5 A6 A6 A6 A5 A5 A1 A ALA ALA ALA ALA ALA ALA ALA ALA AL	LYS ILE PRO FRO GLY GLY VAL SER SER R91 L116	H117 L118 C118 C128 ARG ARG ARG ARG ARA ALA ALA ALA	LYS ASP GLN THR LYS ALA ALA ALA ALA	ALA SER VAL PRO
ALA ALA ALA ALA ALA ARG ALA ALA ALA ALA ALA ALA GLU GLU				
• Molecule 30: 60S ribosomal p	rotein L30			
Chain d:	81%	·	17%	
MET VAL ALA ALA ALA ALA LLS LLS SER LLS LLS LLS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	THR GLV LYS LYS			
• Molecule 31: 60S ribosomal p	rotein L31			
Chain e:	84%		• 15%	
MET ALA PRIA PRIA CUS CUS CUS CUS CUS CUS CUS CUS CUS CUS	ASN			
• Molecule 32: 60S ribosomal p	rotein L32			
Chain f:	95%			
MET A2 R33 GLU GLU GLU GLU GLU				
• Molecule 33: 60S ribosomal p	rotein L35a			
Chain g:	98%			
832 1110 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●				
• Molecule 34: 60S ribosomal p	rotein L34			
Chain h:	93%			
MET V2 V2 MB4 A111 A111 A111 A111 CVS GIN LYS LYS LYS LYS				
• Molecule 35: 60S ribosomal p	rotein L35			
Chain i:	94%		5%•	
MET A2 A2 K97 K97 K109 A1 23 A1 23				

• Molecule 36: 60S	ribosomal protein L36	
Chain j:	91%	• 8%
MET ALA LEU ARG ARG ARG ARG LLYS LLYS LLYS LLYS ALA ALA ALA ALA ALA		
• Molecule 37: 60S	ribosomal protein L37	
Chain k:	85%	• 13%
MET 12 12 12 12 12 12 12 12 12 12 12 12 12	ALA SER SER SER	
• Molecule 38: 60S	ribosomal protein L38	
Chain l:	96%	• •
MET 73 K70 K70		
• Molecule 39: 60S	ribosomal protein L39	
Chain m:	94%	• •
MET 83 83 83 83 82 14 14 15 1 15 1		
• Molecule 40: 60S	ribosomal protein L41	
Chain o:	100%	
M1 K16 Q22 R23 S24 K25		
• Molecule 41: 60S	ribosomal protein L36a	
Chain p:	92%	• 7%
MET V2 K28 R69 R81 C95 K97 K97 K97	K100 K100 GLY GLN GLN GLN FHE	
• Molecule 42: 60S	ribosomal protein L37a	
Chain q:	99%	

• Molecule 43: 60S ribosomal protein L28

Chain r:	88%	• 11%	
MET S2 L17 VAL MET VAL	LYS ARG LYS ARG ARG ARG ARG ARG ARG SER SER SER SER		
• Molecule 44:	28S ribosomal RNA		
Chain t:	73%	24% •••	
C1 C5 C9 A10 A17 C18 C18 C18	A25 C30 C30 A32 A39 A42 A42 A42 A42 A55 A55 A55 A55 A55 A71 C71	C72 C72 C74 C75 C75 C91 C91 C93 C93 C93 C110 C116 C116 C116 C116 C116 C116 C116	11 28 11 30 11 31 11 32 11 33 11 33
G134 G135 G135 G137 C138 A144 A144 U149 U149	C156 C157 C169 C169 C174 C174 C175 C175 C175 C175 C175 C176 C183 C183 C185 C185 C185 C185 C186 C188 C188 C188 C188 C188 C186 C176 C176 C169 C167 C169 C167 C169 C167 C169 C167 C169 C167 C169 C167 C169 C167 C169 C169 C169 C169 C169 C169 C169 C169	C196 U201 V201 C201 C207 C213 C214 C213 C214 C213 C214 C213 C219 C219 C219 C219 C219 C219 C219 C219	6227 0228 0229 0230 0230 6231
A232 6233 6234 6235 6235 6237 6243 6243 6243	(225) (2253 (2255) (2255) (2255) (2256) (2261) (2261) (2261) (2261) (2261) (2261) (2272) (2261) (2272) (2261) (2261) (2262) (2262) (2262) (2262) (2262) (2263) (2263) (2265) (226	0309 03110 03110 03123 0367 0367 0367 0381 0381 0381 0381 0381 0381 0381 0381	A390 A394 A401
A402 6403 6406 6406 6406 6407 6407 6408 6408 6408 6408 6408 6408 6408	U434 6442 6443 6443 6444 6444 6443 6445 6455 6455	C474 U478 C479 C479 C434 C438 C438 C438 C438 C438 C438 C439 C439 C439 C439 C439 C439 C439 C439	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6664 6665 6667 6661 6661 6661 6661 6661 6677 6677 6677 6677 6677 6677 6678 6676 6678 6678 6677 6679 6678 6679 6679	C 689 6696 C 686 C 688 C 6888 C 6888 C 688 C 688 C 688 C 688 C 688 C 688 C 688 C 688 C 688
C707 U708 C709 C713 A714 A714 U719 C720 G720	A724 C727 C728 C729 C729 C730 C730 C730 C730 C730 C730 C730 C732 C732 C740 C742 C743 C743 C743 C743 C743 C743 C743 C743	6905 6905 6914 6914 6917 6917 6920 6920 6920 6920 6925 6925 6925 6923 6925 6925 6925 6925 6925 6925 6925 6925 6925 6925 6925 6925 6925	C938 C944 C945 C946 A947 A947
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C964 1969 1969 C1065 C1065 C1065 C1065 C1065 C1065 C1065 C1065 C1071 € C1071 € C1071 € C1082	U1083 C1084 U1085 C1086 C1086 A1089 A1089 G1145 G1145 G1146 G1146 G1152 G1152 G1154 G1154 G1154 G1154 G1154 G1154 G1154	C1156 G1157 A1158 C1159 U1160 G1161 U1162 C1163 C1163 C1165 C1165 C1165
A1167 C1188 C1188 C1170 C1172 C1174 C1174 C1174	C1175 C1176 C1177 C1178 C1179 C1182 C1182 C1182 C1182 C1192 C1193 C1195 C1195 C1195 C1195 C1195 C1196	G1200 G1201 G1218 G1218 G1218 G1225 G1226 G1225 G1226 G1228	A1237 A1238 A1238 A1238 C1239 C1239 C1239 C1239 C1249 C1248 C1248 C1248 C1248 C1248 C1248 C1250 C1250 C1258
C1259 C1261 C1261 C1261 U1268 C1269 G1271 G1271 A1277 A1277 C1278	61279 61279 01280 01285 01285 01285 01286 01286 01387 01387 01387 01381 01381 01382 01381 01382 01382 01382 01382 01382 01382 01382	C1350 A1351 C1353 C1353 C1353 C1354 C1364 C1364 C1364 A1370 C1364 A1370 C1364 C1391 C1395 C1395 C1395 C1395	C1396 C1401 C1402 A1403 A1403
C1 420 U1 421 C1 422 C1 423 C1 423 C1 425 G1 425 G1 427 U1 426 G1 427 C1 428	C1430 C1431 G1431 C1452 C1462 C1465 C1465 C1465 C1465 C1465 C1465 C1465 C1465 C1465 C1465 C1465 C1469 G1469 G1480 G1484	A1500 A1516 A1516 C1521 C1521 C1521 U1560 U1560 U1573 U1578 A1583 A1583 C1587 C1587	G1606 G1607 A1613 A1614

PROTEIN DATA BANK

G1615 A1616	A1610	C1629	G1623 A1624	G1636	<mark>C1637</mark> U1638	C1643	G1652	C1658	U1659 C1660	G1663	C1676	C1680	C1 699 C1 700	A1701	C1713	G1 <mark>723</mark>	G1732	<mark>U1736</mark>	C1737 • U1738 •	U1739 G1740	G1741	C1745	A1747	A1748 🕈 A1749	C1750	G1751 A1752	U1753	C1756 A1757	A1/58 U1761	A1769
A1770	A1776	G1779	G1785 A1786	C1794	G1797	G1803	G1814	<mark>U1815</mark> G1816	G1817 A1818	G1823	01836			01870 G1871	A1872	C1879	U1887	G1891	C1896 G1897	A1898	C1902 G1903	G1906	C1909	U1911 01911	C1916	A1920	G1921	01928 61929	G1933	
111 938	A1939	A1941 C1942	A1943 A	ర ల	C A	9 A	უ უ	A A	A C	C	C C	5 D	5 5	2	5 13 :	- 0 0	U U	D A C	900		- U L	o D U	C P	Ð	50	A A	A U	ບບເ	a	
D C	U		C2004	A2007	U2025	G2027 G2027 A2028	U2029	G2036 C2037			U2051	c2065	G2069	G2072	A2073 G2074	A2075 G2076	U2077 02077 02078	G2079 A2080	C2081 G2082	<mark>G2083</mark> G2084	C2087	C2090	G2091 G2092	C2229	A2232	G2234 C2234 C000F	C2235	62241 A2242	U2246 A2247	
C2248		C2269	G2278 A2279	G2280 C2281	C2282 U2283	U2284 G2285	A2286 A2287	A2292	G2301	G2310	A2311	A2326 G2327	C2330			62343	A2358 G2359	A2360	62373 A2374	A23/5 G2376	123/ /	(12386	U2387 U2388	A2396	G2400	C2401	U2404	C2416	1 31 30	
U2426	G2429	G2431	G2442	U2446 U2447	<mark>C2448</mark> C2449	G2453	C2457	G2458 G2459	C2467	C2468 U2469	G2472	U2473 U2474	G2475	G2482	C2484 C2484	12480	A2492	C2499	C2511	AZ510	42523 U2524 C2525	G2526	<mark>A2532</mark> U2533	CD540	G2543	A2544 G2545	G2565	A2566 C2567 C2568	G2569 A2570	
A 7580	C DEBE	C2595	G2596 G2597	C2606	G2617	U2618	C2632	U2645	C2648	G2652	G2665 U2666	G2673	A 2674 A 2675		U2686 U2687	C2688	G2690		62100	A2704 G2705	G2714	U2719	A2722 A2723	G2732	G2733	G2 <mark>739</mark> U2740	G2741 U2742	A2745	02/46 C2747 U2748	
CO761	CD765	A2766	A2768 U2769	C2776	<u>A2777</u> G2778	A2785	U2798	U2805	G2806	A2814	G2817	G2834 C2835	C2846		A2000	02870 C2871	G2876	G2880	A3570	G3572 C3572	G3574	U3577	U3587 G3588	C3589 G3590	<mark>G3591</mark>	<mark>G3596</mark> G3597	A3601	A3606	U3612	
113615	U3616 N3617	A3619 A3619	A3633	<mark>A3634</mark> G3635	G3643	C3644		G3662 A3663	C3667	c3670	U3675	A 36 R7	A3683	U3700	A3707	A3719	G3728	U3729 A3730	A3731	U3741	A3745 A3746	G3747 G3748	G3751	A3754 A3755	C3759	C3781	G3782 C3783	A3784 U3785	A3788	
U3789 G3790	G3791	G3794 A3795	G3798	A3799	U3809 G3810	U3811	A3838	A3848 C3849	G3850 G3851	G3852	A3861 A3862	U3863	<mark>G3866</mark> C3867	G3868	A3872	A3876	A3877 G3878	A3879	U3886 G3887	C3890	C3897	<mark>63909</mark>	A3918	G4046	C4049	G4054	G4 <mark>061</mark> G4062	G4063 G4064 C4065	C4066	
G4067 A4068	G4069	C4071 C4072	G4075	G4076 G4077	G4078 C4079	U4080 C4081	U4082 C4083	G4084 C4085	U4086 U4087	C4088	A4097	C4105	C4106 C4107	G4108 G4109	C4110	C4124 U4125	C4126	G4130 G4131	A4132	G4145 G4146	G4153	G4158	A4165	C4166 A4167	C4168	A4174 A4175	A41 / 0	G4190	U4191	
A4195	C4205	A4213 C4214	A4215 G4216	C4220	G4228	G4229 A4230	A4242	A4243	G4253	A4266 G4267	U4268	C4276	G4288	64291	64293 64293	C47.94	C4299 G4300	A4301	C4311		04320	C4327	<mark>64333</mark> U4334	G4335	<mark>A4</mark> 338 G4339	A4340 A4341	A4342 A4343	C4349	G4353	
<u>44356</u>	04357 04358	A4359 C4360	G4367	G4372	G4373	U4381	A4384	C4388	G4392	U4399	G4402	U4414	A4426	G4437	U4455	U4459	A4465	U4474	A4475 G4476	G4477	A4480 C4481	A4485	G4486	64490	A4510	U4517 U4518	C4522	G4529	G4532	

• Molecule 50: Protein transport protein Sec61 subunit beta

Chain 3	3:	29%			70%)	
MET PRO GLY THR	PRO SER GLY THR	ASN VAL GLY SER SER GLY	ARG SER PRO SER LYS ALA	VAL ALA ALA ALA ALA ALA ALA GLY GLY	SER THR VAL ARG GLN ARG ARG ARA ARA ARA SER CYS	GLY THR ARG ALA ALA GLY ALA ALA ALA CLY GLY	TRP TRP ARG PHE TYR THR

GLU ASP SER PRO GLY CLEU LLYS LLYS LLS7 S96 ◆

> V55 LYS ALA ALA LYS LYS THR THR GLN

• Molecule 51: Transmembrane protein 147

Chain 4:	96%	
M1 F6 M30 M30 M30 M35 M154 M154 M158 M158 M158 M158 M158 M158 M158 M158		
• Molecule 52: Nicalin		
Chain 5:	84%	8% 8%
MET LEU CLU CLU CLU CLU CLU CLU VAL LEU CLU CLU CLU CLEU CLEU PRO CLE PRO CLEU PRO CLEU VAL VAL	PHE LEU VAL VAL LEU LEU LEU LEU LEU PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	YB4 D55 L66 R62 R62 N65 T70
ET 1 AT2 AT2 AT5 ET8 ET8 E28 C99 E91 F92 E92 F92 F92 F92 F92 F92 F93 F94 F92 F92 F95 F92 F96 F96 F96 F96 F96 F97 F97 F97 F97 F97 F97 F97 F97 F97 F97	L112 P113 A116 M115 M115 M116 P120 P120 Q121 Q122 C123 C123 C123 C123 C123 C123 C123 C	P1 45 A146 A147 E148 E148 E148 E148 E151 E152 A155 A156 A156 A155 A156 A156
S1168 S1170 L1755 L1776 L1776 L1776 R177 R178 R177 R178 R	K194 A195 S197 S197 D198 M1999 H200 S203 C210 C210 C210 C212 C213 C215 C213 C215 C213 C215 C215 C215 C215 C215 C215 C215 C215	T218 1220 1220 1221 229 229 2235 1234 1234 1236 1236 1236 1236 1251 1251 1255 1255 1255
T260 Y261 Y261 H265 H265 A266 A266 A266 A266 P266 P260 P280 P280 P280 P280 P280 P280 P280 P28	12.30 82.99 82.99 82.99 1300 1300 1300 1300 1300 1300 1300 13	5319 1320 1322 1322 1322 1322 1322 1322 1323 1332 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1334 1335 1348 1349 1349 1344 1350
E351 V352 P353 P354 P355 P355 P355 P355 P355 P355 P356 P356 P356 P364 P364 P364 P364 P364 P364 P364 P364 P364 P364 P364 P366 P	1430 1430 1380 1389 1399 1399 1399 1399 1399 1399 1399	M413 M414 T415 M416 M416 M416 M416 T417 M427 F432 F433 F433 F433 F433 F434 F434 F434
P439 F441 F441 F441 F441 F442 E443 0444 0445 P446 P448 P448 P448 P448 P453 P458 P458 P459	Q462 P463 R464 A465 A465 A465 A465 A465 A456 A456 A455 A456 A455 A456 A455 A455 A456 A456 A455 A452 A473 A473 A473 A473 A473 A473 A473 A488 A488 A488 A493 A493 H494	V495 K496 F502 F502 F506 F506 F506 F506 F506 F506 F506 V503 V530 V535

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	82684	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.047	Depositor
Minimum map value	-0.019	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.002	Depositor
Recommended contour level	0.0073	Depositor
Map size (Å)	680.0, 680.0, 680.0	wwPDB
Map dimensions	500, 500, 500	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.36, 1.36, 1.36	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		B	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.42	0/1925	0.52	0/2581	
2	В	0.37	0/3265	0.50	0/4370	
3	С	0.54	0/2942	0.55	0/3951	
4	D	1.50	12/3726~(0.3%)	1.27	17/5804~(0.3%)	
5	Ε	0.49	0/2839	0.90	1/4425~(0.0%)	
6	F	0.30	0/2052	0.47	0/2755	
7	G	0.32	0/1806	0.48	0/2421	
8	Н	0.37	0/1905	0.49	0/2539	
9	Ι	0.34	0/1913	0.46	0/2576	
10	J	0.30	0/1545	0.48	0/2077	
11	Κ	0.26	0/1265	0.46	0/1688	
12	L	0.28	0/1376	0.47	0/1841	
13	М	0.39	0/1688	0.52	0/2260	
14	Ν	0.32	0/1153	0.45	0/1542	
15	0	0.47	0/1746	0.54	0/2338	
16	Р	0.37	0/1638	0.49	0/2191	
17	Q	0.68	0/1268	0.60	0/1701	
18	R	0.40	0/1537	0.53	0/2052	
19	S	0.43	0/1325	0.52	0/1750	
20	Т	0.33	0/1488	0.51	0/1997	
21	U	0.32	0/1312	0.45	0/1753	
22	V	0.28	0/822	0.45	0/1103	
23	W	0.33	0/983	0.47	0/1319	
24	Х	0.38	0/524	0.45	0/698	
25	Y	0.76	0/975	0.58	0/1312	
26	Ζ	0.75	0/1123	0.56	0/1493	
27	а	0.36	0/1126	0.48	0/1502	
28	b	0.41	$0/1\overline{191}$	0.51	$0/1\overline{591}$	
29	с	0.31	0/799	0.48	0/1053	
30	d	0.36	0/748	0.49	0/1004	
31	е	0.45	0/894	0.52	0/1204	
32	f	0.58	$0/1\overline{082}$	0.56	$0/1\overline{443}$	

Mol Chain		В	ond lengths	I	Bond angles			
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5			
33	g	0.42	0/895	0.51	0/1198			
34	h	0.48	0/898	0.54	0/1197			
35	i	0.61	0/1023	0.58	0/1351			
36	j	0.32	0/805	0.46	0/1065			
37	k	0.75	0/703	0.61	0/929			
38	1	0.41	0/575	0.50	0/761			
39	m	0.64	0/454	0.59	0/599			
40	0	0.28	0/241	0.46	0/305			
41	р	0.37	0/827	0.47	0/1090			
42	q	0.41	0/718	0.51	0/953			
43	r	0.51	0/995	0.56	0/1334			
44	t	0.91	40/84165~(0.0%)	1.02	105/131283~(0.1%)			
45	u	0.32	0/1777	1.00	5/2767~(0.2%)			
46	V	0.48	0/1806	1.28	4/2813~(0.1%)			
48	1	0.40	0/3394	0.49	0/4598			
49	2	0.42	0/504	0.50	0/673			
50	3	0.29	0/236	0.43	0/321			
51	4	0.36	0/1808	0.49	0/2459			
52	5	0.25	0/4174	0.45	0/5661			
53	7	0.30	0/2406	0.48	1/3214~(0.0%)			
54	6	0.31	0/1406	0.45	0/1882			
All	All	0.76	52/159791~(0.0%)	0.88	133/234787~(0.1%)			

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
44	t	0	1

All (52) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
44	t	238	G	N9-C4	-7.20	1.32	1.38
4	D	62	А	N9-C4	-6.49	1.33	1.37
44	t	224	А	N9-C4	-6.43	1.33	1.37
44	t	235	С	N1-C2	-6.38	1.33	1.40
44	t	193	С	N3-C4	-6.28	1.29	1.33
44	t	1281	С	C2-O2	-6.22	1.18	1.24
44	t	226	G	N9-C4	-6.17	1.33	1.38
44	t	404	А	N9-C4	-6.15	1.34	1.37

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	D	118	С	C2-O2	-6.07	1.19	1.24
44	\mathbf{t}	402	А	N3-C4	-5.92	1.31	1.34
44	t	2286	А	N9-C4	-5.86	1.34	1.37
44	\mathbf{t}	378	А	N9-C4	-5.72	1.34	1.37
44	${ m t}$	234	G	N7-C5	-5.66	1.35	1.39
4	D	37	А	N9-C4	-5.66	1.34	1.37
4	D	59	А	N9-C4	-5.64	1.34	1.37
44	t	225	С	N1-C6	-5.64	1.33	1.37
44	t	383	А	N9-C4	-5.60	1.34	1.37
4	D	62	А	N3-C4	-5.56	1.31	1.34
44	t	238	G	N3-C4	-5.50	1.31	1.35
44	t	402	А	N9-C4	-5.46	1.34	1.37
44	t	4716	G	N9-C4	-5.46	1.33	1.38
4	D	21	С	N1-C6	-5.42	1.33	1.37
44	t	2360	А	N9-C4	-5.41	1.34	1.37
44	t	236	С	N3-C4	-5.40	1.30	1.33
44	\mathbf{t}	201	U	N1-C2	-5.38	1.33	1.38
44	t	2287	А	N9-C4	-5.37	1.34	1.37
44	t	218	С	N1-C6	-5.33	1.33	1.37
44	t	231	G	N3-C4	-5.31	1.31	1.35
4	D	96	С	N1-C6	-5.26	1.33	1.37
44	t	2766	А	N3-C4	-5.24	1.31	1.34
44	t	394	А	N3-C4	-5.23	1.31	1.34
4	D	76	С	N1-C6	-5.20	1.34	1.37
44	t	494	G	N9-C4	-5.20	1.33	1.38
44	t	401	А	N9-C4	-5.19	1.34	1.37
44	t	1619	А	N9-C4	-5.18	1.34	1.37
44	t	217	С	N1-C6	-5.17	1.34	1.37
4	D	59	А	N3-C4	-5.17	1.31	1.34
44	t	211	G	C6-N1	-5.16	1.35	1.39
44	t	401	А	N3-C4	-5.16	1.31	1.34
44	\mathbf{t}	382	А	N9-C4	-5.15	1.34	1.37
44	t	1484	G	N9-C4	-5.15	1.33	1.38
44	t	2281	С	N1-C6	-5.14	1.34	1.37
44	t	380	А	N9-C4	-5.13	1.34	1.37
44	t	379	А	C5-C4	-5.12	1.35	1.38
4	D	17	A	N9-C4	-5.09	1.34	1.37
4	D	90	С	N1-C6	-5.08	1.34	1.37
44	t	2511	C	N1-C6	-5.08	1.34	1.37
44	t	196	G	N9-C4	-5.08	1.33	1.38
44	t	394	A	N9-C4	-5.06	1.34	1.37
44	t	390	А	N9-C4	-5.03	1.34	1.37

Continued from previous page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
44	\mathbf{t}	2280	G	N7-C5	-5.02	1.36	1.39
4	D	71	А	N9-C4	-5.00	1.34	1.37

All (133) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
44	t	494	G	N3-C4-N9	-9.37	120.38	126.00
46	V	61	С	C2-N1-C1'	9.27	129.00	118.80
44	t	4716	G	N3-C4-N9	-9.19	120.49	126.00
44	t	494	G	N3-C4-C5	8.86	133.03	128.60
44	t	444	G	O4'-C1'-N9	8.84	115.27	108.20
44	t	1281	С	C2-N3-C4	-8.68	115.56	119.90
45	u	55	U	N3-C2-O2	-8.67	116.13	122.20
4	D	83	С	C2-N1-C1'	8.62	128.28	118.80
44	t	1484	G	N3-C4-N9	-8.49	120.90	126.00
44	t	4716	G	N3-C4-C5	8.30	132.75	128.60
44	t	1484	G	C4-N9-C1'	-8.24	115.79	126.50
44	t	1281	С	N1-C2-N3	8.13	124.89	119.20
44	t	227	G	C6-C5-N7	-8.01	125.59	130.40
44	t	481	G	N3-C4-N9	-7.88	121.27	126.00
4	D	83	С	C6-N1-C2	-7.70	117.22	120.30
4	D	83	С	N3-C2-O2	-7.67	116.53	121.90
44	t	227	G	N1-C2-N2	-7.61	109.35	116.20
44	t	1484	G	C8-N9-C1'	7.60	136.88	127.00
44	t	227	G	C2-N3-C4	-7.60	108.10	111.90
46	V	61	С	C6-N1-C1'	-7.58	111.70	120.80
44	t	493	G	C4-N9-C1'	7.39	136.11	126.50
44	t	225	С	C2-N3-C4	-7.37	116.22	119.90
4	D	133	G	C2-N3-C4	-7.32	108.24	111.90
4	D	39	G	O4'-C1'-N9	7.12	113.90	108.20
44	t	1484	G	N3-C2-N2	-7.10	114.93	119.90
44	t	1756	С	N1-C2-O2	-7.09	114.65	118.90
4	D	78	G	O4'-C1'-N9	7.00	113.80	108.20
44	t	1281	С	N3-C2-O2	-7.00	117.00	121.90
44	t	493	G	C8-N9-C1'	-6.92	118.00	127.00
4	D	83	С	N1-C2-O2	6.89	123.03	118.90
44	t	2459	G	N3-C4-N9	-6.87	121.88	126.00
44	t	226	G	N3-C4-C5	6.84	132.02	128.60
45	u	55	U	N1-C2-O2	6.83	127.58	122.80
44	t	226	G	C2-N3-C4	-6.71	108.54	111.90
44	t	236	С	C2-N3-C4	-6.64	116.58	119.90
45	u	55	U	C2-N1-C1'	6.61	125.64	117.70

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
0010000000	J. 00	p. 0000 a0	P ~ 9 0 · · · ·

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
44	\mathbf{t}	4158	G	C8-N9-C1'	-6.49	118.57	127.00
4	D	133	G	O4'-C1'-N9	-6.44	103.05	108.20
44	${ m t}$	235	С	C2-N1-C1'	-6.43	111.72	118.80
44	\mathbf{t}	238	G	N3-C4-C5	6.43	131.82	128.60
44	${ m t}$	927	С	C2-N1-C1'	6.35	125.79	118.80
44	\mathbf{t}	216	G	C8-N9-C4	-6.35	103.86	106.40
44	\mathbf{t}	490	G	O4'-C1'-N9	6.33	113.26	108.20
44	t	234	G	N3-C2-N2	6.28	124.30	119.90
44	t	235	С	N1-C2-O2	-6.28	115.13	118.90
44	${ m t}$	4158	G	N3-C4-N9	6.25	129.75	126.00
44	\mathbf{t}	493	G	N3-C4-N9	6.25	129.75	126.00
44	t	1484	G	N1-C2-N2	6.25	121.82	116.20
44	\mathbf{t}	238	G	C2-N3-C4	-6.24	108.78	111.90
44	\mathbf{t}	243	G	N3-C4-N9	-6.19	122.28	126.00
44	t	1701	А	C8-N9-C4	-6.19	103.32	105.80
44	\mathbf{t}	4158	G	C5-C6-O6	-6.18	124.89	128.60
44	t	4733	С	N3-C2-O2	-6.14	117.61	121.90
44	t	1756	С	C2-N1-C1'	-6.08	112.11	118.80
44	t	1484	G	C6-C5-N7	6.08	134.05	130.40
4	D	130	С	C6-N1-C2	6.00	122.70	120.30
44	t	4158	G	C4-N9-C1'	5.97	134.26	126.50
44	\mathbf{t}	1484	G	N3-C4-C5	5.95	131.58	128.60
44	t	481	G	N3-C4-C5	5.89	131.55	128.60
44	t	3791	G	C2-N3-C4	-5.85	108.97	111.90
4	D	96	С	C6-N1-C2	5.80	122.62	120.30
44	t	4909	G	N3-C2-N2	5.78	123.95	119.90
44	t	730	G	N3-C4-N9	-5.77	122.53	126.00
44	\mathbf{t}	653	G	N1-C6-O6	-5.77	116.44	119.90
44	\mathbf{t}	3782	G	N3-C2-N2	-5.76	115.86	119.90
44	\mathbf{t}	227	G	C5-C6-N1	-5.75	108.63	111.50
44	\mathbf{t}	227	G	N3-C2-N2	5.73	123.91	119.90
44	\mathbf{t}	659	G	C4-N9-C1'	5.73	133.95	126.50
44	t	494	G	C2-N3-C4	-5.69	109.05	111.90
44	\mathbf{t}	190	G	N3-C4-N9	-5.66	122.61	126.00
44	\mathbf{t}	226	G	N3-C4-N9	-5.65	122.61	126.00
4	D	132	G	C8-N9-C1'	-5.63	119.69	127.00
44	t	227	G	N9-C4-C5	-5.62	103.15	105.40
44	t	$23\overline{2}$	A	C4-C5-N7	$5.5\overline{5}$	113.47	110.70
44	\mathbf{t}	4909	G	N1-C2-N2	-5.54	111.21	116.20
44	t	653	G	C5-C6-O6	5.53	131.92	128.60
44	\mathbf{t}	659	G	C8-N9-C1'	-5.53	119.82	127.00
44	t	1241	G	N3-C4-N9	5.50	129.30	126.00

$\alpha \cdot \cdot \cdot$	C		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
44	\mathbf{t}	489	С	C2-N1-C1'	-5.48	112.77	118.80
44	\mathbf{t}	1354	А	O4'-C1'-N9	5.48	112.58	108.20
44	\mathbf{t}	4158	G	C6-C5-N7	-5.47	127.12	130.40
44	\mathbf{t}	442	G	N3-C4-N9	5.44	129.26	126.00
44	\mathbf{t}	235	С	C6-N1-C1'	5.42	127.31	120.80
44	t	651	С	N1-C2-O2	5.41	122.15	118.90
44	t	261	G	N3-C4-C5	5.41	131.30	128.60
4	D	62	А	C2-N3-C4	-5.39	107.91	110.60
44	t	236	С	N3-C2-O2	-5.37	118.14	121.90
44	t	189	G	N3-C4-N9	-5.35	122.79	126.00
53	7	356	LYS	N-CA-C	-5.33	96.60	111.00
44	\mathbf{t}	261	G	C2-N3-C4	-5.32	109.24	111.90
44	\mathbf{t}	225	С	O4'-C1'-N1	5.30	112.44	108.20
44	\mathbf{t}	236	С	N3-C4-C5	5.30	124.02	121.90
44	\mathbf{t}	4593	G	C4-N9-C1'	5.29	133.38	126.50
44	\mathbf{t}	2459	G	C8-N9-C1'	5.29	133.88	127.00
44	\mathbf{t}	227	G	C4-C5-C6	5.28	121.97	118.80
4	D	120	G	N9-C4-C5	-5.26	103.30	105.40
44	\mathbf{t}	4392	G	N9-C4-C5	-5.25	103.30	105.40
4	D	83	С	C6-N1-C1'	-5.25	114.50	120.80
44	t	235	С	N3-C4-N4	-5.23	114.34	118.00
44	t	2459	G	N3-C4-C5	5.23	131.21	128.60
44	t	707	С	C2-N1-C1'	-5.23	113.05	118.80
45	u	55	U	C6-N1-C2	-5.22	117.87	121.00
45	u	74	С	N1-C2-O2	5.22	122.03	118.90
44	\mathbf{t}	481	G	C8-N9-C1'	5.19	133.74	127.00
44	\mathbf{t}	485	G	N3-C4-N9	-5.18	122.89	126.00
44	\mathbf{t}	2386	G	C4-N9-C1'	5.18	133.24	126.50
44	\mathbf{t}	658	G	C4-N9-C1'	-5.18	119.77	126.50
44	\mathbf{t}	238	G	N1-C6-O6	5.18	123.00	119.90
44	\mathbf{t}	1929	G	N3-C2-N2	-5.17	116.28	119.90
46	V	17	А	P-O3'-C3'	5.17	125.90	119.70
46	V	13	С	C2-N1-C1'	-5.16	113.13	118.80
44	\mathbf{t}	4593	G	C8-N9-C1'	-5.16	120.30	127.00
44	\mathbf{t}	3794	G	C2-N3-C4	-5.15	109.32	111.90
44	\mathbf{t}	4819	G	N3-C4-N9	5.15	129.09	126.00
44	t	658	G	N3-C4-N9	-5.12	122.92	126.00
44	t	244	G	C2-N3-C4	-5.12	109.34	111.90
44	t	2459	G	C4-N9-C1'	-5.12	119.85	126.50
44	t	2765	C	C6-N1-C2	5.11	122.34	120.30
4	D	132	G	C4-N9-C1'	5.10	133.13	126.50
4	D	66	A	N9-C1'-C2'	-5.09	106.40	112.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
44	t	232	А	C5-N7-C8	-5.09	101.35	103.90
44	t	2691	G	C8-N9-C1'	-5.08	120.39	127.00
44	t	1761	U	C2-N1-C1'	5.08	123.80	117.70
44	t	493	G	N3-C4-C5	-5.08	126.06	128.60
44	t	261	G	N3-C4-N9	-5.07	122.96	126.00
4	D	120	G	C4-C5-N7	5.07	112.83	110.80
44	t	208	G	C4-N9-C1'	5.07	133.09	126.50
44	t	4066	C	P-O3'-C3'	5.05	125.77	119.70
44	t	707	С	N1-C2-O2	-5.05	115.87	118.90
44	t	493	G	C6-C5-N7	-5.04	127.38	130.40
5	Е	64	G	O4'-C1'-N9	-5.01	104.20	108.20
44	t	2373	G	O4'-C1'-N9	5.00	112.20	108.20
44	t	713	G	N3-C4-N9	-5.00	123.00	126.00

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
44	t	216	G	Sidechain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	244/257~(95%)	224 (92%)	20 (8%)	0	100	100
2	В	394/403~(98%)	363~(92%)	31 (8%)	0	100	100
3	С	361/427~(84%)	337 (93%)	24 (7%)	0	100	100

\mathbf{Mol}	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
6	F	246/297~(83%)	235~(96%)	11 (4%)	0	100	100
7	G	214/288~(74%)	186 (87%)	26 (12%)	2(1%)	17	53
8	Н	223/248~(90%)	207~(93%)	16 (7%)	0	100	100
9	Ι	232/266~(87%)	221 (95%)	11 (5%)	0	100	100
10	J	189/192~(98%)	173 (92%)	16 (8%)	0	100	100
11	К	148/214~(69%)	141 (95%)	7 (5%)	0	100	100
12	L	167/178~(94%)	155 (93%)	12 (7%)	0	100	100
13	М	203/211~(96%)	180 (89%)	23 (11%)	0	100	100
14	Ν	136/215~(63%)	127 (93%)	9~(7%)	0	100	100
15	О	201/204~(98%)	181 (90%)	19 (10%)	1 (0%)	29	66
16	Р	193/203~(95%)	187 (97%)	6 (3%)	0	100	100
17	Q	151/184 (82%)	147 (97%)	4 (3%)	0	100	100
18	R	185/188 (98%)	175 (95%)	10 (5%)	0	100	100
19	S	152/196~(78%)	146 (96%)	6 (4%)	0	100	100
20	Т	173/176~(98%)	165 (95%)	8 (5%)	0	100	100
21	U	155/160~(97%)	146 (94%)	9 (6%)	0	100	100
22	V	97/128~(76%)	95~(98%)	2 (2%)	0	100	100
23	W	127/140~(91%)	123 (97%)	4 (3%)	0	100	100
24	Х	59/157~(38%)	57 (97%)	2(3%)	0	100	100
25	Y	115/156 (74%)	107 (93%)	8 (7%)	0	100	100
26	Ζ	131/145~(90%)	126 (96%)	5 (4%)	0	100	100
27	a	132/136~(97%)	121 (92%)	11 (8%)	0	100	100
28	b	145/148 (98%)	128 (88%)	17 (12%)	0	100	100
29	с	92/159~(58%)	85 (92%)	7 (8%)	0	100	100
30	d	93/115~(81%)	91 (98%)	2(2%)	0	100	100
31	е	104/125~(83%)	97~(93%)	7 (7%)	0	100	100
32	f	127/135~(94%)	115 (91%)	12 (9%)	0	100	100
33	g	107/110~(97%)	100 (94%)	7~(6%)	0	100	100
34	h	110/117~(94%)	105 (96%)	5 (4%)	0	100	100
35	i	120/123~(98%)	115 (96%)	5 (4%)	0	100	100
36	j	95/105~(90%)	94 (99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
37	k	82/97~(84%)	79~(96%)	3~(4%)	0	100	100
38	1	67/70~(96%)	65~(97%)	2(3%)	0	100	100
39	m	48/51~(94%)	48 (100%)	0	0	100	100
40	О	23/25~(92%)	23 (100%)	0	0	100	100
41	р	97/106~(92%)	94~(97%)	3(3%)	0	100	100
42	q	89/92~(97%)	84 (94%)	5~(6%)	0	100	100
43	r	120/137~(88%)	106 (88%)	14 (12%)	0	100	100
48	1	420/476~(88%)	403 (96%)	16 (4%)	1 (0%)	47	78
49	2	60/68~(88%)	59~(98%)	1 (2%)	0	100	100
50	3	27/96~(28%)	25~(93%)	2(7%)	0	100	100
51	4	219/224~(98%)	206 (94%)	13 (6%)	0	100	100
52	5	514/563~(91%)	472 (92%)	39~(8%)	3 (1%)	25	62
53	7	$28\overline{6}/483~(59\%)$	273~(96%)	13 (4%)	0	100	100
54	6	172/188~(92%)	165 (96%)	7 (4%)	0	100	100
All	All	7845/9182~(85%)	7357 (94%)	481 (6%)	7 (0%)	54	83

All (7) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
7	G	127	SER
48	1	75	THR
7	G	128	HIS
52	5	432	LYS
15	0	90	ASN
52	5	523	VAL
52	5	433	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	189/199~(95%)	189 (100%)	0	100	100
2	В	345/349~(99%)	343~(99%)	2(1%)	86	92
3	С	302/348~(87%)	302 (100%)	0	100	100
6	F	208/250~(83%)	205~(99%)	3 (1%)	67	81
7	G	195/252~(77%)	194 (100%)	1 (0%)	88	94
8	Н	194/215~(90%)	189~(97%)	5(3%)	46	69
9	Ι	199/223~(89%)	198 (100%)	1 (0%)	88	94
10	J	170/171~(99%)	170 (100%)	0	100	100
11	Κ	132/181~(73%)	131~(99%)	1 (1%)	81	89
12	L	142/149~(95%)	142 (100%)	0	100	100
13	М	171/177~(97%)	168~(98%)	3(2%)	59	77
14	Ν	117/161~(73%)	116 (99%)	1 (1%)	78	88
15	Ο	171/172~(99%)	168~(98%)	3~(2%)	59	77
16	Р	168/174~(97%)	163~(97%)	5(3%)	41	66
17	Q	134/163~(82%)	131 (98%)	3~(2%)	52	72
18	R	164/165~(99%)	161 (98%)	3~(2%)	59	77
19	S	139/175~(79%)	138~(99%)	1 (1%)	84	91
20	Т	156/157~(99%)	153~(98%)	3~(2%)	57	76
21	U	138/140~(99%)	137~(99%)	1 (1%)	84	91
22	V	89/115~(77%)	87~(98%)	2(2%)	52	72
23	W	100/107~(94%)	100 (100%)	0	100	100
24	Х	53/126~(42%)	53 (100%)	0	100	100
25	Y	105/133~(79%)	103~(98%)	2(2%)	57	76
26	Z	123/135~(91%)	121 (98%)	2(2%)	62	79
27	a	117/118~(99%)	116 (99%)	1 (1%)	78	88
28	b	120/121~(99%)	118 (98%)	2(2%)	60	78
29	с	79/126~(63%)	78~(99%)	1 (1%)	69	82
30	d	80/97 $(82%)$	$78 \ (98\%)$	2(2%)	47	70
31	е	97/110~(88%)	96~(99%)	1 (1%)	76	86
32	f	115/121~(95%)	114 (99%)	1 (1%)	78	88
33	g	$88/\overline{89}\ (99\%)$	87 (99%)	1 (1%)	73	85
34	h	96/100~(96%)	93~(97%)	3(3%)	40	65

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
35	i	109/110~(99%)	103~(94%)	6~(6%)	21	53
36	j	83/89~(93%)	82~(99%)	1 (1%)	71	84
37	k	71/80~(89%)	69~(97%)	2(3%)	43	67
38	1	64/65~(98%)	62~(97%)	2(3%)	40	65
39	m	47/48~(98%)	45~(96%)	2(4%)	29	57
40	О	24/24~(100%)	24 (100%)	0	100	100
41	р	88/94~(94%)	86~(98%)	2(2%)	50	71
42	q	74/75~(99%)	74 (100%)	0	100	100
43	r	106/121~(88%)	104 (98%)	2(2%)	57	76
48	1	362/399~(91%)	355~(98%)	7 (2%)	57	76
49	2	53/59~(90%)	53~(100%)	0	100	100
50	3	26/74~(35%)	25~(96%)	1 (4%)	33	60
51	4	183/186~(98%)	177~(97%)	6 (3%)	38	64
52	5	438/475~(92%)	397~(91%)	41 (9%)	8	34
53	7	261/436~(60%)	241 (92%)	20 (8%)	13	42
54	6	154/164~(94%)	144 (94%)	10 (6%)	17	48
All	All	6839/7818 (88%)	6683 (98%)	156 (2%)	53	71

All (156) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
2	В	114	CYS
2	В	261	ARG
6	F	9	ASN
6	F	10	LYS
6	F	196	ARG
7	G	52	ARG
8	Н	24	ASN
8	Н	25	PHE
8	Н	106	ARG
8	Н	225	THR
8	Н	245	ARG
9	Ι	70	LEU
11	Κ	69	ARG
13	М	21	ARG
13	М	102	ARG

Mol	Chain	Res	Type
13	М	198	ARG
14	Ν	127	VAL
15	0	63	ARG
15	0	133	ILE
15	0	204	ARG
16	Р	94	ARG
16	Р	101	ARG
16	Р	141	LEU
16	Р	169	ARG
16	Р	178	ARG
17	Q	127	ARG
17	Q	139	TYR
17	Q	146	ILE
18	R	37	ARG
18	R	91	ARG
18	R	168	ARG
19	S	153	LYS
20	Т	15	ARG
20	Т	68	PHE
20	Т	138	ARG
21	U	68	THR
22	V	20	LYS
22	V	101	ARG
25	Y	48	ARG
25	Y	152	LYS
26	Ζ	28	LYS
26	Ζ	38	LEU
27	a	17	ARG
28	b	87	ARG
28	b	105	ARG
29	с	116	LEU
30	d	20	LEU
30	d	55	LEU
31	е	97	ASP
32	f	33	ARG
33	g	99	HIS
34	h	54	ARG
34	h	105	LYS
34	h	110	GLN
35	i	70	ARG
35	i	86	LYS
35	i	93	ARG

Mol	Chain	Res	Type
35	i	97	LYS
35	i	109	ARG
35	i	112	ARG
36	j	66	ASP
37	k	12	ARG
37	k	56	ARG
38	1	9	LYS
38	1	17	ARG
39	m	4	HIS
39	m	21	ARG
41	р	69	ARG
41	р	81	ARG
43	r	5	LEU
43	r	17	LEU
48	1	5	PHE
48	1	21	LYS
48	1	47	GLN
48	1	77	MET
48	1	79	LEU
48	1	436	ASP
48	1	441	ILE
50	3	87	LEU
51	4	6	PHE
51	4	35	CYS
51	4	145	HIS
51	4	154	TRP
51	4	158	ARG
51	4	188	HIS
52	5	45	GLU
52	5	65	ASN
52	5	75	MET
52	5	89	LEU
52	5	114	ARG
52	5	128	MET
52	5	133	GLU
52	5	145	PHE
52	5	156	TYR
52	5	211	LEU
52	5	219	ILE
52	5	221	ILE
52	5	234	LEU
52	5	236	LEU

Mol	Chain	Res	Type
52	5	241	ASN
52	5	251	LEU
52	5	259	TYR
52	5	264	THR
52	5	268	TYR
52	5	309	LEU
52	5	311	LEU
52	5	329	ARG
52	5	339	ARG
52	5	349	PHE
52	5	354	PHE
52	5	356	MET
52	5	372	HIS
52	5	379	ARG
52	5	380	LEU
52	5	389	GLU
52	5	403	ARG
52	5	413	ARG
52	5	416	ARG
52	5	424	ARG
52	5	427	TYR
52	5	438	MET
52	5	449	GLN
52	5	471	LYS
52	5	499	LYS
52	5	506	PHE
52	5	546	PHE
53	7	179	PHE
53	7	181	LEU
53	7	212	ARG
53	7	222	LEU
53	7	226	LYS
53	7	227	ARG
53	7	237	MET
53	7	238	MET
53	7	266	ARG
53	7	292	LYS
53	7	302	LEU
53	7	312	MET
53	7	333	PHE
53	7	336	GLN
53	7	357	ARG

Mol	Chain	Res	Type
53	7	376	MET
53	7	383	MET
53	7	423	VAL
53	7	424	GLN
53	7	426	GLN
54	6	28	VAL
54	6	45	LYS
54	6	65	GLN
54	6	71	ARG
54	6	91	MET
54	6	96	PHE
54	6	109	PHE
54	6	112	ARG
54	6	114	VAL
54	6	159	GLN

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such side chains are listed below:

Mol	Chain	Res	Type
19	S	39	GLN
48	1	456	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
4	D	156/157~(99%)	60 (38%)	20~(12%)
44	t	3495/3579~(97%)	849 (24%)	0
45	u	74/76~(97%)	29 (39%)	0
46	V	75/76~(98%)	32~(42%)	0
5	Е	118/119~(99%)	14 (11%)	0
All	All	3918/4007~(97%)	984 (25%)	20~(0%)

All (984) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
4	D	2	G
4	D	13	G
4	D	34	U
4	D	35	С
4	D	39	G

Mol	Chain	Res	Type
4	D	49	G
4	D	51	U
4	D	52	А
4	D	59	A
4	D	61	А
4	D	63	U
4	D	64	U
4	D	65	А
4	D	67	U
4	D	71	А
4	D	72	А
4	D	73	U
4	D	74	U
4	D	75	G
4	D	76	С
4	D	77	A
4	D	78	G
4	D	79	G
4	D	80	А
4	D	81	С
4	D	82	А
4	D	83	С
4	D	84	А
4	D	85	U
4	D	86	U
4	D	87	G
4	D	88	А
4	D	89	U
4	D	96	С
4	D	104	A
4	D	105	С
4	D	109	С
4	D	110	U
4	D	111	U
4	D	112	G
4	D	114	G
4	D	116	С
4	D	117	С
4	D	119	С
4	D	120	G
4	D	121	G
4	D	122	G

Mol	Chain	Res	Type
4	D	123	U
4	D	124	U
4	D	125	С
4	D	126	С
4	D	127	U
4	D	128	С
4	D	129	С
4	D	130	С
4	D	131	G
4	D	132	G
4	D	133	G
4	D	148	А
4	D	150	С
5	Е	7	G
5	Е	11	А
5	Е	22	А
5	Е	23	А
5	Е	24	C
5	Е	33	U
5	Е	35	U
5	Е	40	U
5	Е	48	G
5	Е	49	А
5	Е	53	U
5	Е	64	G
5	Е	96	U
5	Е	110	G
44	t	6	С
44	t	9	С
44	t	11	G
44	t	17	A
44	t	18	C
44	t	25	A
44	t	30	C
44	t	32	G
44	t	39	A
44	t	42	А
44	t	48	G
44	t	49	U
44	t	59	A
44	t	64	A
44	t	65	A

Mol	Chain	Res	Type
44	t	66	А
44	t	70	А
44	t	71	С
44	t	72	С
44	t	74	G
44	t	75	G
44	t	91	G
44	t	93	G
44	t	101	А
44	t	108	А
44	t	110	С
44	t	116	G
44	t	118	С
44	t	119	G
44	t	120	A
44	t	126	С
44	t	129	С
44	\mathbf{t}	130	С
44	t	131	С
44	t	132	G
44	t	133	С
44	t	134	G
44	t	135	G
44	t	136	G
44	t	137	G
44	t	138	С
44	t	144	А
44	t	148	G
44	t	149	U
44	t	156	С
44	t	157	G
44	t	169	С
44	t	173	G
44	t	174	G
44	t	176	G
44	t	181	U
44	t	182	С
44	t	183	G
44	t	184	U
44	t	185	G
44	t	193	C
44	t	196	G

Mol	Chain	Res	Type
44	t	205	А
44	t	206	U
44	t	209	А
44	t	211	G
44	t	212	С
44	t	213	С
44	t	214	С
44	t	215	А
44	t	216	G
44	t	218	С
44	t	219	С
44	t	228	U
44	t	229	G
44	t	230	U
44	t	233	G
44	t	237	G
44	t	250	G
44	t	253	G
44	t	256	С
44	t	258	С
44	t	260	С
44	t	261	G
44	t	272	G
44	t	289	А
44	t	291	U
44	t	300	А
44	t	304	G
44	t	309	G
44	t	310	U
44	t	311	A
44	t	323	A
44	t	334	С
44	t	339	С
44	t	343	А
44	t	367	G
44	t	370	А
44	t	379	А
44	t	381	G
44	t	404	А
44	t	405	G
44	t	406	G
44	t	407	G

Mol	Chain	Res	Type
44	t	408	С
44	t	409	G
44	t	425	G
44	t	426	U
44	t	434	U
44	t	444	G
44	t	447	G
44	t	448	U
44	t	449	С
44	t	451	G
44	\mathbf{t}	456	G
44	\mathbf{t}	458	G
44	t	463	C
44	t	466	C
44	t	474	C
44	t	478	U
44	t	479	С
44	\mathbf{t}	480	С
44	t	484	С
44	t	486	U
44	t	487	G
44	t	489	С
44	t	492	С
44	t	493	G
44	\mathbf{t}	494	G
44	t	495	С
44	t	496	С
44	\mathbf{t}	497	С
44	t	498	G
44	t	499	G
44	t	501	G
44	t	502	G
44	t	503	А
44	t	504	U
44	t	507	U
44	t	508	U
44	t	509	С
44	t	512	G
44	t	641	G
44	t	642	G
44	t	648	С
44	t	650	С

Mol	Chain	Res	Type
44	t	654	G
44	t	655	А
44	t	657	С
44	t	658	G
44	t	659	G
44	t	660	С
44	t	661	G
44	t	674	С
44	t	676	G
44	t	677	G
44	\mathbf{t}	678	С
44	t	679	G
44	t	680	С
44	t	690	С
44	t	692	G
44	t	695	С
44	t	696	G
44	t	698	С
44	t	703	С
44	t	709	С
44	t	714	А
44	t	719	U
44	t	720	G
44	t	721	G
44	\mathbf{t}	724	А
44	t	727	С
44	t	728	С
44	\mathbf{t}	730	G
44	t	736	G
44	t	737	А
44	t	738	A
44	t	739	G
44	t	741	U
44	t	743	G
44	t	900	U
44	t	901	U
44	t	902	A
44	t	903	C
44	t	904	A
44	t	905	G
44	t	906	С
44	t	914	G

Mol	Chain	Res	Type
44	t	917	G
44	t	919	А
44	t	920	G
44	t	921	С
44	t	922	А
44	t	923	С
44	t	924	U
44	t	925	С
44	t	926	G
44	t	927	С
44	t	931	А
44	t	932	U
44	t	933	С
44	t	934	С
44	t	938	G
44	t	944	G
44	t	945	G
44	t	946	G
44	t	947	А
44	t	948	G
44	t	952	G
44	t	953	А
44	t	957	G
44	t	959	С
44	t	964	С
44	t	969	U
44	t	1055	С
44	t	1061	А
44	t	1063	С
44	t	1065	С
44	t	1070	A
44	t	1075	G
44	t	1084	С
44	t	1087	С
44	t	1149	G
44	t	1150	С
44	t	1152	G
44	t	1154	G
44	t	1156	G
44	t	1162	U
44	t	1163	С
44	t	1165	С

Mol	Chain	Res	Type
44	t	1167	А
44	t	1172	G
44	t	1174	С
44	t	1179	G
44	t	1180	С
44	t	1190	С
44	t	1192	U
44	t	1193	С
44	t	1196	G
44	t	1197	С
44	t	1198	С
44	t	1199	С
44	t	1201	G
44	t	1218	G
44	t	1220	С
44	t	1221	А
44	t	1222	С
44	t	1223	G
44	t	1225	G
44	t	1226	С
44	t	1228	С
44	t	1234	С
44	t	1237	А
44	t	1238	А
44	t	1239	G
44	t	1240	G
44	t	1248	G
44	t	1250	С
44	t	1251	G
44	t	1258	G
44	t	1259	С
44	t	1260	G
44	t	1261	С
44	t	1268	U
44	t	1269	С
44	t	1271	G
44	t	1277	А
44	t	1279	G
44	t	1285	U
44	t	1296	С
44	t	1301	С
44	t	1309	А

Mol	Chain	Res	Type
44	t	1320	А
44	t	1337	А
44	t	1341	G
44	t	1342	G
44	t	1348	С
44	t	1349	G
44	t	1350	С
44	t	1351	А
44	t	1353	G
44	t	1354	А
44	t	1361	С
44	t	1362	С
44	t	1364	U
44	t	1370	А
44	t	1377	G
44	\mathbf{t}	1380	А
44	\mathbf{t}	1381	А
44	\mathbf{t}	1391	G
44	\mathbf{t}	1392	С
44	t	1393	U
44	t	1394	С
44	t	1395	G
44	t	1396	С
44	t	1401	С
44	t	1403	А
44	t	1420	С
44	t	1421	U
44	t	1423	U
44	t	1424	С
44	\mathbf{t}	1426	А
44	t	1427	G
44	t	1428	U
44	t	1430	С
44	t	1431	G
44	t	1439	G
44	t	1463	С
44	t	1464	G
44	t	1465	С
44	t	1466	G
44	t	1467	С
44	t	1468	С
44	t	1469	G

Mol	Chain	Res	Type
44	t	1473	А
44	t	1480	G
44	t	1500	А
44	t	1507	А
44	t	1516	А
44	t	1521	G
44	t	1531	G
44	t	1560	U
44	t	1564	U
44	t	1573	U
44	t	1578	U
44	t	1583	А
44	t	1587	G
44	t	1593	С
44	t	1606	G
44	t	1607	G
44	t	1613	А
44	t	1614	А
44	t	1615	G
44	t	1616	А
44	t	1619	А
44	t	1622	С
44	t	1624	А
44	t	1636	G
44	t	1638	U
44	t	1643	С
44	t	1652	G
44	t	1658	С
44	t	1659	U
44	t	1660	С
44	t	1663	G
44	t	1676	С
44	t	1680	С
44	t	1700	С
44	t	1701	A
44	t	1713	С
44	t	1723	G
44	t	1732	G
44	t	1736	U
44	t	1740	G
44	t	1741	G
44	t	1746	G

Mol	Chain	Res	Type
44	t	1747	А
44	t	1750	С
44	t	1757	А
44	t	1758	А
44	t	1769	А
44	t	1776	А
44	t	1779	G
44	t	1785	G
44	t	1786	А
44	t	1794	С
44	t	1797	G
44	t	1803	G
44	t	1814	G
44	t	1816	G
44	t	1818	А
44	t	1823	G
44	t	1836	G
44	t	1850	G
44	t	1870	U
44	t	1871	G
44	t	1872	А
44	t	1879	С
44	t	1887	U
44	t	1891	G
44	t	1896	С
44	t	1898	А
44	t	1902	С
44	t	1903	G
44	t	1906	G
44	t	1909	С
44	t	1911	U
44	t	1912	С
44	t	1916	С
44	t	1920	А
44	t	1921	G
44	t	1928	U
44	t	1929	G
44	t	1933	G
44	t	1938	U
44	t	1939	А
44	t	1940	U
44	t	1941	А

Mol	Chain	Res	Type
44	t	1942	G
44	t	1943	А
44	t	2007	А
44	t	2025	U
44	t	2027	G
44	t	2029	U
44	t	2036	G
44	t	2037	G
44	t	2043	С
44	t	2050	А
44	t	2051	U
44	t	2065	С
44	t	2069	G
44	t	2072	G
44	t	2073	А
44	t	2074	G
44	t	2075	А
44	t	2076	G
44	t	2078	G
44	t	2079	G
44	t	2081	С
44	t	2082	G
44	t	2084	G
44	t	2087	С
44	t	2090	С
44	t	2091	G
44	t	2092	G
44	t	2229	С
44	t	2232	А
44	t	2233	G
44	t	2234	С
44	t	2235	С
44	t	2241	G
44	t	$2\overline{242}$	A
44	t	2246	U
44	t	2247	A
44	t	$2\overline{249}$	G
44	t	2268	С
44	t	2269	С
44	t	$2\overline{278}$	G
44	t	2279	A
44	t	2280	G

Mol	Chain	Res	Type
44	t	2282	С
44	t	2284	U
44	t	2285	G
44	t	2292	А
44	t	2301	G
44	\mathbf{t}	2310	G
44	t	2311	А
44	t	2326	А
44	t	2327	G
44	t	2330	С
44	t	2340	G
44	t	2343	G
44	t	2358	А
44	t	2374	А
44	t	2375	А
44	t	2377	U
44	t	2381	G
44	t	2387	U
44	t	2388	U
44	t	2396	А
44	t	2400	G
44	t	2401	С
44	t	2404	U
44	t	2416	С
44	t	2421	G
44	t	2426	U
44	t	2429	G
44	t	2431	G
44	t	2442	G
44	t	2446	U
44	t	2447	U
44	t	2449	С
44	t	2453	G
44	t	2457	С
44	t	2458	G
44	t	2467	С
44	t	2468	С
44	t	2469	U
44	t	2472	G
44	t	2473	U
44	t	2474	U
44	t	2475	G

Mol	Chain	Res	Type
44	t	2482	G
44	t	2483	С
44	t	2484	С
44	t	2485	G
44	t	2492	А
44	t	2499	С
44	t	2516	А
44	t	2523	G
44	t	2524	U
44	t	2525	G
44	t	2526	G
44	t	2532	A
44	t	2533	U
44	t	2545	G
44	t	2565	G
44	t	2566	A
44	t	2568	С
44	t	2570	A
44	t	2580	A
44	t	2585	G
44	t	2595	С
44	t	2597	G
44	t	2606	С
44	t	2617	G
44	t	2618	U
44	t	2632	С
44	t	2645	U
44	t	2648	С
44	t	2652	G
44	t	2665	G
44	t	2666	U
44	t	2673	G
44	t	2675	A
44	t	2686	U
44	t	2689	С
44	t	2690	G
44	t	2691	G
44	t	$2\overline{700}$	G
44	t	2705	G
44	t	2714	G
44	t	2719	U
44	t	2722	А

Mol	Chain	Res	Type
44	t	2723	А
44	t	2732	G
44	t	2733	G
44	t	2739	G
44	t	2741	G
44	t	2742	U
44	t	2745	А
44	t	2746	U
44	t	2748	U
44	t	2751	С
44	t	2766	А
44	t	2767	U
44	t	2769	U
44	t	2776	С
44	t	2778	G
44	t	2785	А
44	t	2798	U
44	t	2805	U
44	t	2806	G
44	t	2814	А
44	t	2817	G
44	t	2834	G
44	t	2835	С
44	t	2846	С
44	t	2860	А
44	t	2870	U
44	t	2871	С
44	t	2876	G
44	t	2880	G
44	t	3570	А
44	t	3571	G
44	t	3572	С
44	t	3574	G
44	t	3577	U
44	t	3587	U
44	t	3589	С
44	t	3591	G
44	t	3596	G
44	t	3597	G
44	t	3601	А
44	t	3606	А
44	t	3612	U

Mol	Chain	Res	Type
44	t	3615	U
44	t	3616	U
44	t	3617	А
44	t	3619	А
44	t	3633	А
44	t	3635	G
44	t	3643	G
44	t	3644	С
44	t	3651	U
44	t	3662	G
44	t	3663	А
44	t	3667	С
44	t	3670	С
44	t	3675	U
44	t	3683	А
44	t	3700	U
44	t	3707	А
44	t	3719	А
44	t	3728	G
44	t	3730	А
44	t	3731	А
44	t	3741	U
44	t	3745	А
44	t	3747	G
44	t	3748	G
44	t	3751	G
44	t	3754	А
44	t	3755	А
44	t	3759	С
44	t	3781	С
44	t	3782	G
44	t	3783	С
44	t	3784	A
44	t	3785	U
44	t	3788	A
44	t	3789	U
44	t	3790	G
44	t	3795	A
44	t	3798	G
44	t	3799	А
44	t	3809	U
44	t	3811	U

Mol	Chain	Res	Type
44	t	3838	А
44	t	3848	А
44	t	3849	С
44	t	3850	G
44	t	3851	G
44	t	3852	G
44	t	3861	А
44	t	3863	U
44	t	3866	G
44	t	3868	G
44	t	3872	А
44	t	3876	А
44	t	3877	А
44	t	3878	G
44	t	3879	А
44	t	3886	U
44	t	3887	G
44	t	3890	С
44	t	3897	С
44	t	3909	G
44	t	3918	А
44	t	4046	G
44	t	4049	С
44	t	4054	G
44	t	4061	G
44	t	4062	G
44	t	4063	G
44	t	4064	G
44	t	4065	G
44	t	4066	С
44	t	4067	G
44	t	4068	A
44	t	4069	G
44	t	4070	С
44	t	4071	С
44	t	4072	С
44	t	4075	G
44	t	4076	G
44	t	4077	G
44	t	4078	G
44	t	4079	С
44	t	4080	U

Mol	Chain	Res	Type
44	t	4081	С
44	t	4082	U
44	t	4083	С
44	t	4084	G
44	t	4085	С
44	t	4086	U
44	t	4088	С
44	t	4097	А
44	t	4105	С
44	t	4107	С
44	t	4108	G
44	t	4109	G
44	t	4110	С
44	t	4124	С
44	t	4125	U
44	t	4126	С
44	t	4130	G
44	t	4132	А
44	t	4145	G
44	t	4146	G
44	t	4153	G
44	t	4158	G
44	t	4165	А
44	t	4167	А
44	t	4168	С
44	t	4174	А
44	t	4176	А
44	t	4187	G
44	t	4190	G
44	t	4191	U
44	t	4195	А
44	t	4205	С
44	t	4213	A
44	t	4215	А
44	t	4216	G
44	t	4220	С
44	t	4228	G
44	t	4229	G
44	t	4230	А
44	t	4242	A
44	t	4243	А
44	t	4253	G

Mol	Chain	Res	Type
44	t	4266	А
44	t	4267	G
44	t	4268	U
44	t	4276	С
44	t	4288	G
44	t	4291	G
44	t	4292	G
44	t	4294	С
44	t	4299	С
44	t	4300	G
44	t	4301	А
44	t	4311	С
44	t	4316	U
44	t	4320	U
44	t	4326	G
44	t	4327	С
44	t	4333	G
44	t	4334	U
44	t	4335	G
44	t	4338	А
44	t	4339	G
44	t	4340	А
44	t	4341	А
44	t	4343	А
44	t	4349	С
44	t	4353	G
44	t	4356	А
44	t	4358	А
44	t	4360	С
44	t	4367	G
44	t	4372	G
44	t	4373	G
44	t	4384	А
44	t	4388	C
44	t	4402	G
44	t	4414	U
44	t	4426	А
44	t	4437	G
44	t	4455	U
44	t	4459	U
44	t	4465	А
44	t	4474	U

Mol	Chain	Res	Type
44	t	4475	А
44	t	4477	G
44	t	4480	А
44	t	4481	С
44	t	4485	А
44	t	4486	G
44	t	4490	G
44	t	4510	А
44	t	4517	U
44	t	4518	U
44	t	4522	С
44	t	4529	G
44	t	4532	G
44	t	4537	G
44	t	4551	А
44	t	4552	А
44	t	4559	U
44	t	4561	А
44	t	4562	G
44	t	4578	А
44	t	4579	G
44	t	4586	А
44	t	4593	G
44	t	4595	G
44	t	4598	U
44	t	4599	G
44	t	4601	G
44	t	4611	G
44	t	4618	A
44	t	4619	U
44	t	4626	A
44	t	4632	С
44	t	4634	A
44	t	4649	A
44	t	$4\overline{656}$	G
44	t	4657	С
44	t	4662	А
44	t	4671	U
44	t	4681	G
44	t	4684	G
44	t	4692	С
44	t	4693	G

Mol	Chain	Res	Type
44	t	4694	G
44	t	4695	С
44	t	4696	A
44	t	4699	G
44	t	4703	С
44	t	4704	G
44	t	4712	G
44	t	4715	U
44	t	4716	G
44	t	4718	С
44	t	4720	U
44	t	4722	G
44	t	4726	A
44	t	4727	G
44	t	4732	U
44	t	4735	С
44	t	4736	С
44	t	4737	G
44	t	4816	С
44	t	4817	G
44	t	4818	G
44	t	4819	G
44	t	4820	G
44	t	4822	U
44	t	4824	С
44	t	4827	U
44	t	4828	G
44	t	4831	G
44	t	4832	А
44	t	4833	G
44	t	4834	U
44	t	4838	С
44	t	4839	U
44	t	4840	U
44	t	4841	С
44	t	4852	A
44	t	4853	С
44	t	4883	U
44	t	4885	G
44	t	4886	С
44	t	4894	G
44	t	4895	С

Mol	Chain	Res	Type
44	t	4896	А
44	t	4898	С
44	t	4901	А
44	t	4902	С
44	t	4907	G
44	t	4908	U
44	t	4909	G
44	t	4917	U
44	t	4924	А
44	t	4933	G
44	t	4934	U
44	t	4937	А
44	t	4943	U
44	t	4946	U
44	t	4947	U
44	t	4949	U
44	t	4950	G
44	t	4957	G
44	t	4971	С
44	t	4972	А
44	t	4975	G
44	t	4982	С
44	t	4984	U
44	t	4985	С
44	t	4986	G
44	t	4998	U
44	t	4999	G
44	t	5005	С
44	t	5007	G
44	t	5008	С
44	t	5011	U
44	t	5012	С
44	t	5015	С
44	t	5016	А
44	t	5020	G
44	t	5024	U
45	u	4	С
45	u	8	U
45	u	15	G
45	u	17	С
45	u	18	G
45	u	19	G

Mol	Chain	Res	Type
45	u	20	U
45	u	21	А
45	u	23	А
45	u	24	G
45	u	44	G
45	u	46	G
45	u	47	U
45	u	48	С
45	u	50	U
45	u	52	G
45	u	55	U
45	u	56	C
45	u	57	G
45	u	59	U
45	u	60	U
45	u	61	С
45	u	64	А
45	u	69	G
45	u	71	G
45	u	72	С
45	u	73	А
45	u	74	С
45	u	76	А
46	V	8	U
46	V	11	C
46	V	12	С
46	V	13	С
46	V	15	G
46	V	16	А
46	v	17	А
46	V	18	G
46	v	19	G
46	V	20	U
46	V	21	A
46	V	22	G
46	v	23	A
46	v	30	G
46	V	44	G
46	v	47	U
46	V	48	С
46	V	49	C
46	V	51	U

Mol	Chain	Res	Type
46	V	54	U
46	V	55	U
46	V	56	С
46	V	58	A
46	V	61	С
46	V	62	С
46	V	68	С
46	V	69	G
46	V	71	G
46	V	72	С
46	V	73	А
46	V	75	С
46	V	76	А

All	(20)	RNA	pucker	outliers	are	listed	below:
-----	------	-----	-------------------------	----------	-----	--------	--------

Mol	Chain	Res	Type
4	D	70	G
4	D	72	А
4	D	73	U
4	D	75	G
4	D	76	С
4	D	77	А
4	D	78	G
4	D	79	G
4	D	80	А
4	D	81	С
4	D	82	А
4	D	83	С
4	D	84	А
4	D	85	U
4	D	86	U
4	D	87	G
4	D	123	U
4	D	125	С
4	D	126	С
4	D	129	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 31 ligands modelled in this entry, 31 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
44	t	11

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	t	750:G	O3'	890:C	Р	20.30
1	t	3919:C	O3'	4035:G	Р	19.55
1	t	976:U	O3'	1047:G	Р	16.16
1	t	1680:C	O3'	1699:C	Р	15.85
1	t	1089:A	O3'	1145:G	Р	15.56
1	t	2881:G	O3'	3569:C	Р	15.47
1	t	2093:C	O3'	2228:C	Р	14.21
1	t	1253:A	O3'	1256:G	Р	12.99
1	t	4737:G	O3'	4815:C	Р	12.48
1	t	4853:C	O3'	4882:C	Р	11.15
1	t	1202:G	O3'	1216:G	Р	9.86

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-21435. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 250

Y Index: 250

Z Index: 250

6.2.2 Raw map

X Index: 250

Y Index: 250

Z Index: 250

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 285

Y Index: 225

Z Index: 252

6.3.2 Raw map

X Index: 285

Y Index: 225

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0073. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{21435}msk_{1.map}$ (i) 6.5.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 3776 $\rm nm^3;$ this corresponds to an approximate mass of 3411 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.260 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.260 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.84	-	-
Author-provided FSC curve	3.82	4.78	3.89
Unmasked-calculated*	4.84	8.93	5.36

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.84 differs from the reported value 3.84 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-21435 and PDB model 6W6L. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0073 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0073).

9.4 Atom inclusion (i)

At the recommended contour level, 89% of all backbone atoms, 87% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0073) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8714	0.2910
1	0.7882	0.2400
2	0.7819	0.2730
3	0.7556	0.1440
4	0.8209	0.1830
5	0.4940	0.0340
6	0.7636	0.1550
7	0.5226	0.1630
А	0.8394	0.3420
В	0.8623	0.3090
С	0.8925	0.3840
D	0.9835	0.3990
E	0.9937	0.2630
F	0.8961	0.1970
G	0.8856	0.2800
Н	0.8218	0.2760
I	0.8434	0.2960
J	0.8306	0.2060
K	0.5281	0.0810
L	0.7782	0.1730
М	0.8340	0.3220
N	0.8818	0.2330
0	0.9062	0.3690
Р	0.8454	0.2920
Q	0.8955	0.4140
R	0.8867	0.3530
S	0.8455	0.3000
T	0.8754	0.2450
U	0.8423	0.2700
V	0.7177	0.1210
W	0.7899	0.3020
X	0.8333	0.2910
Y	0.8679	0.4090
Z	0.8634	0.4170
a	0.8840	0.2930

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
b	0.9230	0.3400
С	0.8232	0.2050
d	0.8710	0.2620
е	0.9021	0.3670
f	0.8606	0.4040
g	0.8634	0.3580
h	0.8637	0.3570
i	0.8318	0.3590
j	0.8609	0.2760
k	0.9225	0.4330
1	0.8366	0.3220
m	0.8913	0.4240
О	0.6636	0.1890
р	0.7959	0.2550
q	0.7997	0.3020
r	0.9107	0.3860
t	0.9506	0.3110
u	0.3949	0.1160
V	0.8300	0.2100
у	0.7259	0.3850

