

wwPDB EM Validation Summary Report (i)

Dec 19, 2022 – 02:05 PM EST

PDB ID	:	7U0H
EMDB ID	:	EMD-26259
Title	:	State NE1 nucleolar 60S ribosome biogenesis intermediate - Overall model
Authors	:	Cruz, V.E.; Sekulski, K.; Peddada, N.; Erzberger, J.P.
Deposited on	:	2022-02-18
Resolution	:	2.76 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.2
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.76 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Q	uality of chain		
1	1	3396	18%		14%	20%
2	2	158	11%	85%		15%
3	6	87	32% 44%	24%		32%
4	А	254	35% 69%			31%
5	В	387	<u>.</u>	88%		12%
6	С	362	7%	100%		
7	Е	176	11%	89%		11%
8	F	244	8%	91%		9%

Continued on next page...

Mol	Chain	Length	Quality of chain	
9	G	256	72%	28%
10	Н	191	14%	
		250	60%	
11	K	376	68%	32%
12	L	199	91%	9%
13	М	138	99%	•
14	Ν	204	91%	8%
15	О	199	99%	•
16	Р	184	92%	8%
17	Q	186	6% 78%	22%
18	R	189	83%	17%
19	S	172	23%	<mark>.</mark> .
20	Т	160	36% 35% • 64%	
21	U	121	45%	• 12%
22	V	137	18%	•
23	W	236	86%	
24	X	142	97%	
25	Y	127	98%	•••
26	Z	136	32%	
27	2	149	11% 62%	4
21	h	647	60%	1.60/
20	0	105	34%	10%
- 29	С	105	91%	• 8%
30	d	113	95%	5%
31	е	130	97%	•
32	f	107	99%	·
33	g	121	93%	7%

Continued from previous page...

Continued on next page...

Mol	Chain	Length	Quality of	chain
9.4	1	100	8%	
34	h	120	99%	•
25		100	44%	
35	1	100	99%	•
36	i	88		
50	J	00	28%	•
37	k	78	00%	
- 51	IX	10	100%	•
38	m	9	100%	
			21%	
39	n	605	61%	39%
			34%	
40	0	220	60%	40%
			32%	
41	р	92	98%	••
10			35%	
42	q	455	41%	58%
49		961	41%	
45	r	201	63%	37%
44	C	520		
-11	<u>د</u>	520	50%	0
45	t	322	89%	• 11%
			18%	
46	u	199	71%	29%
			31%	
47	W	841	38%	62%
			25%	
48	У	245	99%	
10		100	52%	
49	Z	106	52%	48%

Continued from previous page...

2 Entry composition (i)

There are 51 unique types of molecules in this entry. The entry contains 124932 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 25S rRNA.

Mol	Chain	Residues			AltConf	Trace			
1	1	2722	Total 58236	C 26005	N 10495	O 19014	Р 2722	0	0

• Molecule 2 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	2	158	Total 3353	C 1500	N 586	O 1109	Р 158	0	0

• Molecule 3 is a RNA chain called ITS2 rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	6	59	Total 1247	C 559	N 211	0 418	Р 59	0	0

• Molecule 4 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
4	А	176	Total 1356	C 856	N 263	O 237	0	0

• Molecule 5 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	В	340	Total 2700	C 1713	N 502	0 479	S 6	0	0

• Molecule 6 is a protein called 60S ribosomal protein L4-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	С	361	Total 2749	C 1730	N 522	0 494	${ m S} { m 3}$	0	0

• Molecule 7 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	Е	156	Total 1239	C 800	N 222	O 216	S 1	0	0

• Molecule 8 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues		Ate	Atoms					
8	F	222	Total 1784	C 1151	N 324	O 308	S 1	0	0	

• Molecule 9 is a protein called 60S ribosomal protein L8-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	G	185	Total 1470	C 948	N 258	0 262	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 10 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	Н	191	Total 1518	C 963	N 274	0 277	S 4	0	0

• Molecule 11 is a protein called Proteasome-interacting protein CIC1.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	K	256	Total 2064	C 1332	N 342	0 387	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
12	L	182	Total 1459	C 907	N 300	O 252	0	0

• Molecule 13 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	М	137	Total 1059	C 678	N 200	0 179	${ m S} { m 2}$	0	0

• Molecule 14 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues		At	AltConf	Trace			
14	Ν	187	Total 1604	C 1006	N 340	O 257	S 1	0	0

• Molecule 15 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	Ο	197	Total 1555	C 1003	N 289	O 262	S 1	0	0

• Molecule 16 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
16	Р	170	Total 1341	C 833	N 265	O 243	0	0

• Molecule 17 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	Q	146	Total 1132	C 716	N 218	O 197	S 1	0	0

• Molecule 18 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
18	R	156	Total 1258	C 781	N 265	0 212	0	0

• Molecule 19 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	S	171	Total 1437	C 925	N 266	0 243	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
20	Т	57	Total 433	C 265	N 87	O 80	S 1	0	0

• Molecule 21 is a protein called 60S ribosomal protein L22-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
21	U	106	Total 844	C 545	N 138	O 161	0	0

• Molecule 22 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues		At	AltConf	Trace			
22	V	136	Total 1003	C 628	N 189	O 179	${ m S} 7$	0	0

• Molecule 23 is a protein called Ribosome assembly factor MRT4.

Mol	Chain	Residues		Ate	AltConf	Trace			
23	W	232	Total 1870	C 1184	N 321	0 360	$\frac{S}{5}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	Х	138	Total 1082	C 694	N 193	O 193	${S \over 2}$	0	0

• Molecule 25 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
25	Y	126	Total 993	$\begin{array}{c} \mathrm{C} \\ 625 \end{array}$	N 192	O 176	0	0

• Molecule 26 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
26	Ζ	134	Total 1087	C 707	N 201	O 179	0	0

• Molecule 27 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	a	92	Total 731	C 477	N 129	0 124	S 1	0	0

• Molecule 28 is a protein called Nucleolar GTP-binding protein 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	b	546	Total 4430	C 2802	N 779	O 826	S 23	0	0

• Molecule 29 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	с	97	Total 743	C 479	N 124	0 139	S 1	0	0

• Molecule 30 is a protein called 60S ribosomal protein L31-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	d	107	Total 873	C 553	N 165	0 154	S 1	0	0

• Molecule 31 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	е	126	Total 1012	C 641	N 204	0 166	S 1	0	0

• Molecule 32 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues		At	AltConf	Trace			
32	f	106	Total 850	C 540	N 165	0 144	S 1	0	0

• Molecule 33 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues		At	AltConf	Trace			
33	g	112	Total 881	С 546	N 179	0 152	$\frac{S}{4}$	0	0

• Molecule 34 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues		At	AltConf	Trace			
34	h	119	Total 969	C 615	N 186	0 167	S 1	0	0

• Molecule 35 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	i	99	Total 771	C 481	N 156	0 132	${ m S} { m 2}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	j	87	Total 681	C 414	N 148	0 114	${ m S}{ m 5}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
37	k	77	Total 612	C 391	N 115	O 106	0	0

• Molecule 38 is a protein called Nucleolar GTP-binding protein 2.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
38	m	9	Total 69	C 43	N 11	O 15	0	0

• Molecule 39 is a protein called Pescadillo homolog.

Mol	Chain	Residues		At	AltConf	Trace			
39	n	368	Total 3001	C 1944	N 519	O 528	S 10	0	0

• Molecule 40 is a protein called Ribosome biogenesis protein 15.

Mol	Chain	Residues		At	AltConf	Trace			
40	О	133	Total 1107	C 716	N 198	0 189	${S \atop 4}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues		At	AltConf	Trace			
41	р	91	Total 694	C 429	N 138	0 121	${ m S}{ m 6}$	0	0

• Molecule 42 is a protein called Ribosome biogenesis protein NOP53.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	q	189	Total	C	N	0	S 1	0	0
	-		1988	998	290	293	T		

• Molecule 43 is a protein called Ribosome biogenesis protein NSA2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
43	r	164	Total 1341	C 846	N 260	0 231	$\frac{S}{4}$	0	0

• Molecule 44 is a protein called Nuclear GTP-binding protein NUG1.

Mol	Chain	Residues	Atoms				AltConf	Trace	
44	S	36	Total 301	C 184	N 69	O 46	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 45 is a protein called Ribosome biogenesis protein RLP7.

Mol	Chain	Residues	Atoms				AltConf	Trace	
45	t	287	Total 2306	C 1459	N 427	0 417	${ m S} { m 3}$	0	0

• Molecule 46 is a protein called Ribosome biogenesis protein RLP24.

Mol	Chain	Residues	Atoms				AltConf	Trace	
46	u	141	Total 1191	C 748	N 238	0 196	S 9	0	0

• Molecule 47 is a protein called 27S pre-rRNA (guanosine(2922)-2'-O)-methyltransferase.

Mol	Chain	Residues	Atoms					AltConf	Trace
47	W	321	Total 2610	C 1629	N 480	0 485	S 16	0	0

• Molecule 48 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues	Atoms				AltConf	Trace	
48	У	244	Total 1849	C 1146	N 319	0 377	S 7	0	0

• Molecule 49 is a protein called UPF0642 protein YBL028C.

Mol	Chain	Residues	Atoms				AltConf	Trace
49	Z	55	Total 444	C 273	N 88	O 83	0	0

• Molecule 50 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
50	b	1	Total Mg 1 1	g 0

• Molecule 51 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
51	g	1	Total Zn 1 1	0
51	j	1	Total Zn 1 1	0
51	р	1	Total Zn 1 1	0
51	u	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 25S rRNA

• Molecule 13: 60S ribosomal protein L14-A

• Molecule 32: 60S ribosomal protein L33-A	
Chain f: 99%	
\bullet Molecule 33: 60S ribosomal protein L34-A	
Chain g: 93%	7%
MET A2 B97 B97 B97 B97 B98 C998 C998 C100 V1004 V1004 V1004 V1004 C1005 B110 C1005 C105 C1	
\bullet Molecule 34: 60S ribosomal protein L35-A	
Chain h: 99%	:
MET A2 G3 G3 F36 F38 F38 F38 F38 F120 A120	
\bullet Molecule 35: 60S ribosomal protein L36-A	
44% Chain i: 99%	
MET 12 K4 K4 K1 L111 L111 P22 A23 A23 A23 A23 A23 A23 A23 A23 A23 A	NG3 S64 E65 K67 K67 R68 A69 K71 K71 K72 K75 F80 F80 F80 F80 F80 F80 F80 F80 F80 F80
• Molecule 36: 60S ribosomal protein L37-A	
17% Chain j: 99%	
MET 62 64 75 75 75 75 78 87 81 A86 887 887 887	
\bullet Molecule 37: 60S ribosomal protein L38	
Chain k: 28%	
MET A2 16 16 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
• Molecule 38: Nucleolar GTP-binding protein 2	
Chain m: 100%	

• Molecule 39: Pescadillo homolog

32% Chain p: 98%

• Molecule 46: Ribosome biogenesis protein RLP24

_	18%						
Chain u:		71%		2	9%		
***	• • • •	• •••••	*******		****		
M1 L63 A64 V65 D66	567 168 169 170 073	E84 N115 K116 E117 K118 K118 D119 F120 F121 R122	D123 K124 K125 L126 V127 E128 E128 S129 N130	P131 E132 L133 L134 L134 R135 T136 R137	E138 V139 E140 1141 ALA ARG LYS LEU ALA ALA	LYS GLU GLU GLU ARG ALA ALA GLU SER VAL SER SER CU	GLU GLU
GLU SER GLU GLU GLU GLU ASP	MET GLU ILE ASP SER ASP GLU GLU	GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	LLE ASN ARG ARG ARG ASN LYS LYS LYS AI A	PHE			
• Molecule	e 47: 27S pr	re-rRNA (guanos	sine(2922)-2'-O)-methyltrar	nsferase		
Chain w:	31%	38%		62%			
MET GLY LYS THR GLN LYS LYS ASN	SER LYS GLY ARG LEU ASP ARG ARG	TYR TYR LEU LEU LYS GLU LYS GLU LYS GLY TYR ARG	SER SER PHE LYS TLE TLE GLN TLE ASN CLV	TYR GLY HIS PHE LEU GLU GLU SER SER	LTS VAL TLE TLE LEU CYS ALA ALA ALA ALA	GLY SER TRP	
CYS GLN VAL ALA SER LYS LEU CYS	PRO VAL ASN SER LEU ILE ILE GLY	VAL ASP ILE VAL PRO MET PRO PRO PRO ASN	ILE THR PHE GLN GLN SER ASP THR THR THR GLU GLU	CYS ARG SER LYS LYS LEU ARG GLY TYR	LVS LVS THR TRP LVS ALA ALA ASP ASP THR VAL LEU	HIS ASP GLY	
ALA PRO ASN VAL GLY LEU GLY TRP	VAL GLN ASP ALA PHE THR GLN SFR	GLN CHER LEU CLEU GLN GLN ALA LEU VAL VAL	ASN VAL VAL VAL VAL ASN ASN THR PHE VAL THR THR	TLE PHE ARG SER LYS ASP TYR ASN	LEU LEU VAL PHE GLN GLN LEU	CLU LYS VAL	
GLU ALA THR LYS PRO PRO ALA SFR	ARG ASN VAL SER ALA GLU ILE PHE	VAL VAL CYS CYS CYS CYS CLYS ALA PHE LYS ALA PRO PRO LYS	ASP PRO LEU LEU LEU ASP PRO CLU CLYS CLU VAL	GLU GLU GLU FRO ASP GLY GLN GLN	ASN MET GLU SER LYS ILE TYR ASN PRO PRO	LYS VAL	
***	*****	•••••	•••••	*****		•••••	*****
ARG LYS ARG Q244 C245 Y246 F7077	E248 E248 D250 N251 L252 L253	Y254 H265 E256 T257 S268 1259 L260 D261 D261	V263 R264 T265 E266 E266 D267 P268 T269 S270 S270	L272 L272 G273 G273 G273 M275 N275 K277	F.2.78 T.2.79 I.280 D.281 E.282 N.283 N.283 H.285 H.285	E286 W287 K288 1289 1289 L290 K291 K292 L293	rz94 q295 T297 D298 E299 F300
*****	••• •••	•••••	******		**	•••••	***
R301 S302 C303 I304 E305 D306	L307 K308 V309 L310 G311 K312	K313 D314 F315 F315 K316 M317 T318 L319 L319 R320 R320	K323 1324 1324 1325 1328 1328 1328 1328 1328 1328	GLU VAL LYS ASP ASP ASP ASP ASP ATHR THR	GLU ILE CLU VAL VAL PRO LEU LEU E3488	E349 E350 (351 1352 E353 K354 K354 K354 C355 C355 C355 C355 C355 C355 C355 C	G358 L359 Q360
*****	*****	••••	*******	******	******	•••••	******
E361 K362 Q363 R364 L365 N366	V367 K368 R369 E370 R371 R372	R373 K374 K375 E376 M377 K378 K378 C379 K379 K380 K380	L382 (38385 (3885 (3885 (3885 (3887 (3887 (3887) (3877) (3	T391 P392 T3934 D394 T395 G396 T395	E398 A309 A400 S401 L402 G403	E405 E405 E407 E407 F408 N409 N409 E410 K411 K411 K411 K411 K413 A413	E414 K415 K415 T416 G417 G417 1418 L419 L419 L419 N420
*****	*****			*** *	******	••	
D421 L422 A423 K424 G425 K426	K427 R428 M429 I430 F431 F431	ASP ASP GLU GLU LEU ASP ASP ASP ILE TYR ILE	ASP GLU ASN ILE MET ILE ILYS ASP LYS ASP SER	ALA ALA ASP ASP A459 D460 D461 L462 L462	5464 5464 5464 14666 1466 1466 A468 M469 M469 Y470	S471 D472 TYR LYS LYS THR ARG ARG ARG SER GLU ARG	
ASP ALA LYS PHE ARG ALA LYS GTM	ALA ARG GLY GLY ASP ASP GLU GLU	GLU TRP GLV THR GLY ASN GLY GLV GLU CLU CLU CLU CLU	LYS GLU GLU GLU GLU GLU LYS ASP TYR TYR TYR ASP ASP	ASP ASP ASP ASP ASP GLU GLU GLU GLU	ASP SER ASP ASP ASP GLU GLU THR THR THR	LEU TLE SER	
LYS LEU LYS GLY GLY ASP	HIS LYS LYS SER SER SER LYS ALA ARG	MET TLE PHE ASN ASN ASN PHE ASN ASN VAL	PRO ASP PRO PRO PRO ASN VAL VAL ASN ASN ASP	ILE MET SER SER SER GLU SER VAL GLY	AJP ILE SER SER LVS LVS LVS LVS LVS LVS LVS	HIS GLU GLU	
MET HIS GLN LYS GLN ASP GLU	ASP SER ASP GLU SER SER SER	ASP ASP ASP PHE GLU TLE TLE VAL ASN	ALA SER GLU GLU ASP ASP ASP ASP ASP ASP SER ASP	GLU GLU GLU GLU CLYS ASSN GLU THR THR	LTS GLU LYS HTS SER ARG ASP ILE ASP ILE	ALA THR VAL	
GLU ALA MET THR THR LEU ALA HIS GLN	LEU ALA LEU GLY GLN GLN ASN ASN	HIS ASP LEU VAL ASP GLU GLY ASN ASN TYR TYR	PHE ASP ASP GLU GLU FF01 E701	N710 K711 P712 1713 T714 K715 E716	K722 E723 K724 I725 K726 K726 M728	N7 29 A7 30 R7 31 K7 34 E7 38	
00 0 00 4 m				⁶ 년 <u>6</u> 월 월 월 ●●●●●●●●●●			
A7: R74 K74 R74 M74	R74 A74 V74 A74 R76 R76 L75	E7 177 177 177 177 177 177 177 177 177 1	NT DT DT DT DT DT DT DT DT DT DT DT DT DT	K77 D77 K77 E77 E77 E77	S7 R71 M75 M75 M75 R78 R78 R78 K78 VAL		L8(A8(G8(

• Molecule 48: Eukaryotic translation initiation factor 6

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	83000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	1.2	Depositor
Minimum defocus (nm)	900	Depositor
Maximum defocus (nm)	2200	Depositor
Magnification	81000	Depositor
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.319	Depositor
Minimum map value	-0.169	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.009	Depositor
Recommended contour level	0.0284	Depositor
Map size (Å)	411.53998, 411.53998, 411.53998	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.02885, 1.02885, 1.02885	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	E	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	0.46	0/65173	0.83	16/101591~(0.0%)
2	2	0.54	0/3746	0.84	0/5832
3	6	0.31	0/1390	0.82	0/2156
4	А	0.27	0/1382	0.56	0/1860
5	В	0.30	0/2755	0.54	0/3700
6	С	0.29	0/2801	0.53	0/3792
7	Е	0.28	0/1260	0.52	0/1694
8	F	0.31	0/1821	0.51	0/2451
9	G	0.29	0/1496	0.50	0/2023
10	Н	0.29	0/1539	0.51	0/2073
11	Κ	0.26	0/2098	0.48	0/2830
12	L	0.28	0/1483	0.57	0/1991
13	М	0.28	0/1074	0.52	0/1446
14	Ν	0.32	0/1637	0.62	0/2189
15	0	0.31	0/1585	0.52	0/2128
16	Р	0.29	0/1360	0.55	0/1824
17	Q	0.28	0/1149	0.54	0/1550
18	R	0.27	0/1275	0.54	0/1702
19	S	0.30	0/1473	0.52	0/1980
20	Т	0.25	0/434	0.50	0/575
21	U	0.28	0/861	0.49	0/1167
22	V	0.30	0/1018	0.54	0/1369
23	W	0.26	0/1902	0.51	0/2564
24	Х	0.30	0/1097	0.52	0/1476
25	Y	0.30	0/1004	0.55	0/1341
26	Ζ	0.30	0/1113	0.48	0/1490
27	a	0.27	0/747	0.48	0/1008
28	b	0.27	0/4508	0.50	0/6068
29	с	0.29	0/751	0.48	0/1008
30	d	0.29	0/887	0.54	0/1191
31	е	0.29	0/1033	0.54	0/1383
32	f	0.32	0/868	0.56	0/1168

Mal	Chain	Bond	lengths	E	Bond angles
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
33	g	0.30	0/891	0.57	0/1191
34	h	0.28	0/978	0.51	0/1301
35	i	0.26	0/778	0.57	0/1034
36	j	0.31	0/696	0.60	0/923
37	k	0.27	0/618	0.52	0/826
38	m	0.26	0/68	0.54	0/91
39	n	0.28	0/3071	0.50	0/4147
40	0	0.27	0/1129	0.51	0/1502
41	р	0.29	0/701	0.56	0/934
42	q	0.26	0/1610	0.51	0/2143
43	r	0.26	0/1362	0.52	0/1818
44	\mathbf{S}	0.26	0/301	0.57	0/386
45	t	0.27	0/2333	0.52	0/3128
46	u	0.29	0/1213	0.56	0/1614
47	W	0.26	0/2633	0.49	0/3493
48	У	0.27	0/1872	0.53	0/2548
49	Z	0.26	0/445	0.49	0/585
All	All	0.39	0/133419	0.71	16/194284~(0.0%)

There are no bond length outliers.

The worst 5 of 16 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	406	G	O4'-C1'-N9	8.52	115.01	108.20
1	1	1199	С	C2-N1-C1'	6.97	126.47	118.80
1	1	2861	U	C2-N1-C1'	6.42	125.41	117.70
1	1	1199	С	C6-N1-C1'	-6.32	113.21	120.80
1	1	3092	С	C2-N1-C1'	6.27	125.70	118.80

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	А	174/254~(68%)	164 (94%)	10 (6%)	0	100	100
5	В	336/387~(87%)	328~(98%)	8 (2%)	0	100	100
6	С	359/362~(99%)	351 (98%)	8 (2%)	0	100	100
7	Ε	152/176~(86%)	149 (98%)	3(2%)	0	100	100
8	F	220/244~(90%)	215 (98%)	5 (2%)	0	100	100
9	G	181/256~(71%)	179 (99%)	2(1%)	0	100	100
10	Н	189/191~(99%)	185 (98%)	4 (2%)	0	100	100
11	K	252/376~(67%)	244 (97%)	8 (3%)	0	100	100
12	L	180/199~(90%)	176 (98%)	4 (2%)	0	100	100
13	М	135/138~(98%)	132 (98%)	3 (2%)	0	100	100
14	Ν	183/204~(90%)	176 (96%)	7 (4%)	0	100	100
15	Ο	195/199~(98%)	194 (100%)	1 (0%)	0	100	100
16	Р	164/184~(89%)	157 (96%)	7 (4%)	0	100	100
17	Q	144/186~(77%)	140 (97%)	4 (3%)	0	100	100
18	R	154/189~(82%)	152 (99%)	2 (1%)	0	100	100
19	S	169/172~(98%)	162 (96%)	7 (4%)	0	100	100
20	Т	49/160~(31%)	48 (98%)	1 (2%)	0	100	100
21	U	104/121~(86%)	96 (92%)	8 (8%)	0	100	100
22	V	134/137~(98%)	128 (96%)	6 (4%)	0	100	100
23	W	230/236~(98%)	223 (97%)	7(3%)	0	100	100
24	Х	136/142~(96%)	133 (98%)	3 (2%)	0	100	100
25	Y	124/127~(98%)	124 (100%)	0	0	100	100
26	Z	132/136~(97%)	130 (98%)	2 (2%)	0	100	100
27	a	90/149~(60%)	83 (92%)	7 (8%)	0	100	100
28	b	542/647~(84%)	517 (95%)	25 (5%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
29	с	95/105~(90%)	94~(99%)	1 (1%)	0	100	100
30	d	105/113~(93%)	104 (99%)	1 (1%)	0	100	100
31	е	124/130~(95%)	121 (98%)	3 (2%)	0	100	100
32	f	104/107~(97%)	103~(99%)	1 (1%)	0	100	100
33	g	110/121~(91%)	108~(98%)	2(2%)	0	100	100
34	h	117/120~(98%)	115~(98%)	2 (2%)	0	100	100
35	i	97/100~(97%)	95~(98%)	2(2%)	0	100	100
36	j	85/88~(97%)	82 (96%)	3 (4%)	0	100	100
37	k	75/78~(96%)	74 (99%)	1 (1%)	0	100	100
38	m	7/9~(78%)	7 (100%)	0	0	100	100
39	n	362/605~(60%)	349 (96%)	13 (4%)	0	100	100
40	О	131/220~(60%)	119 (91%)	12 (9%)	0	100	100
41	р	89/92~(97%)	84 (94%)	5 (6%)	0	100	100
42	q	183/455~(40%)	174 (95%)	9 (5%)	0	100	100
43	r	156/261~(60%)	150 (96%)	6 (4%)	0	100	100
44	S	34/520~(6%)	34 (100%)	0	0	100	100
45	t	283/322~(88%)	274 (97%)	9 (3%)	0	100	100
46	u	139/199~(70%)	137 (99%)	2 (1%)	0	100	100
47	W	311/841~(37%)	300 (96%)	11 (4%)	0	100	100
48	У	242/245~(99%)	232~(96%)	10 (4%)	0	100	100
49	Z	53/106~(50%)	53 (100%)	0	0	100	100
All	All	7630/10409~(73%)	7395 (97%)	235 (3%)	0	100	100

Continued from previous page...

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
4	А	138/196~(70%)	138 (100%)	0	100	100
5	В	284/323~(88%)	283 (100%)	1 (0%)	91	93
6	С	288/289~(100%)	288 (100%)	0	100	100
7	Ε	134/153~(88%)	134 (100%)	0	100	100
8	F	186/205~(91%)	185 (100%)	1 (0%)	88	92
9	G	155/208~(74%)	155 (100%)	0	100	100
10	Н	171/171~(100%)	171 (100%)	0	100	100
11	К	236/346~(68%)	236 (100%)	0	100	100
12	L	144/159~(91%)	144 (100%)	0	100	100
13	М	108/109~(99%)	108 (100%)	0	100	100
14	Ν	163/176~(93%)	162 (99%)	1 (1%)	86	90
15	О	160/162~(99%)	160 (100%)	0	100	100
16	Р	137/146~(94%)	137 (100%)	0	100	100
17	Q	121/151~(80%)	121 (100%)	0	100	100
18	R	129/154 (84%)	129 (100%)	0	100	100
19	S	155/156~(99%)	154 (99%)	1 (1%)	86	90
20	Т	45/137~(33%)	44 (98%)	1 (2%)	52	70
21	U	93/107~(87%)	92 (99%)	1 (1%)	73	84
22	V	104/105~(99%)	104 (100%)	0	100	100
23	W	209/213~(98%)	207 (99%)	2 (1%)	76	85
24	Х	115/118 (98%)	115 (100%)	0	100	100
25	Y	109/110~(99%)	108 (99%)	1 (1%)	78	87
26	Ζ	115/116 (99%)	115 (100%)	0	100	100
27	a	76/119~(64%)	76 (100%)	0	100	100
28	b	490/573~(86%)	487 (99%)	3 (1%)	86	90
29	с	81/88~(92%)	80 (99%)	1 (1%)	71	82
30	d	94/97~(97%)	94 (100%)	0	100	100
31	е	108/111~(97%)	108 (100%)	0	100	100
32	f	90/91~(99%)	90 (100%)	0	100	100
33	g	95/103~(92%)	95 (100%)	0	100	100
34	h	104/105~(99%)	104 (100%)	0	100	100
35	i	81/82~(99%)	81 (100%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
36	j	70/71~(99%)	70 (100%)	0	100	100
37	k	68/69~(99%)	68 (100%)	0	100	100
38	m	8/8~(100%)	8 (100%)	0	100	100
39	n	331/548~(60%)	330 (100%)	1 (0%)	92	95
40	О	118/199~(59%)	117~(99%)	1 (1%)	81	88
41	р	71/72~(99%)	70~(99%)	1 (1%)	67	79
42	q	177/420~(42%)	175 (99%)	2(1%)	73	84
43	r	146/229~(64%)	146 (100%)	0	100	100
44	S	32/445~(7%)	32 (100%)	0	100	100
45	t	256/287~(89%)	254~(99%)	2(1%)	81	88
46	u	126/180~(70%)	126 (100%)	0	100	100
47	W	282/745~(38%)	282 (100%)	0	100	100
48	У	210/211~(100%)	209 (100%)	1 (0%)	88	92
49	Z	48/95~(50%)	48 (100%)	0	100	100
All	All	6661/8958~(74%)	6640 (100%)	21 (0%)	92	95

Continued from previous page...

5 of 21 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
40	0	102	PHE
42	q	395	GLU
48	У	139	ARG
45	t	257	MET
42	q	227	TYR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 6 such sidechains are listed below:

Mol	Chain	Res	Type
28	b	500	GLN
39	n	69	GLN
46	u	115	ASN
11	Κ	104	HIS
11	Κ	85	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	2708/3396~(79%)	494 (18%)	7~(0%)
2	2	157/158~(99%)	23 (14%)	0
3	6	56/87~(64%)	21 (37%)	0
All	All	2921/3641 (80%)	538 (18%)	7 (0%)

5 of 538 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	5	G
1	1	14	U
1	1	16	А
1	1	40	А
1	1	42	С

5 of 7 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	956	U
1	1	1568	U
1	1	3269	U
1	1	3121	U
1	1	761	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 5 ligands modelled in this entry, 5 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-26259. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

Z Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 221

Y Index: 230

Z Index: 177

6.3.2 Raw map

X Index: 221

Y Index: 230

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0284. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 490 $\rm nm^3;$ this corresponds to an approximate mass of 442 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.362 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.362 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.76	-	-
Author-provided FSC curve	2.55	2.95	2.61
Unmasked-calculated*	2.91	3.45	2.96

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-26259 and PDB model 7U0H. Per-residue inclusion information can be found in section 3 on page 13.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0284 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0284).

9.4 Atom inclusion (i)

At the recommended contour level, 68% of all backbone atoms, 65% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0284) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6486	0.5920
1	0.7113	0.5930
2	0.8589	0.6600
6	0.4194	0.4830
А	0.4292	0.5860
В	0.8753	0.6890
С	0.8511	0.6900
Ε	0.7395	0.6420
F	0.8203	0.6610
G	0.7104	0.6300
Н	0.7013	0.6300
K	0.1600	0.4190
L	0.6985	0.6340
М	0.8004	0.6560
N	0.9001	0.7010
0	0.8818	0.6970
Р	0.8123	0.6690
Q	0.8113	0.6560
R	0.7657	0.6530
S	0.6578	0.6090
Т	0.0071	0.2750
U	0.4289	0.5210
V	0.6660	0.6340
W	0.1954	0.4470
X	0.8142	0.6770
Y	0.8468	0.6780
Z	0.5760	0.6080
a	0.7332	0.6410
b	0.2801	0.4730
с	0.4802	0.5610
d	0.7733	0.6540
e	0.8793	0.7000
f	0.9428	0.7160
g	0.7632	0.6470
h	0.8017	0.6690

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
i	0.4577	0.5640
j	0.7851	0.6630
k	0.5826	0.6040
m	0.0145	0.3200
n	0.5560	0.5840
0	0.3548	0.4660
р	0.5627	0.6110
q	0.1833	0.4720
r	0.3122	0.4980
s	0.4602	0.6020
t	0.3748	0.5230
u	0.6376	0.6200
W	0.1894	0.4580
У	0.5724	0.5700
Z	0.0806	0.5060

