

wwPDB X-ray Structure Validation Summary Report (i)

Aug 26, 2024 – 12:32 PM EDT

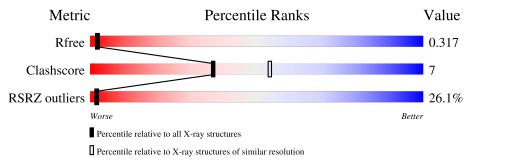
:	8TWH
:	Crystal structure of (GGGTT)3GGG G-quadruplex in complex with small
	molecule ligand RHPS4
:	Yatsunyk, L.A.; Martin, K.N.; Lam, G.
:	2023-08-21
:	2.47 Å(reported)
	: : :

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	3.0
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.002 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.38.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.47 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	164625	7106 (2.50-2.46)
Clashscore	180529	7991 (2.50-2.46)
RSRZ outliers	164620	7106 (2.50-2.46)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	18	22%	28%		
1	В	18	28%	22%		
1	С	18	33% 67%	33%		
1	D	18	83%	17%		
1	Е	18	44%	22%		
1	F	18	28%	28%		
1	G	18	28%	11%		

Continued from previous page...

Mol	Chain	Length	Quality of chain	
1	Н	18	78%	22%
	-	10	22%	
1	l	18	78%	22%
1	т	10	28%	
	J	18	89%	11%

2 Entry composition (i)

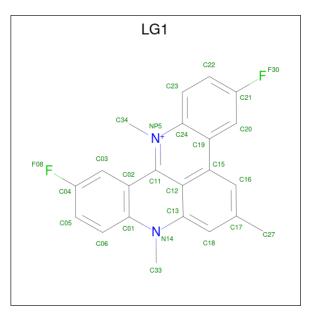
There are 4 unique types of molecules in this entry. The entry contains 4109 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	А	18	Total	С	Ν	0	Р	0	0	0
	A	10	381	180	72	112	17	0	0	0
1	В	18	Total	С	Ν	0	Р	0	0	0
	D	10	381	180	72	112	17	0	0	0
1	С	18	Total	С	Ν	Ο	Р	0	0	0
	U	10	381	180	72	112	17	0	0	0
1	D	18	Total	С	Ν	Ο	Р	0	0	0
L	D	10	381	180	72	112	17	0	0	U
1	Е	18	Total	С	Ν	Ο	Р	0	0	0
1	Ľ	10	381	180	72	112	17	0	0	0
1	F	18	Total	С	Ν	Ο	Р	0	0	0
	1	10	381	180	72	112	17	0	0	0
1	G	18	Total	С	Ν	Ο	Р	0	0	0
	<u> </u>	10	381	180	72	112	17	0	0	0
1	Н	18	Total	С	Ν	Ο	Р	0	0	0
1	11	10	381	180	72	112	17	0	0	0
1	Ι	18	Total	С	Ν	Ο	Р	0	0	0
	1	10	381	180	72	112	17	U	U	U
1	J	18	Total	С	Ν	Ο	Р	0	0	0
	0	10	381	180	72	112	17	0		0

• Molecule 1 is a DNA chain called (GGGTT)3GGG DNA.

• Molecule 2 is POTASSIUM ION (three-letter code: K) (formula: K).


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	3	Total K 3 3	0	0
2	В	2	Total K 2 2	0	0
2	С	3	Total K 3 3	0	0
2	D	2	Total K 2 2	0	0

Continued from previous page...

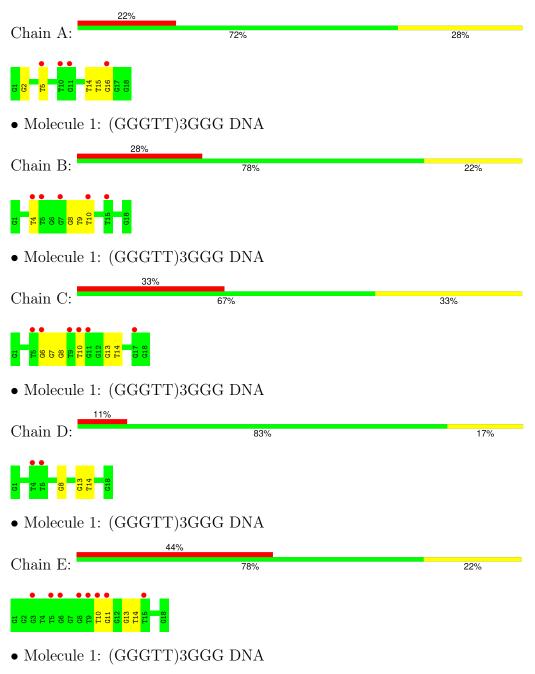
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	Е	3	Total K 3 3	0	0
2	F	2	Total K 2 2	0	0
2	G	3	Total K 3 3	0	0
2	Н	2	Total K 2 2	0	0
2	Ι	2	Total K 2 2	0	0
2	J	3	Total K 3 3	0	0

• Molecule 3 is 3,11-DIFLUORO-6,8,13-TRIMETHYL-8H-QUINO[4,3,2-KL]ACRIDIN-13-IU M (three-letter code: LG1) (formula: $C_{22}H_{17}F_2N_2$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
3	Λ	1	Total	С	F	Ν	0	0
0	Л	1	26	22	2	2	0	0
3	В	1	Total	С	F	Ν	0	0
0	D	1	26	22	2	2	0	0
3	С	1	Total	С	F	Ν	0	0
0	U	1	26	22	2	2	0	0
3	D	1	Total	С	F	Ν	0	0
0	D	1	26	22	2	2	0	0
3	Е	1	Total	С	F	Ν	0	0
	Ц	1	26	22	2	2	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	F	1	Total C F N	0	0
0	T	1	26 22 2 2	0	0
3	G	1	Total C F N	0	0
5	G	1	26 22 2 2	0	0
3	Н	1	Total C F N	0	0
5	11	1	26 22 2 2	0	0
9	т	1	Total C F N	0	0
3	1	1	26 22 2 2	0	0
2	т	1	Total C F N	0	0
3	J	1	26 22 2 2	U	0


• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total O 1 1	0	0
4	В	2	Total O 2 2	0	0
4	С	4	Total O 4 4	0	0
4	Ε	1	Total O 1 1	0	0
4	F	1	Total O 1 1	0	0
4	G	2	Total O 2 2	0	0
4	Н	1	Total O 1 1	0	0
4	J	2	Total O 2 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: (GGGTT)3GGG DNA

28	%	
Chain F:	72%	28%
11 15 15 16 110 110 110 1110 1110 11		
• Molecule 1: (GG	GTT)3GGG DNA	
	3%	
Chain G:	89%	11%
61 15 15 110 110 110 110 110 110 110		
• Molecule 1: (GG	GTT)3GGG DNA	
17%	_	
Chain H:	78%	22%
01 175 175 110 110 113 114 114 113 114 113		
• Molecule 1: (GG	GTT)3GGG DNA	
22%		
Chain I:	78%	22%
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
• Molecule 1: (GG	GTT)3GGG DNA	
289	%	
Chain J:	89%	11%
61 15 15 16 66 110 611 618		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	36.16Å 62.67Å 256.68Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	128.34 - 2.47	Depositor
Resolution (A)	128.34 - 2.47	EDS
% Data completeness	95.4(128.34-2.47)	Depositor
(in resolution range)	87.7(128.34-2.47)	EDS
R _{merge}	0.12	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.08 (at 2.48 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.19.2_4158	Depositor
D D.	0.295 , 0.318	Depositor
R, R_{free}	0.294 , 0.317	DCC
R_{free} test set	19303 reflections (9.24%)	wwPDB-VP
Wilson B-factor $(Å^2)$	38.5	Xtriage
Anisotropy	1.170	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.31 , 39.5	EDS
L-test for twinning ²	$ < L >=0.51, < L^2>=0.35$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.90	EDS
Total number of atoms	4109	wwPDB-VP
Average B, all atoms $(Å^2)$	55.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 23.81 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 4.3337e-03. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: K, LG1

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond	angles
WIOI	Chain	RMSZ # Z > 5		RMSZ	# Z > 5
1	А	0.49	0/428	0.90	0/664
1	В	0.46	0/428	0.89	0/664
1	С	0.45	0/428	0.89	0/664
1	D	0.43	0/428	0.88	0/664
1	Е	0.48	0/428	0.91	0/664
1	F	0.49	0/428	0.91	0/664
1	G	0.45	0/428	0.87	0/664
1	Н	0.50	0/428	0.92	0/664
1	Ι	0.48	0/428	0.89	0/664
1	J	0.44	0/428	0.88	0/664
All	All	0.47	0/4280	0.89	0/6640

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	381	0	206	4	0
1	В	381	0	206	4	0
1	С	381	0	206	5	0

Continued from previous page								
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes		
1	D	381	0	206	2	0		
1	Ε	381	0	206	4	0		
1	F	381	0	206	3	0		
1	G	381	0	206	1	0		
1	Н	381	0	206	3	0		
1	Ι	381	0	206	2	0		
1	J	381	0	206	2	0		
2	А	3	0	0	0	0		
2	В	2	0	0	0	0		
2	С	3	0	0	0	0		
2	D	2	0	0	0	0		
2	Ε	3	0	0	0	0		
2	F	2	0	0	0	0		
2	G	3	0	0	0	0		
2	Н	2	0	0	0	0		
2	Ι	2	0	0	0	0		
2	J	3	0	0	0	0		
3	А	26	0	17	1	0		
3	В	26	0	17	4	0		
3	С	26	0	17	3	0		
3	D	26	0	17	3	0		
3	Ε	26	0	17	2	0		
3	F	26	0	17	0	0		
3	G	26	0	17	1	0		
3	Н	26	0	17	0	0		
3	Ι	26	0	17	1	0		
3	J	26	0	17	1	0		
4	А	1	0	0	0	0		
4	В	2	0	0	0	0		
4	С	4	0	0	0	0		
4	Ε	1	0	0	0	0		
4	F	1	0	0	0	0		
4	G	2	0	0	0	0		
4	Н	1	0	0	0	0		
4	J	2	0	0	0	0		
All	All	4109	0	2230	39	0		

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

The worst 5 of 39 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:8:DG:H5"	1:C:10:DT:H5'	1.76	0.68
1:B:8:DG:H5"	1:B:10:DT:H5'	1.79	0.64
1:A:15:DT:H2"	1:A:16:DG:OP1	2.02	0.60
1:F:10:DT:H4'	1:F:11:DG:OP1	2.02	0.59
1:I:5:DT:H4'	1:I:6:DG:OP1	2.04	0.57

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

There are no protein molecules in this entry.

5.3.2 Protein sidechains (i)

There are no protein molecules in this entry.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 35 ligands modelled in this entry, 25 are monoatomic - leaving 10 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mol	Turne	Chain	Res	Link	Bo	ond leng	ths	В	ond ang	les
1VIOI	Type	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	LG1	Е	104	-	30,30,30	0.90	0	43,47,47	1.11	3 (6%)
3	LG1	G	104	-	30,30,30	0.97	1 (3%)	43,47,47	1.19	5 (11%)
3	LG1	D	103	-	30,30,30	0.93	1 (3%)	43,47,47	1.16	3 (6%)
3	LG1	В	103	-	30,30,30	0.99	1 (3%)	43,47,47	1.14	4 (9%)
3	LG1	Н	103	-	30,30,30	1.09	2 (6%)	43,47,47	1.18	3 (6%)
3	LG1	Ι	103	-	30,30,30	1.08	1 (3%)	43,47,47	1.22	4 (9%)
3	LG1	С	104	-	30,30,30	0.99	1 (3%)	43,47,47	1.23	5 (11%)
3	LG1	J	104	-	30,30,30	0.92	0	43,47,47	1.06	3 (6%)
3	LG1	А	104	-	30,30,30	0.93	0	43,47,47	1.13	4 (9%)
3	LG1	F	103	-	30,30,30	0.95	0	43,47,47	1.18	5 (11%)

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	LG1	Е	104	-	-	-	0/5/5/5
3	LG1	G	104	-	-	-	0/5/5/5
3	LG1	D	103	-	-	-	0/5/5/5
3	LG1	В	103	-	-	-	0/5/5/5
3	LG1	Н	103	-	-	-	0/5/5/5
3	LG1	Ι	103	-	-	-	0/5/5/5
3	LG1	С	104	-	-	-	0/5/5/5
3	LG1	J	104	-	-	-	0/5/5/5
3	LG1	А	104	-	-	-	0/5/5/5
3	LG1	F	103	-	-	-	0/5/5/5

The worst 5 of 7 bond length outliers are listed below:

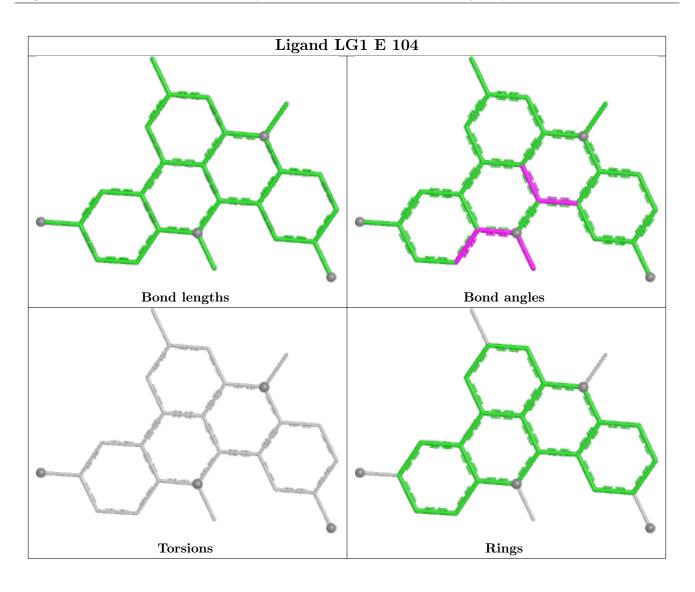
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	Н	103	LG1	C02-C11	2.67	1.46	1.41
3	Ι	103	LG1	C02-C11	2.66	1.46	1.41
3	Н	103	LG1	C13-N14	-2.34	1.37	1.40
3	G	104	LG1	C02-C11	2.08	1.44	1.41
3	В	103	LG1	C24-NP5	2.05	1.39	1.37

Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
3	Н	103	LG1	C34-NP5-C24	-4.84	114.53	119.08
3	Ι	103	LG1	C34-NP5-C24	-4.77	114.60	119.08
3	С	104	LG1	C34-NP5-C24	-4.38	114.97	119.08
3	G	104	LG1	C34-NP5-C24	-4.25	115.09	119.08
3	D	103	LG1	C34-NP5-C24	-4.21	115.13	119.08

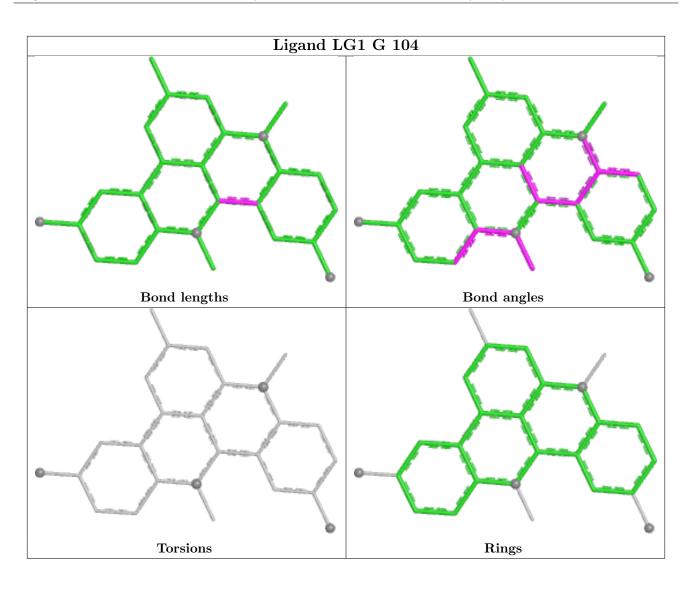
The worst 5 of 39 bond angle outliers are listed below:

There are no chirality outliers.

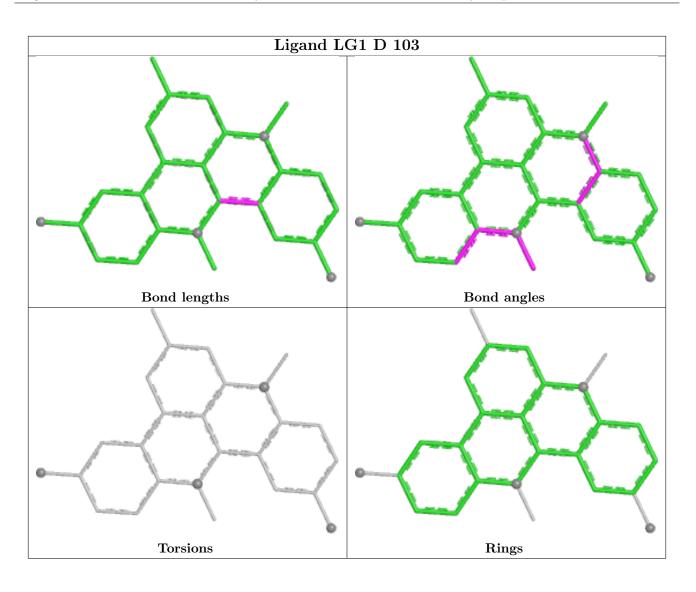
There are no torsion outliers.

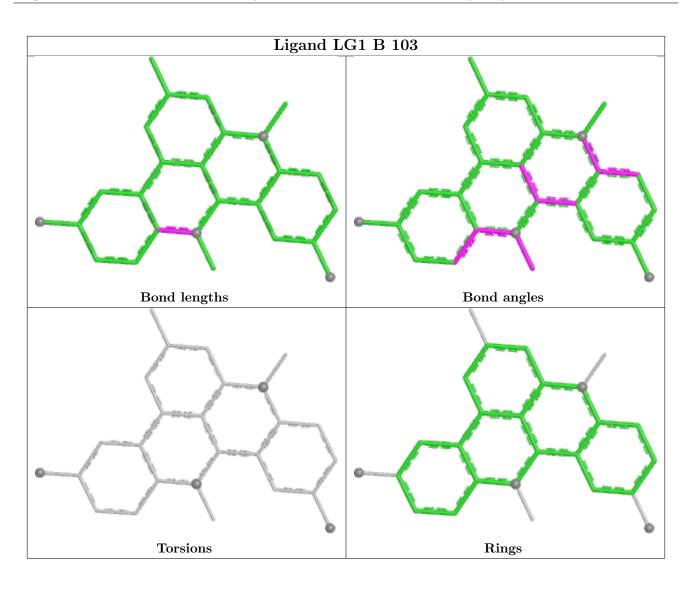

There are no ring outliers.

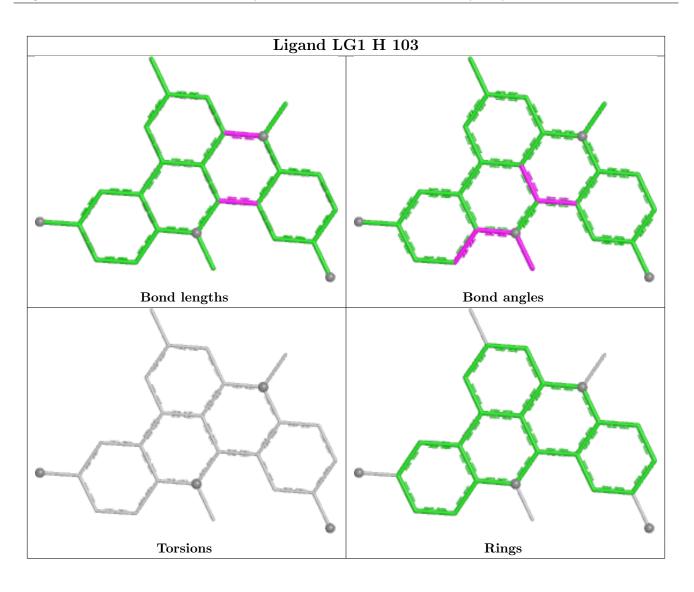
8 monomers are involved in 14 short contacts:

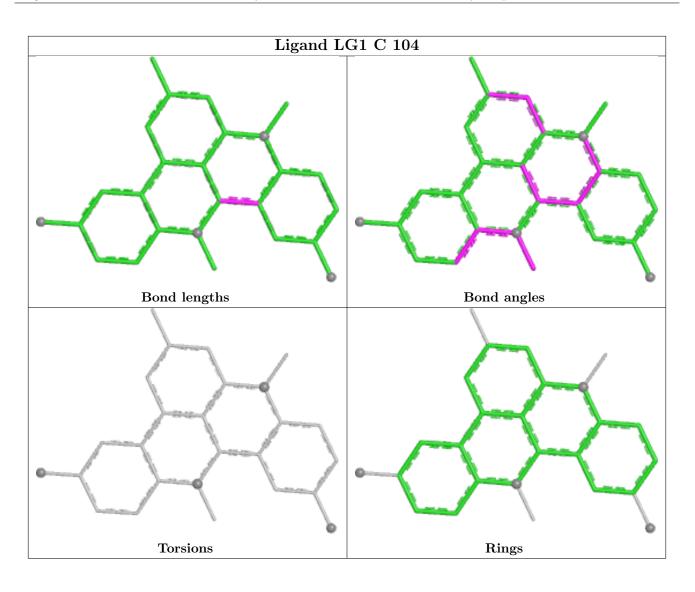

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	Е	104	LG1	2	0
3	G	104	LG1	1	0
3	D	103	LG1	3	0
3	В	103	LG1	4	0
3	Ι	103	LG1	1	0
3	С	104	LG1	3	0
3	J	104	LG1	1	0
3	А	104	LG1	1	0

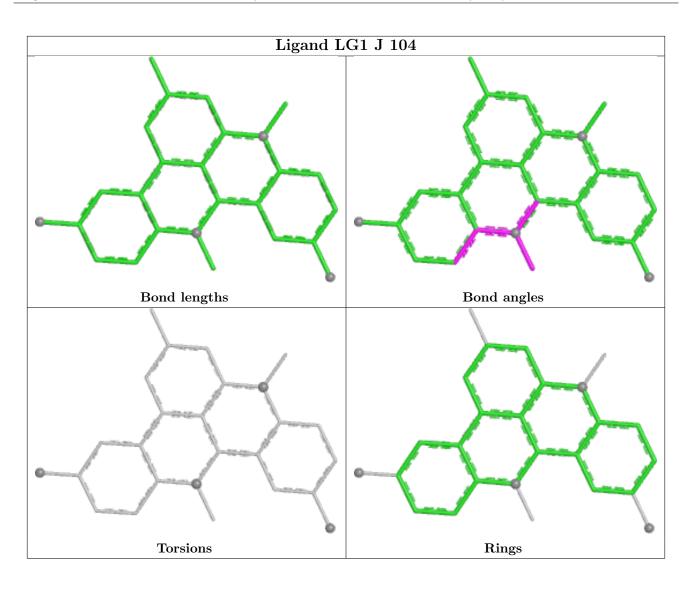
The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

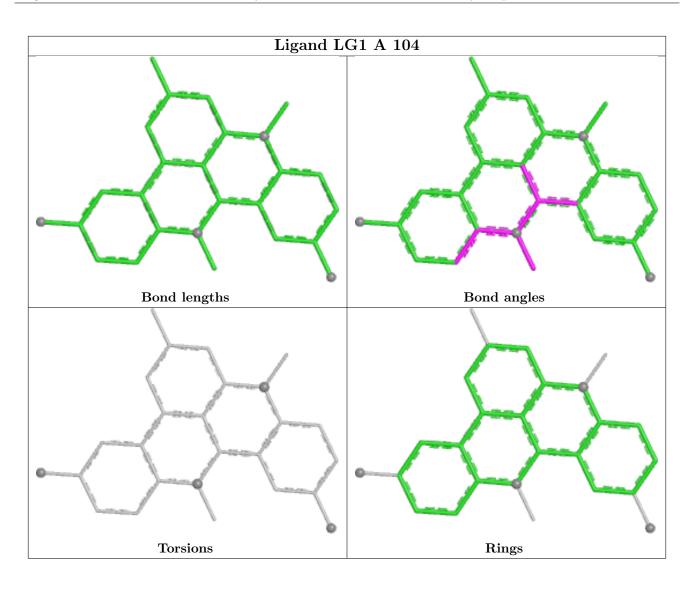


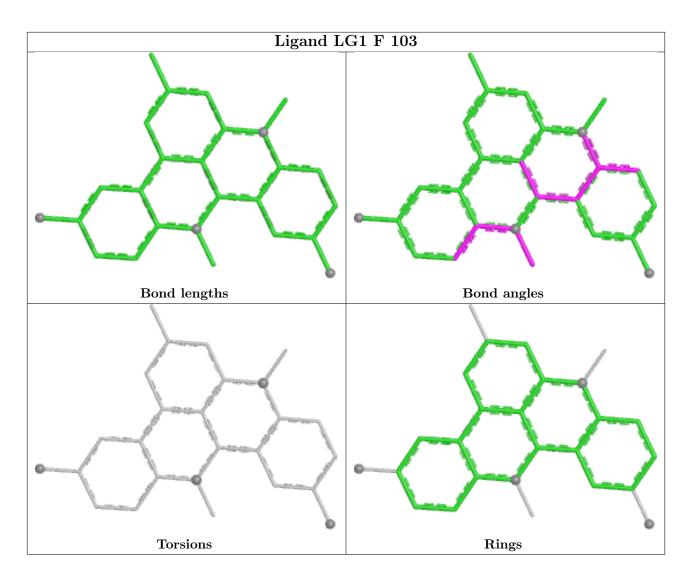












5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	2	$\mathbf{OWAB}(\mathbf{\mathring{A}}^2)$	Q < 0.9
1	А	18/18~(100%)	1.64	4(22%) 3	3	39, 50, 82, 88	0
1	В	18/18~(100%)	1.81	5(27%) 2	2	39,51,78,83	0
1	С	18/18~(100%)	1.76	6 (33%) 1	1	41, 49, 81, 93	0
1	D	18/18 (100%)	1.54	2 (11%) 12	11	38, 50, 74, 83	0
1	Ε	18/18~(100%)	1.86	8 (44%) 1	1	38, 49, 92, 96	0
1	F	18/18 (100%)	1.58	5 (27%) 2	2	41, 49, 76, 77	0
1	G	18/18~(100%)	1.55	5(27%) 2	2	42, 49, 98, 106	0
1	Η	18/18 (100%)	1.74	3~(16%) 5	5	45, 50, 82, 100	0
1	Ι	18/18~(100%)	1.39	4 (22%) 3	3	40, 50, 84, 93	0
1	J	18/18 (100%)	1.79	5(27%) 2	2	42, 51, 101, 104	0
All	All	180/180~(100%)	1.67	47~(26%) 2	2	38, 50, 88, 106	0

The worst 5 of 47 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	5	DT	4.2
1	Е	10	DT	4.0
1	В	10	DT	3.7
1	А	5	DT	3.7
1	Н	5	DT	3.5

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

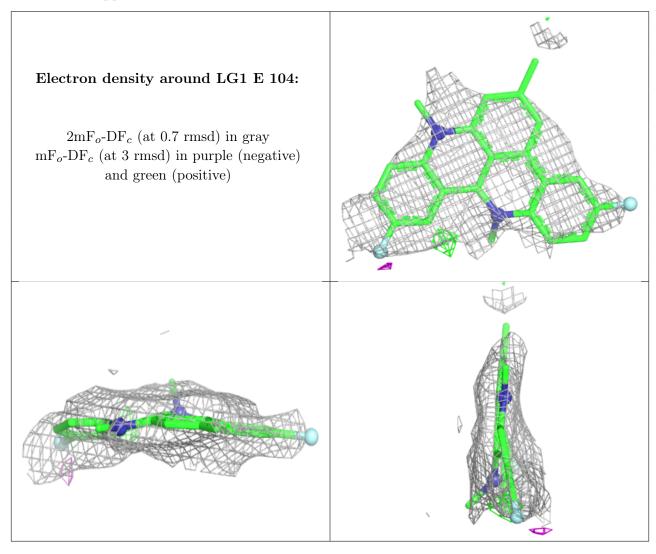
$8 \mathrm{TWH}$

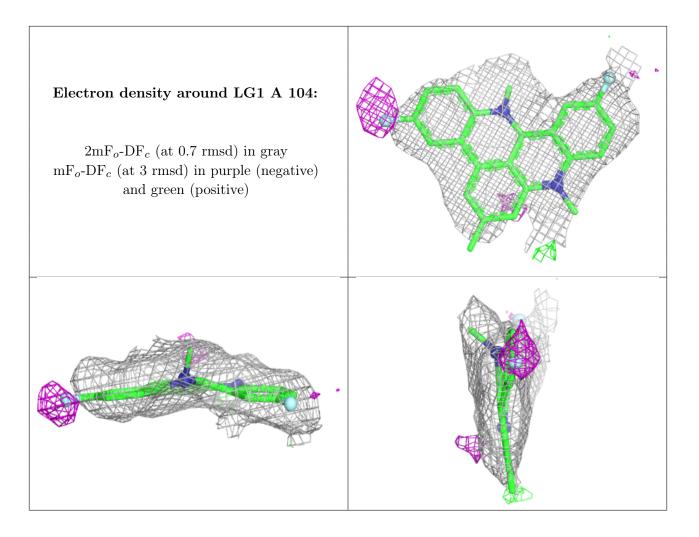
6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

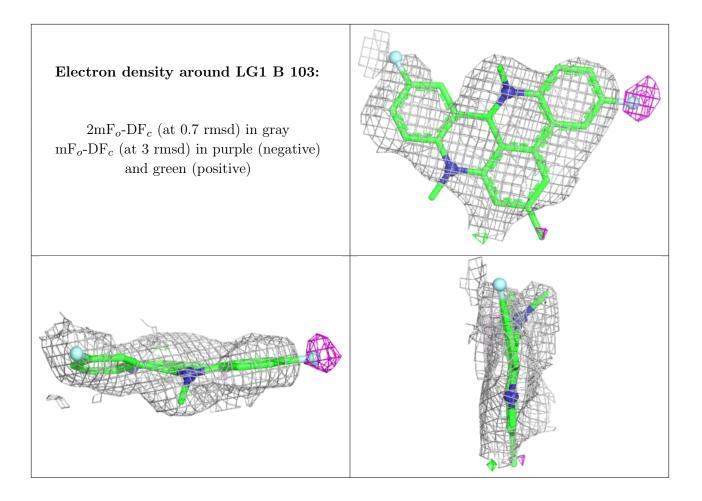
6.4 Ligands (i)

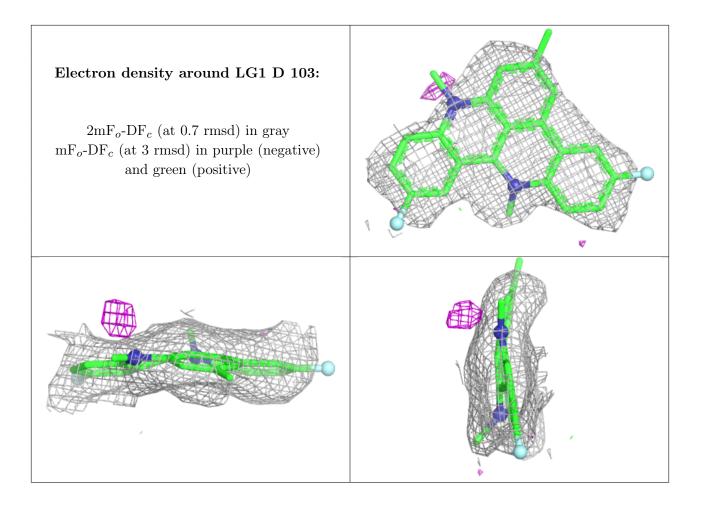
In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

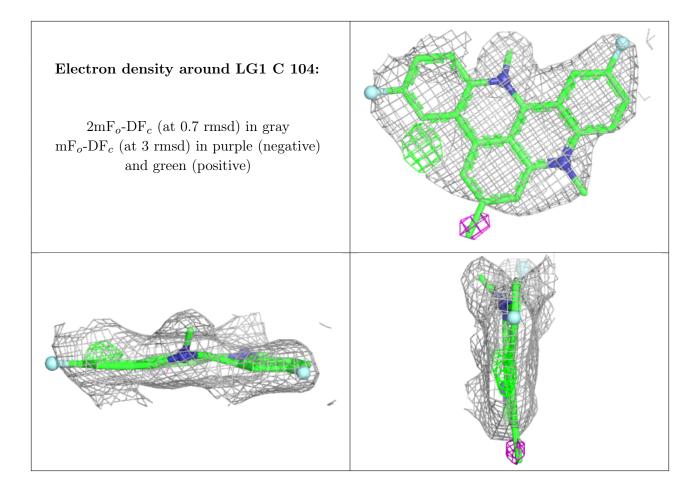

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
3	LG1	Е	104	26/26	0.67	0.21	37,42,48,52	0
3	LG1	А	104	26/26	0.74	0.20	36,41,48,54	0
3	LG1	В	103	26/26	0.76	0.22	37,42,49,55	0
3	LG1	D	103	26/26	0.78	0.22	39,44,52,62	0
3	LG1	С	104	26/26	0.78	0.21	34,43,46,54	0
3	LG1	G	104	26/26	0.80	0.19	35,43,53,60	0
3	LG1	F	103	26/26	0.82	0.17	32,40,48,54	0
3	LG1	Н	103	26/26	0.82	0.18	34,43,51,51	0
3	LG1	J	104	26/26	0.82	0.20	35,44,48,51	0
3	LG1	Ι	103	26/26	0.85	0.16	34,40,47,56	0
2	Κ	J	101	1/1	0.85	0.13	33,33,33,33	0
2	Κ	Ι	102	1/1	0.88	0.10	34,34,34,34	0
2	Κ	D	101	1/1	0.92	0.08	39,39,39,39	0
2	Κ	D	102	1/1	0.92	0.07	31,31,31,31	0
2	Κ	Ι	101	1/1	0.93	0.08	29,29,29,29	0
2	Κ	J	103	1/1	0.93	0.07	34,34,34,34	0
2	Κ	Е	102	1/1	0.93	0.12	37,37,37,37	0
2	Κ	F	102	1/1	0.94	0.07	34,34,34,34	0
2	Κ	С	101	1/1	0.94	0.07	33,33,33,33	0
2	Κ	Е	103	1/1	0.94	0.07	31,31,31,31	0
2	Κ	J	102	1/1	0.96	0.07	37,37,37,37	0
2	Κ	А	103	1/1	0.96	0.08	32,32,32,32	0
2	Κ	G	103	1/1	0.96	0.08	36,36,36,36	0
2	Κ	Е	101	1/1	0.96	0.05	27,27,27,27	0
2	Κ	С	102	1/1	0.96	0.06	27,27,27,27	0
2	Κ	В	102	1/1	0.96	0.06	34,34,34,34	0
2	Κ	С	103	1/1	0.97	0.07	27,27,27,27	0
2	Κ	А	102	1/1	0.97	0.07	$35,\!35,\!35,\!35$	0
2	Κ	А	101	1/1	0.97	0.07	36,36,36,36	0
2	Κ	В	101	1/1	0.97	0.06	33,33,33,33	0
2	Κ	Н	102	1/1	0.97	0.07	38,38,38,38	0
2	Κ	G	101	1/1	0.98	0.04	32,32,32,32	0

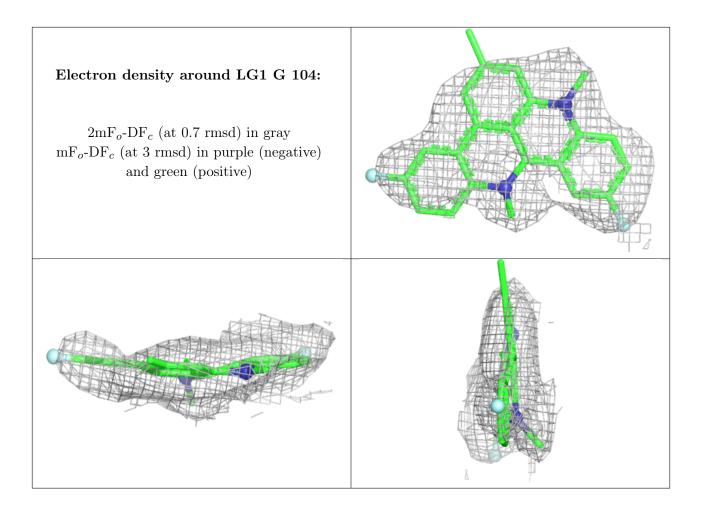

Continued from previous page...

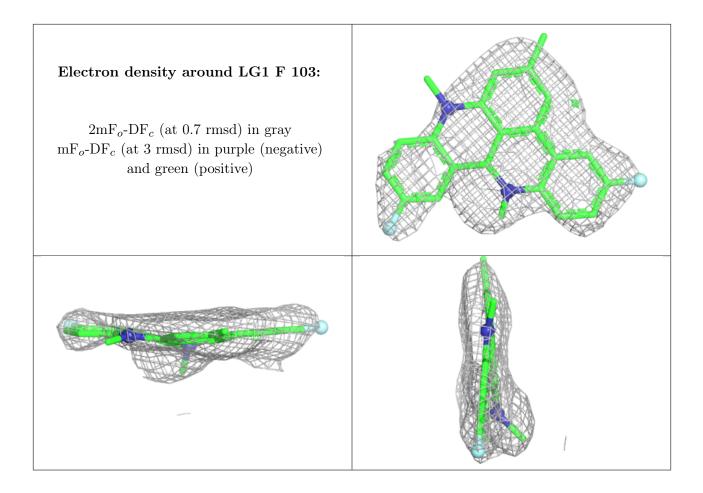
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q < 0.9
2	K	G	102	1/1	0.98	0.05	32,32,32,32	0
2	K	F	101	1/1	0.98	0.05	33,33,33,33	0
2	K	Н	101	1/1	0.98	0.05	39,39,39,39	0

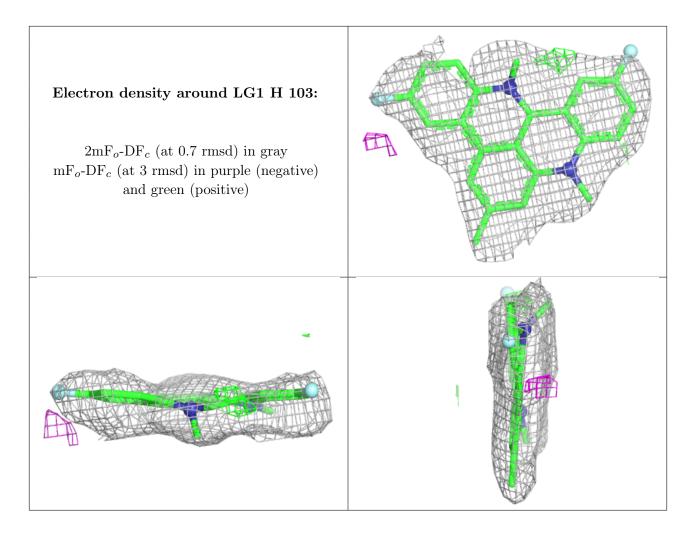

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

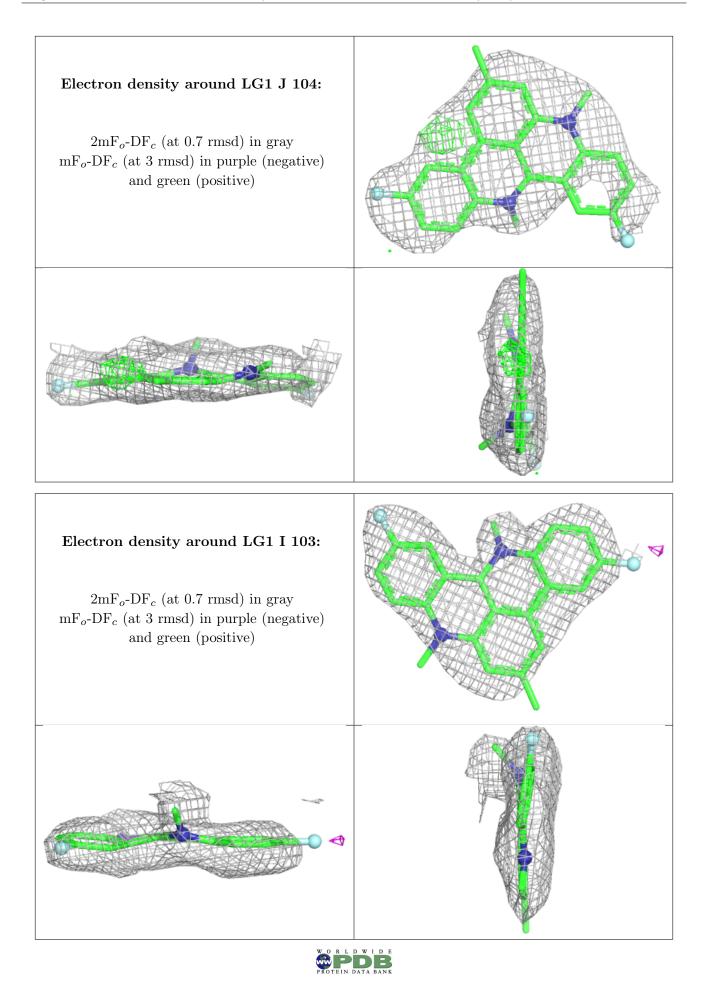












6.5 Other polymers (i)

There are no such residues in this entry.

