

wwPDB EM Validation Summary Report (i)

Nov 16, 2023 - 01:45 PM EST

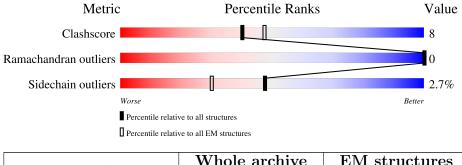
PDB ID	:	8T3T
EMDB ID	:	EMD-41011
Title	:	Structure of Bre1-nucleosome complex - state3
Authors	:	Zhao, F.; Hicks, C.W.; Wolberger, C.
Deposited on		
Resolution	:	3.21 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


:	0.0.1.dev70
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.36
	::

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.21 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive}\ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality o	f chain	
1	А	135	63%	7% •	29%
1	Е	135	66%	5%	29%
2	В	102	69%	8%	24%
2	F	102	71%	10%	20%
3	С	129	71%	9%	19%
3	G	129	74%	6% •	19%
4	D	122	67%	9%	24%
4	Н	122	68%	8%	24%

Continued on next page...

		n previous	page					
Mol	Chain	Length	Quality of chain					
-	т	1.10	•					
5	1	146	56%			44%		
	_		•					
6	J	146	60%			40%		
			5%					
7	Κ	110	38%	21%	•	37%		
			5%					
7	L	110	42%	20%	•	37%		

Continued from previous page...

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 12991 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	96	Total 791			O 137		0	0
1	Е	96	Total 791			0 137		0	0

• Molecule 1 is a protein called Histone H3.2.

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	102	ALA	GLY	variant	UNP P84233
E	102	ALA	GLY	variant	UNP P84233

• Molecule 2 is a protein called Histone H4.

Mol	Chain	Residues	Atoms				AltConf	Trace	
9	В	78	Total	С	Ν	0	S	0	0
	D	18	619	391	120	107	1	0	0
9	F	82	Total	С	Ν	Ο	\mathbf{S}	0	0
	T,	02	653	412	127	113	1	0	0

• Molecule 3 is a protein called Histone H2A type 1.

Mol	Chain	Residues	Atoms				AltConf	Trace
3	С	104	Total 800		N 156	O 140	0	0
3	G	105	Total 809		N 158	0 141	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	99	ARG	GLY	conflict	UNP P06897
С	123	SER	ALA	conflict	UNP P06897
G	99	ARG	GLY	conflict	UNP P06897

Continued on next page...

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
G	123	SER	ALA	conflict	UNP P06897

• Molecule 4 is a protein called Histone H2B.

Mol	Chain	Residues	Atoms				AltConf	Trace	
4	Л	02	Total	С	Ν	0	S	0	0
4	D	93	726	457	130	137	2	0	0
4	Ц	03	Total	С	Ν	0	S	0	0
4	11	93	726	457	130	137	2	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	32	THR	SER	variant	UNP P02281
Н	32	THR	SER	variant	UNP P02281

• Molecule 5 is a DNA chain called 601 DNA strand 1.

Mol	Chain	Residues	Atoms			AltConf	Trace		
5	Ι	146	Total 2975	C 1413	N 540	O 876	Р 146	0	0

• Molecule 6 is a DNA chain called 601 DNA strand 2.

Mol	Chain	Residues	Atoms			AltConf	Trace		
6	J	146	Total 3011	C 1425	N 564	0 876	Р 146	0	0

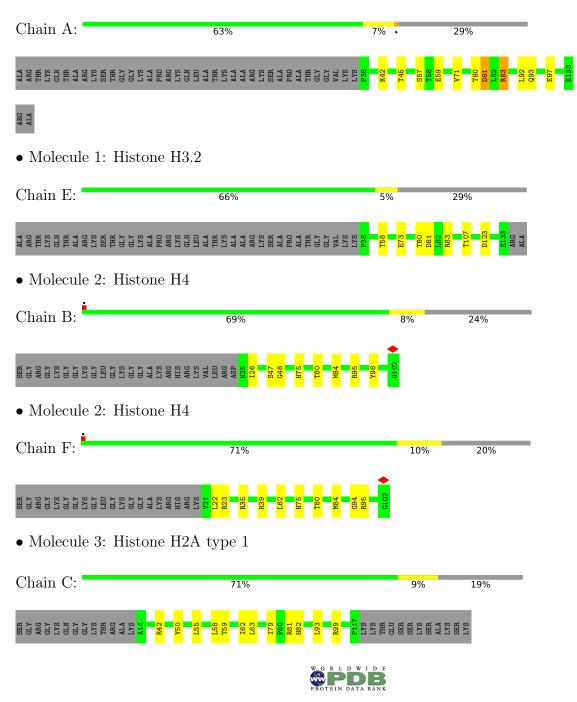
• Molecule 7 is a protein called E3 ubiquitin-protein ligase BRE1.

Mol	Chain	Residues	Atoms			AltConf	Trace		
7	K	69	Total	С	Ν	Ο	\mathbf{S}	0	0
1	Γ	09	543	337	98	98	10	0	0
7	т	69	Total	С	Ν	Ο	S	0	0
1		09	543	337	98	98	10	0	0

• Molecule 8 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
8	K	2	Total Zn 2 2	0
			Continued on	next page

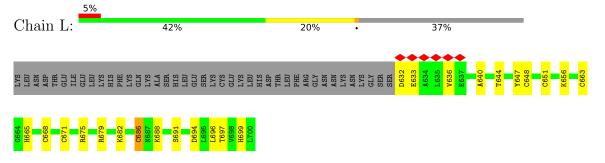
Continued from previous page...


Mol	Chain	Residues	Atoms	AltConf
8	L	2	Total Zn 2 2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Histone H3.2



• Molecule 5. 1	Iistone H2A type 1		
Chain G:	74%	6% • 19%	
SER GLY GLY GLY CLN CLN GLN CLN GLY CLY CLY CLN ARG	ALA ALA ALA IVS R42 L63 L63 L63 C67 C67 C67 C67 C67 C67 C67 C67 C67 C67	THR GLU SER SER LYS SER LYS SER LYS SER LYS	
• Molecule 4: H	Iistone H2B		
Chain D:	67%	9% 24%	
ALA LYS SER ALA ALA PRO LYS CLYS GLY SER	LYS LYS ALA ALA ALA LYS CTH CYS CTH CYS CTS ARC CTYS CTS CTS CTS CTS CTS CTS CTS CTS CTS CT	R92 194 195 1115 1116 1116 1116 1116 1116 1116	
• Molecule 4: H	Iistone H2B		
Chain H:	68%	8% 24%	
ALA LYS SER ALA ALA PRO LYS CLY SER	LYS VAL ALA ALA THR THR CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	D68 878 878 886 892 893 893 893 893 893 893 196 1196 1178	
• Molecule 5: 6	01 DNA strand 1		
Chain I:	56%	44%	
12 64 65 65 66 67 10 013 013	014 1115 0116 0116 0116 0116 0116 0116 0116	A49 A60 A61 A61 A61 C66 C66 A99 C73 C73 C73 C73 C73 C73 C73 C73 C73 C73) 5 4
C108 C108 C110 C110 C1110 C111 C12 C12 C12 C12 C12 C12 C12 C12 C1	A124 014 115 1129 016 017 115 115 1136 017 1138 019 1142 018 1142 121 1142 121 0144 030 1144 133 1147 133 1147 133 1147 133 1147 133 0146 036 1147 133 1147 143 1147	A49 A60 A61 A61 C66 C66 C78 C78 C78 C78 C78 C78 C81 C78 C81 C78 C83 C78 C81 C78 C81 C78 C81 C78 C78 C81 C78 C78 C78 C78 C78 C78 C78 C78 C78 C78	
• Molecule 6: 6	13 13 <td< td=""><td>449 461 461 461 465 466 466 466 466 466 466 466 466 466</td><td></td></td<>	449 461 461 461 465 466 466 466 466 466 466 466 466 466	
	a ho haha <mark>o</mark> ahouah	40%	
<u>.</u>	01 DNA strand 2	T79 A40 622 623 623 632 634 665 635 667 641 667 643 667 644 667 647 667 647 667 647 667 641 667 641 667 611 738 611 667 612 633 611 400 611 401 612 633 612 633 612 633 6100 633 611 401 612 610 612 610 612 610 611 610	
<u>.</u>	01 DNA strand 2	T79 A40 681 682 682 695 695 695 696 667 695 696 696 667 738 738 738 667 696 667 611 738 6111 611 6112 611 6113 611 6114 611 738 633 6112 611 738 610 6113 610 6114 610 6112 610 6112 610 6112 610 6112 610 6112 610 6112 610	
Chain J: 4130 Chain J: 4132 4112 4112 4112 4112 4112 4112 4112 4111	01 DNA strand 2	179 861 861 862 863 864 864 864 864 864 865 864 864 864 864 864 864 864 864 864 864	
Chain J: 4130 Chain J: 4132 4112 4112 4112 4112 4112 4112 4112 4111	4 4 6	179 861 861 862 863 864 864 864 864 864 865 864 864 864 864 864 864 864 864 864 864	440

• Molecule 7: E3 ubiquitin-protein ligase BRE1

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	170468	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50.02	Depositor
Minimum defocus (nm)	1250	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.560	Depositor
Minimum map value	-0.216	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.015	Depositor
Recommended contour level	0.05	Depositor
Map size (Å)	307.80002, 307.80002, 307.80002	wwPDB
Map dimensions	360, 360, 360	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.8550001, 0.8550001, 0.8550001	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bo	ond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.25	0/803	0.53	0/1078
1	Ε	0.26	0/803	0.59	0/1078
2	В	0.27	0/626	0.55	0/837
2	F	0.26	0/660	0.55	0/883
3	С	0.25	0/810	0.53	0/1095
3	G	0.26	0/819	0.51	0/1106
4	D	0.26	0/737	0.47	0/993
4	Н	0.26	0/737	0.49	0/993
5	Ι	0.53	0/3333	0.92	0/5137
6	J	0.51	0/3381	0.89	0/5221
7	Κ	0.28	0/551	0.61	1/740~(0.1%)
7	L	0.27	0/551	0.57	0/740
All	All	0.41	0/13811	0.75	1/19901~(0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	K	694	ASP	CB-CG-OD1	5.27	123.04	118.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	791	0	828	6	0
1	Е	791	0	828	5	0
2	В	619	0	659	5	0
2	F	653	0	696	6	0
3	С	800	0	851	9	0
3	G	809	0	864	7	0
4	D	726	0	747	7	0
4	Н	726	0	747	8	0
5	Ι	2975	0	1639	58	0
6	J	3011	0	1639	66	0
7	Κ	543	0	537	20	0
7	L	543	0	537	14	0
8	Κ	2	0	0	0	0
8	L	2	0	0	0	0
All	All	12991	0	10572	179	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

The worst 5 of 179 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
6:J:137:DG:H5"	6:J:137:DG:H8	1.20	1.02
6:J:137:DG:H5"	6:J:137:DG:C8	2.04	0.92
5:I:11:DC:N4	6:J:137:DG:N2	2.20	0.89
6:J:139:DA:H5"	6:J:139:DA:H8	1.47	0.79
6:J:138:DG:H5"	6:J:138:DG:H8	1.50	0.77

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	94/135~(70%)	90~(96%)	4 (4%)	0	100	100
1	Ε	94/135~(70%)	92~(98%)	2(2%)	0	100	100
2	В	76/102~(74%)	76 (100%)	0	0	100	100
2	F	80/102~(78%)	79~(99%)	1 (1%)	0	100	100
3	С	102/129~(79%)	98~(96%)	4 (4%)	0	100	100
3	G	103/129~(80%)	100~(97%)	3~(3%)	0	100	100
4	D	91/122~(75%)	89~(98%)	2(2%)	0	100	100
4	Η	91/122~(75%)	89~(98%)	2(2%)	0	100	100
7	Κ	67/110~(61%)	63~(94%)	4~(6%)	0	100	100
7	L	67/110~(61%)	64 (96%)	3~(4%)	0	100	100
All	All	865/1196~(72%)	840 (97%)	25~(3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	84/110~(76%)	81~(96%)	3~(4%)	35	68
1	Ε	84/110~(76%)	84 (100%)	0	100	100
2	В	63/78~(81%)	61~(97%)	2(3%)	39	70
2	F	67/78~(86%)	64 (96%)	3~(4%)	27	62
3	\mathbf{C}	82/101 (81%)	80~(98%)	2(2%)	49	76
3	G	83/101~(82%)	81~(98%)	2(2%)	49	76
4	D	79/102~(78%)	77~(98%)	2(2%)	47	76
4	Н	79/102~(78%)	78~(99%)	1 (1%)	69	86
7	Κ	62/100~(62%)	59~(95%)	3~(5%)	25	60
7	L	62/100~(62%)	60~(97%)	2(3%)	39	70
All	All	745/982~(76%)	725~(97%)	20 (3%)	48	74

5 of 20 residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
4	Н	78	SER
7	Κ	670	ASN
7	L	686	CYS
7	L	632	ASP
3	С	81	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such sidechains are listed below:

Mol	Chain	Res	Type
2	F	75	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 4 ligands modelled in this entry, 4 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

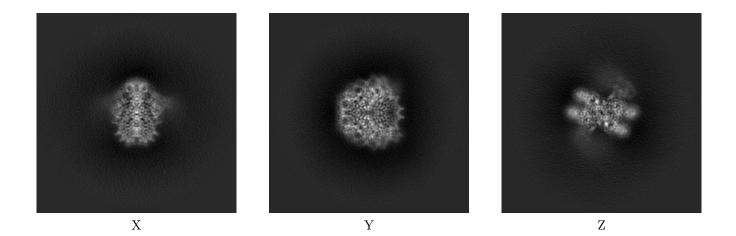
No monomer is involved in short contacts.

5.7 Other polymers (i)

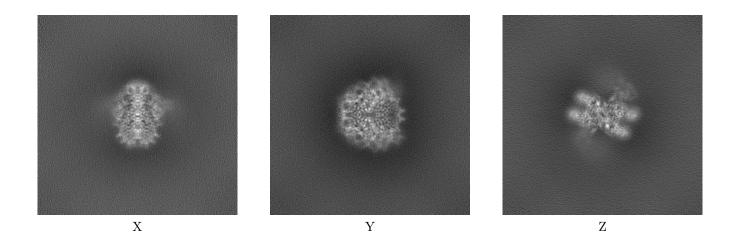
There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.


6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-41011. These allow visual inspection of the internal detail of the map and identification of artifacts.

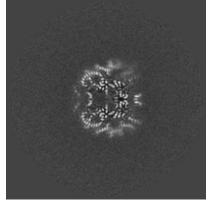

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

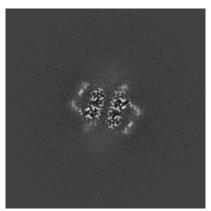
6.1.1 Primary map

6.1.2 Raw map

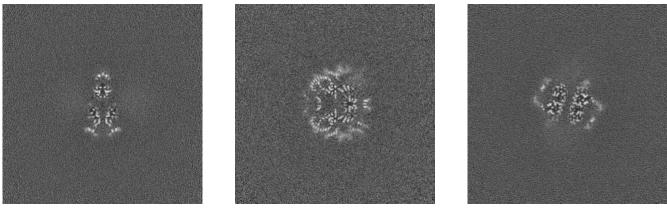
The images above show the map projected in three orthogonal directions.



6.2 Central slices (i)


6.2.1 Primary map

X Index: 180



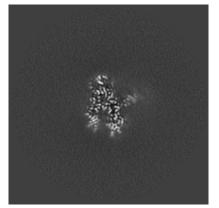
Y Index: 180

Z Index: 180

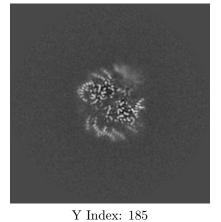
6.2.2 Raw map

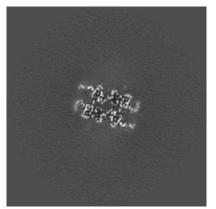
X Index: 180

Y Index: 180

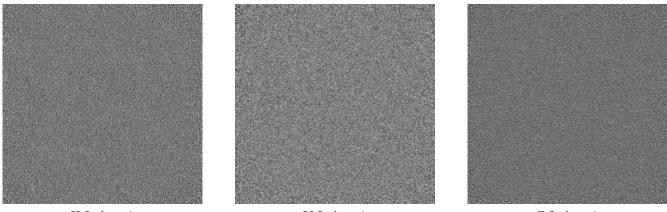

Z Index: 180

The images above show central slices of the map in three orthogonal directions.




6.3 Largest variance slices (i)

6.3.1 Primary map

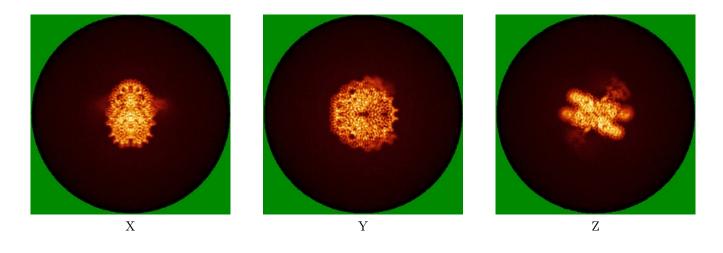

X Index: 204

Z Index: 172

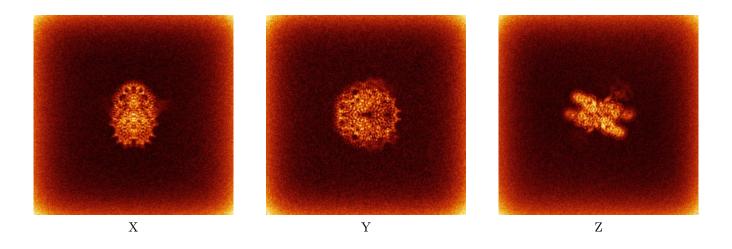
6.3.2 Raw map

X Index: 0

Y Index: 0



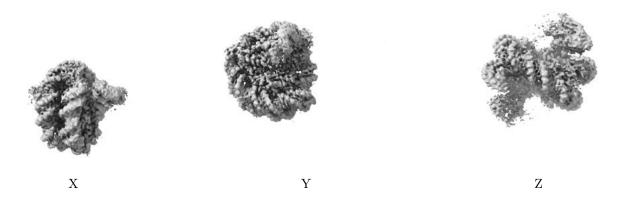
The images above show the largest variance slices of the map in three orthogonal directions.



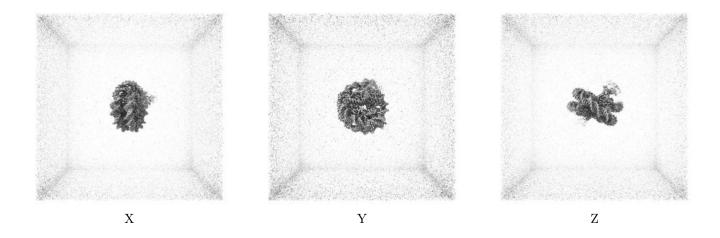
6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.


6.5 Orthogonal surface views (i)

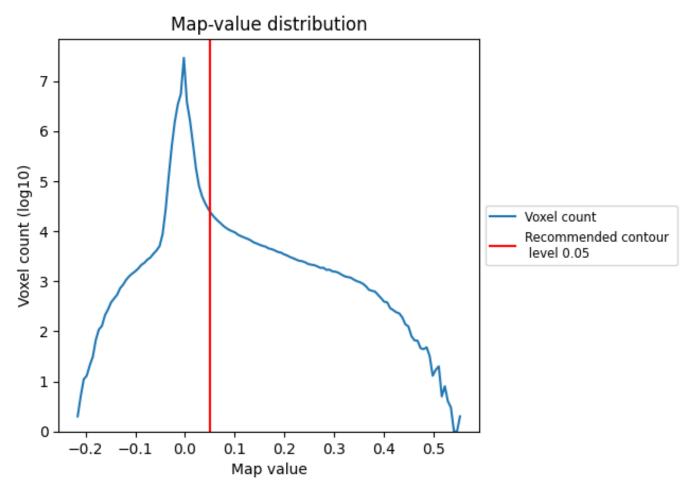
6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.05. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

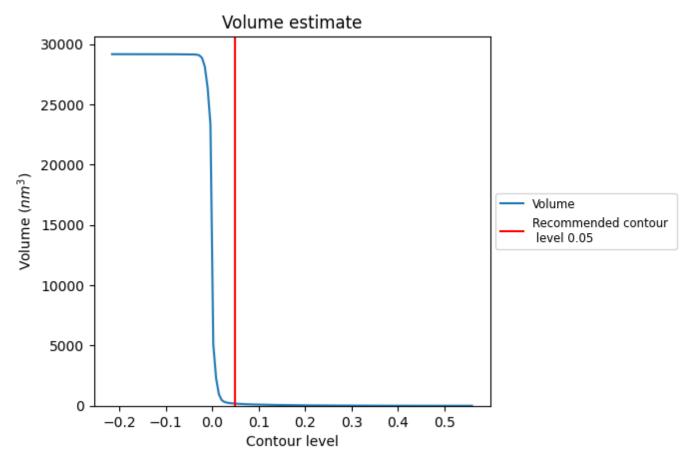
These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)


This section was not generated. No masks/segmentation were deposited.

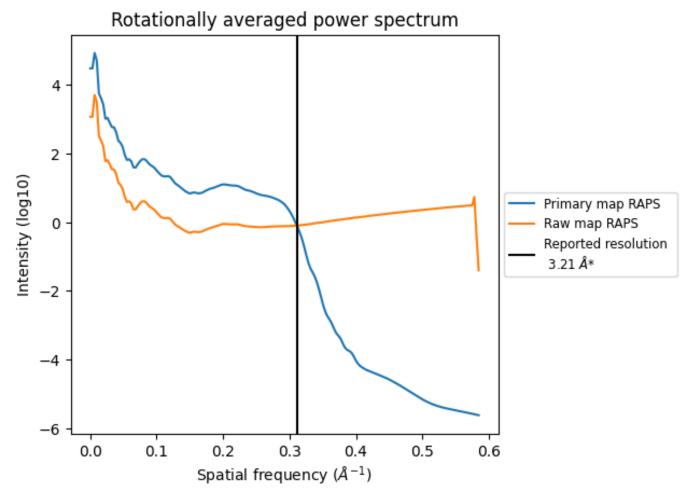
7 Map analysis (i)

This section contains the results of statistical analysis of the map.


7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

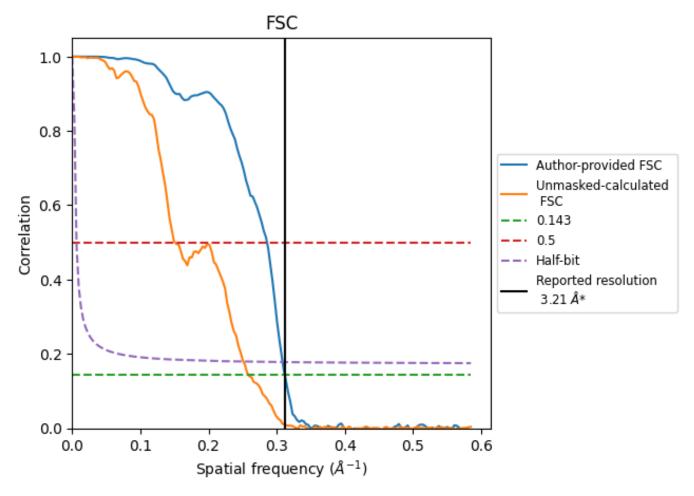
7.2 Volume estimate (i)



The volume at the recommended contour level is 176 nm^3 ; this corresponds to an approximate mass of 159 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)


*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

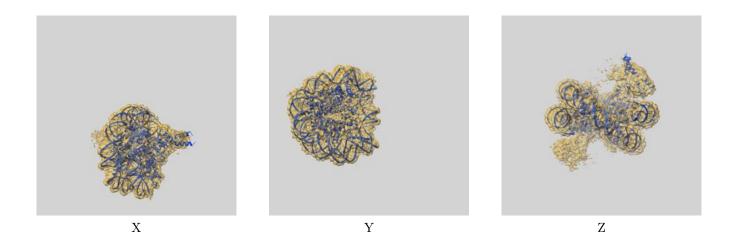
Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

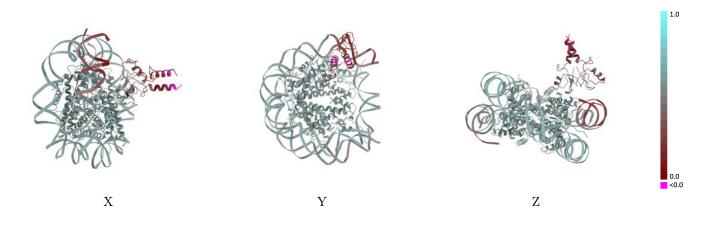
8.2 Resolution estimates (i)

Resolution estimate (Å)	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.21	-	-
Author-provided FSC curve	3.21	3.50	3.24
Unmasked-calculated*	3.87	6.63	3.98

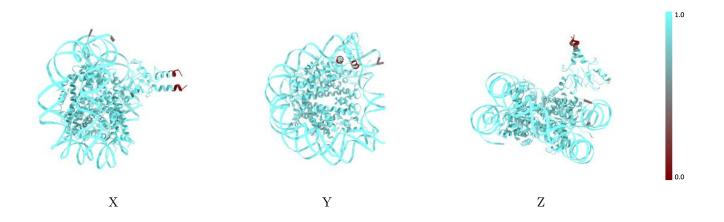

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.87 differs from the reported value 3.21 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-41011 and PDB model 8T3T. Per-residue inclusion information can be found in section 3 on page 7.

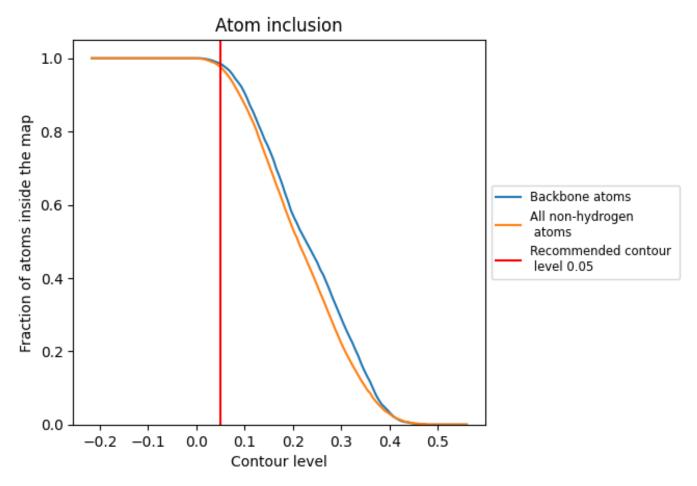

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.


9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.05).

9.4 Atom inclusion (i)

At the recommended contour level, 98% of all backbone atoms, 98% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.05) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score	
All	0.9770	0.5350	1.0
А	0.9840	0.5790	1.0
В	0.9870	0.5870	
С	0.9860	0.5770	
D	0.9900	0.5730	
Е	0.9910	0.5840	
F	0.9790	0.5810	
G	0.9760	0.5780	
Н	0.9870	0.5620	
Ι	0.9870	0.5340	0.0
J	0.9900	0.5280	0.0
K	0.8650	0.2700	
L	0.8730	0.3800	

