wwPDB X-ray Structure Validation Summary Report (i) #### Nov 7, 2023 – 07:07 PM EST PDB ID : 1SM1 Title : COMPLEX OF THE LARGE RIBOSOMAL SUBUNIT FROM DEINOCOC- CUS RADIODURANS WITH QUINUPRISTIN AND DALFOPRISTIN Authors: Harms, J.M.; Schluenzen, F.; Fucini, P.; Bartels, H.; Yonath, A. Deposited on : 2004-03-08 Resolution : 3.42 Å(reported) This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry. We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol. The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types. The following versions of software and data (see references (1)) were used in the production of this report: MolProbity: 4.02b-467 Mogul : 1.8.5 (274361), CSD as541be (2020) Xtriage (Phenix) : NOT EXECUTED EDS : NOT EXECUTED buster-report : 1.1.7 (2018) Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019) Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwPDB-VP) : 2.36 ## 1 Overall quality at a glance (i) The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$ The reported resolution of this entry is 3.42 Å. Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based. | Metric | Whole archive | Similar resolution | | | |-----------------------|-------------------------|---|--|--| | Metric | $(\# \mathrm{Entries})$ | $(\# ext{Entries}, ext{resolution range}(ext{Å}))$ | | | | Clashscore | 141614 | 1572 (3.50-3.34) | | | | Ramachandran outliers | 138981 | 1534 (3.50-3.34) | | | | Sidechain outliers | 138945 | 1535 (3.50-3.34) | | | | RNA backbone | 3102 | 1012 (3.88-2.96) | | | The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% Note EDS was not executed. | Mol | Chain | Length | | Quality of chain | | |-----|-------|--------|-----|------------------|---------| | 1 | 0 | 2880 | 29% | 53% | 13% ••• | | 2 | 1 | 82 | | 65% | 35% | | 3 | 2 | 47 | | 98% | | | 4 | 3 | 66 | | 95% | 5% | | 5 | 4 | 37 | | 95% | 5% | | 6 | 5 | 8 | 25% | 50% | 12% 12% | Continued on next page... Continued from previous page... | Mol | Chain | Length | Quality of chain | | |-----|-------|--------|------------------|-------| | 7 | 9 | 124 | 36% 54% | 5% 5% | | 8 | A | 275 | 98% | | | 9 | В | 211 | 97% | | | 10 | С | 205 | 96% | | | 11 | D | 180 | 99% | | | 12 | Е | 212 | 83% | 17% | | 13 | F | 146 | 36% 64% | | | 14 | G | 144 | 99% | | | 15 | Н | 174 | 82% | 18% | | 16 | I | 134 | 99% | | | 17 | J | 156 | 90% | 10% | | 18 | K | 142 | 87% | 13% | | 19 | L | 116 | 97% | 1370 | | 20 | M | 114 | 97% | ··· | | 21 | N | 166 | | • | | | | | 75% | 25% | | 22 | 0 | 118 | 97% | •• | | 23 | Р | 100 | 100% | | | 24 | Q | 134 | 97% | • | | 25 | R | 95 | 98% | · | | 26 | S | 115 | 98% | • | | 27 | Т | 253 | 88% | 12% | | 28 | U | 91 | 95% | 5% | | 29 | W | 67 | 97% | • | | 30 | X | 55 | 100% | | | 31 | Y | 73 | 100% | | Continued on next page... Continued from previous page... | Mol | Chain | Length | Quality of chain | | |-----|-------|--------|------------------|---| | 32 | Z | 60 | 95% | · | The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria: | Mol | Type | Chain | Res | Chirality | Geometry | Clashes | Electron density | |-----|------|-------|------|-----------|----------|---------|------------------| | 33 | DOL | 0 | 2882 | X | - | - | - | | 6 | DBB | 5 | 3 | - | - | X | - | # 2 Entry composition (i) There are 33 unique types of molecules in this entry. The entry contains 65418 atoms, of which 0 are hydrogens and 0 are deuteriums. In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms. • Molecule 1 is a RNA chain called 23S RIBOSOMAL RNA. | Mol | Chain | Residues | | - | Atoms | ZeroOcc | AltConf | Trace | | | |-----|-------|----------|----------------|------------|------------|------------|-----------|-------|---|---| | 1 | 0 | 2766 | Total
59359 | C
26479 | N
10949 | O
19166 | P
2765 | 0 | 0 | 0 | • Molecule 2 is a protein called 50S RIBOSOMAL PROTEIN L33. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|------------------|---------|---------|-------| | 2 | 1 | 53 | Total C
53 53 | 0 | 0 | 53 | • Molecule 3 is a protein called 50S RIBOSOMAL PROTEIN L34. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|------------------|---------|---------|-------| | 3 | 2 | 46 | Total C
46 46 | 0 | 0 | 46 | • Molecule 4 is a protein called 50S RIBOSOMAL PROTEIN L35. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|------------------|---------|---------|-------| | 4 | 3 | 63 | Total C
63 63 | 0 | 0 | 63 | • Molecule 5 is a protein called 50S RIBOSOMAL PROTEIN L36. | \mathbf{Mol} | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |----------------|-------|----------|------------------|---------|---------|-------| | 5 | 4 | 35 | Total C
35 35 | 0 | 0 | 35 | • Molecule 6 is a protein called QUINUPRISTIN. | Mol | Chain | Residues | Atoms | | | | | ZeroOcc | AltConf | Trace | |-----|-------|----------|-------|----|---|----|---|---------|---------|-------| | 6 | 5 | Q | Total | С | N | О | S | 0 | 0 | 0 | | 0 | 9 | 9 0 | 73 | 53 | 9 | 10 | 1 | U | 0 | | • Molecule 7 is a RNA chain called 5S RIBOSOMAL RNA. | Mol | Chain | Residues | Atoms | | | | | ZeroOcc | AltConf | Trace | |-----|-------|----------|---------------|-----------|----------|----------|----------|---------|---------|-------| | 7 | 9 | 118 | Total
2516 | C
1124 | N
464 | O
811 | P
117 | 0 | 0 | 0 | • Molecule 8 is a protein called 50S RIBOSOMAL PROTEIN L2. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------------|---------|---------|-------| | 8 | A | 270 | Total C
270 270 | 0 | 0 | 270 | • Molecule 9 is a protein called 50S RIBOSOMAL PROTEIN L3. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------------|---------|---------|-------| | 9 | В | 205 | Total C
205 205 | 0 | 0 | 205 | • Molecule 10 is a protein called 50S RIBOSOMAL PROTEIN L4. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------------|---------|---------|-------| | 10 | С | 197 | Total C
197 197 | 0 | 0 | 197 | • Molecule 11 is a protein called 50S RIBOSOMAL PROTEIN L5. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------------|---------|---------|-------| | 11 | D | 178 | Total C
178 178 | 0 | 0 | 178 | • Molecule 12 is a protein called 50S RIBOSOMAL PROTEIN L6. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------------|---------|---------|-------| | 12 | E | 177 | Total C
177 177 | 0 | 0 | 177 | • Molecule 13 is a protein called 50S RIBOSOMAL PROTEIN L9. | \mathbf{N} | /Iol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |--------------|------|-------|----------|------------------|---------|---------|-------| | | 13 | F | 52 | Total C
52 52 | 0 | 0 | 52 | • Molecule 14 is a protein called 50S RIBOSOMAL PROTEIN L11. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------------|---------|---------|-------| | 14 | G | 143 | Total C
143 143 | 0 | 0 | 143 | \bullet Molecule 15 is a protein called 50S RIBOSOMAL PROTEIN L13. | Mol | Chain | Residues | Atoms | | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------|----------|---------|---------|-------| | 15 | Н | 143 | Total
143 | C
143 | 0 | 0 | 143 | • Molecule 16 is a protein called 50S RIBOSOMAL PROTEIN L14. | Mo | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |----|-------|----------|-------------------|---------|---------|-------| | 16 | I | 132 | Total (
132 13 | 0 | 0 | 132 | • Molecule 17 is a protein called 50S RIBOSOMAL PROTEIN L15. | Mol | Chain | Residues | Atoms | | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------|----------|---------|---------|-------| | 17 | J | 141 | Total
141 | C
141 | 0 | 0 | 141 | • Molecule 18 is a protein called 50S RIBOSOMAL PROTEIN L16. | Mol | Chain | Residues | Atoms | | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------|----------|---------|---------|-------| | 18 | К | 124 | Total
124 | C
124 | 0 | 0 | 124 | • Molecule 19 is a protein called 50S RIBOSOMAL PROTEIN L17. | N | Mol | Chain | Residues | Atoms | | ZeroOcc | AltConf | Trace | |---|-----|-------|----------|--------------|----------|---------|---------|-------| | | 19 | L | 114 | Total
114 | C
114 | 0 | 0 | 114 | • Molecule 20 is a protein called 50S RIBOSOMAL PROTEIN L18. | Mol | Chain | Residues | Ato | ms | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------|----------|---------|---------|-------| | 20 | M | 111 | Total
111 | C
111 | 8 | 0 | 111 | • Molecule 21 is a protein called 50S RIBOSOMAL PROTEIN L19. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------------|---------|---------|-------| | 21 | N | 125 | Total C
125 125 | 0 | 0 | 125 | • Molecule 22 is a protein called 50S RIBOSOMAL PROTEIN L20. |] | Mol | Chain | Residues | Aton | ns | ZeroOcc | AltConf | Trace | |---|-----|-------|----------|--------------|----------|---------|---------|-------| | | 22 | О | 117 | Total
117 | C
117 | 16 | 0 | 117 | • Molecule 23 is a protein called 50S RIBOSOMAL PROTEIN L21. | \mathbf{Mol} | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |----------------|-------|----------|--------------------|---------|---------|-------| | 23 | Р | 100 | Total C
100 100 | 0 | 0 | 100 | • Molecule 24 is a protein called 50S RIBOSOMAL PROTEIN L22. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------------|---------|---------|-------| | 24 | Q | 130 | Total C
130 130 | 0 | 0 | 130 | • Molecule 25 is a protein called 50S RIBOSOMAL PROTEIN L23. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|------------------|---------|---------|-------| | 25 | R | 93 | Total C
93 93 | 0 | 0 | 93 | • Molecule 26 is a protein called 50S RIBOSOMAL PROTEIN L24. | Mol | Chain | Residues | Ator | ns | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------|----------|---------|---------|-------| | 26 | S | 113 | Total
113 | C
113 | 0 | 0 | 113 | • Molecule 27 is a protein called GENERAL STRESS PROTEIN CTC. | Mo | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |----|-------|----------|--------------------|---------|---------|-------| | 27 | Т | 223 | Total C
223 223 | 43 | 0 | 223 | • Molecule 28 is a protein called 50S RIBOSOMAL PROTEIN L27. | \mathbf{Mol} | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |----------------|-------|----------|------------------|---------|---------|-------| | 28 | U | 86 | Total C
86 86 | 0 | 0 | 86 | • Molecule 29 is a protein called 50S RIBOSOMAL PROTEIN L29. | Mo | l Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |----|---------|----------|---------------|---------|---------|-------| | 29 | W | 65 | Total C 65 65 | 0 | 0 | 65 | • Molecule 30 is a protein called 50S RIBOSOMAL PROTEIN L30. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|------------------|---------|---------|-------| | 30 | X | 55 | Total C
55 55 | 4 | 0 | 55 | • Molecule 31 is a protein called 50S RIBOSOMAL PROTEIN L31. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|------------------|---------|---------|-------| | 31 | Y | 73 | Total C
73 73 | 0 | 0 | 73 | • Molecule 32 is a protein called 50S RIBOSOMAL PROTEIN L32. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|------------------|---------|---------|-------| | 32 | Z | 58 | Total C
58 58 | 0 | 0 | 58 | • Molecule 33 is 5-(2-DIETHYLAMINO-ETHANESULFONYL)-21-HYDROXY-10-ISOPRO PYL-11,19-DIMETHYL-9,26-DIOXA-3,15,28-TRIAZA-TRICYCLO[23.2.1.00,255]OCTAC OSA-1(27),12,17,19,25(28)-PENTAENE-2,8,14,23-TETRAONE (three-letter code: DOL) (formula: $C_{34}H_{50}N_4O_9S$). | Mol | Chain | Residues | Atoms | | | ZeroOcc | AltConf | | | |-----|-------|----------|-------|----|---|---------|---------|---|---| | 33 | 0 | 1 | Total | С | N | О | S | 0 | 0 | | 33 | U | 1 | 48 | 34 | 4 | 9 | 1 | | | # 3 Residue-property plots (i) These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey. Note EDS was not executed. • Molecule 1: 23S RIBOSOMAL RNA | Chain P: | 100% | | |--|--|-----| | There are no | outlier residues recorded for this chain. | | | • Molecule 2 | 4: 50S RIBOSOMAL PROTEIN L22 | | | Chain Q: | 97% | | | MET
THR
ALA
PRO
ES
KI34 | | | | • Molecule 2 | 5: 50S RIBOSOMAL PROTEIN L23 | | | Chain R: | 98% | | | NET S2 Q94 ALA | | | | • Molecule 2 | 6: 50S RIBOSOMAL PROTEIN L24 | | | Chain S: | 98% | | | MET P2 1114 I ASP | | | | • Molecule 2 | 7: GENERAL STRESS PROTEIN CTC | | | Chain T: | 88% | 12% | | MET ALA HIS HIS GLY GLY THR ALA LYS | SER
GLN
GLY
THR
THR
THR
ASP
ASP
ASP
ASP
ASP
ASP
GLU
GLU
GLU
GLU
GLU
GLU
GLU
GLU | | | • Molecule 2 | 8: 50S RIBOSOMAL PROTEIN L27 | | | Chain U: | 95% | 5% | | MET A2 E87 VAL ALA ALA ASP | | | | • Molecule 2 | 9: 50S RIBOSOMAL PROTEIN L29 | | | Chain W: | 97% | | | MET K2 Q66 GLN | | | | • Molecule 3 | 0: 50S RIBOSOMAL PROTEIN L30 | | | Chain X: | 100% | | | There are no | outlier residues recorded for this chain. | | • Molecule 31: 50S RIBOSOMAL PROTEIN L31 Chain Y: 100% There are no outlier residues recorded for this chain. • Molecule 32: 50S RIBOSOMAL PROTEIN L32 Chain Z: 95% ... # 4 Data and refinement statistics (i) Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete. | Property | Value | Source | | |--|------------------------------|-----------|--| | Space group | I 2 2 2 | Depositor | | | Cell constants | 168.50Å 406.00Å 693.00Å | Depositor | | | a, b, c, α , β , γ | 90.00° 90.00° 90.00° | Depositor | | | Resolution (Å) | 15.00 - 3.42 | Depositor | | | % Data completeness | (Not available) (15.00-3.42) | Depositor | | | (in resolution range) | (100 available) (15.00-5.42) | | | | R_{merge} | (Not available) | Depositor | | | R_{sym} | 0.16 | Depositor | | | Refinement program | CNS | Depositor | | | R, R_{free} | 0.278 , 0.348 | Depositor | | | Estimated twinning fraction | No twinning to report. | Xtriage | | | Total number of atoms | 65418 | wwPDB-VP | | | Average B, all atoms (Å ²) | 80.0 | wwPDB-VP | | ## 5 Model quality (i) #### 5.1 Standard geometry (i) Bond lengths and bond angles in the following residue types are not validated in this section: 004, MHU, MHW, DOL, MHV, MHT, DBB The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles). | Mol Chain | | Bo | ond lengths | Bond angles | | | |-----------|-------|------|----------------------|-------------|-----------------------|--| | MIOI | Chain | RMSZ | # Z > 5 | RMSZ | # Z >5 | | | 1 | 0 | 0.70 | $16/66467 \ (0.0\%)$ | 0.74 | 12/103673 (0.0%) | | | 6 | 5 | 0.85 | 0/13 | 0.67 | 0/15 | | | 7 | 9 | 0.50 | 0/2813 | 0.65 | 0/4384 | | | All | All | 0.70 | $16/69293 \ (0.0\%)$ | 0.73 | $12/108072 \ (0.0\%)$ | | Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar. | Mol | Chain | #Chirality outliers | #Planarity outliers | |-----|-------|---------------------|---------------------| | 1 | 0 | 0 | 146 | | 6 | 5 | 1 | 1 | | 7 | 9 | 0 | 1 | | All | All | 1 | 148 | The worst 5 of 16 bond length outliers are listed below: | Mol | Chain | Res | Type | Atoms | \mathbf{Z} | Observed(A) | $\operatorname{Ideal}(ext{\AA})$ | |-----|-------|------|------|-------|--------------|-------------|-----------------------------------| | 1 | 0 | 1962 | С | N1-C2 | -7.46 | 1.32 | 1.40 | | 1 | 0 | 2255 | G | C5-C6 | -7.28 | 1.35 | 1.42 | | 1 | 0 | 2789 | U | N1-C2 | 6.94 | 1.44 | 1.38 | | 1 | 0 | 868 | U | N1-C2 | 6.93 | 1.44 | 1.38 | | 1 | 0 | 806 | A | C5-C6 | 6.88 | 1.47 | 1.41 | The worst 5 of 12 bond angle outliers are listed below: | Mol | Chain | Res | Type | Atoms | \mathbf{Z} | $\mathbf{Observed}(^{o})$ | $\operatorname{Ideal}({}^{o})$ | |-----|-------|-----|------|------------|--------------|---------------------------|--------------------------------| | 1 | 0 | 994 | A | N9-C1'-C2' | -6.36 | 105.00 | 112.00 | | 1 | 0 | 800 | U | OP2-P-O3' | 6.27 | 119.00 | 105.20 | Continued on next page... Continued from previous page... | Mol | Chain | Res | Type | Atoms | \mathbf{Z} | $\mathbf{Observed}(^o)$ | $\operatorname{Ideal}({}^{o})$ | |-----|-------|------|------|-------------|--------------|-------------------------|--------------------------------| | 1 | 0 | 2056 | С | N1-C1'-C2' | -6.04 | 105.36 | 112.00 | | 1 | 0 | 1686 | A | C5'-C4'-O4' | 5.86 | 116.13 | 109.10 | | 1 | 0 | 1938 | U | C2'-C3'-O3' | 5.75 | 122.90 | 113.70 | All (1) chirality outliers are listed below: | Mol | Chain | Res | Type | Atom | |-----|-------|-----|------|------| | 6 | 5 | 8 | MHT | C3 | 5 of 148 planarity outliers are listed below: | Mol | Chain | Res | Type | Group | |-----|-------|-----|------|-----------| | 1 | 0 | 126 | С | Sidechain | | 1 | 0 | 174 | A | Sidechain | | 1 | 0 | 211 | U | Sidechain | | 1 | 0 | 33 | С | Sidechain | | 1 | 0 | 8 | A | Sidechain | #### 5.2 Too-close contacts (i) In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes. | Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes | |-----|-------|-------|----------|----------|---------|--------------| | 1 | 0 | 59359 | 0 | 29917 | 2138 | 0 | | 2 | 1 | 53 | 0 | 0 | 0 | 0 | | 3 | 2 | 46 | 0 | 0 | 0 | 0 | | 4 | 3 | 63 | 0 | 0 | 0 | 0 | | 5 | 4 | 35 | 0 | 0 | 0 | 0 | | 6 | 5 | 73 | 0 | 64 | 6 | 0 | | 7 | 9 | 2516 | 0 | 1286 | 66 | 0 | | 8 | A | 270 | 0 | 0 | 1 | 0 | | 9 | В | 205 | 0 | 0 | 1 | 0 | | 10 | С | 197 | 0 | 0 | 0 | 0 | | 11 | D | 178 | 0 | 0 | 0 | 0 | | 12 | Е | 177 | 0 | 0 | 0 | 0 | | 13 | F | 52 | 0 | 0 | 0 | 0 | | 14 | G | 143 | 0 | 0 | 0 | 0 | | 15 | Н | 143 | 0 | 0 | 0 | 0 | Continued on next page... 1SM1 Continued from previous page... | Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes | |-----|-------|-------|----------|----------|---------|--------------| | 16 | I | 132 | 0 | 0 | 0 | 0 | | 17 | J | 141 | 0 | 0 | 0 | 0 | | 18 | K | 124 | 0 | 0 | 0 | 0 | | 19 | L | 114 | 0 | 0 | 1 | 0 | | 20 | M | 111 | 0 | 0 | 0 | 0 | | 21 | N | 125 | 0 | 0 | 0 | 0 | | 22 | О | 117 | 0 | 0 | 2 | 0 | | 23 | Р | 100 | 0 | 0 | 0 | 0 | | 24 | Q | 130 | 0 | 0 | 0 | 0 | | 25 | R | 93 | 0 | 0 | 0 | 0 | | 26 | S | 113 | 0 | 0 | 0 | 0 | | 27 | Τ | 223 | 0 | 0 | 0 | 0 | | 28 | U | 86 | 0 | 0 | 0 | 0 | | 29 | W | 65 | 0 | 0 | 0 | 0 | | 30 | X | 55 | 0 | 0 | 0 | 0 | | 31 | Y | 73 | 0 | 0 | 0 | 0 | | 32 | Z | 58 | 0 | 0 | 2 | 0 | | 33 | 0 | 48 | 0 | 47 | 16 | 0 | | All | All | 65418 | 0 | 31314 | 2213 | 0 | The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 23. The worst 5 of 2213 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude. | Atom-1 | Atom-2 | $egin{aligned} & ext{Interatomic} \ & ext{distance} \ & ext{(Å)} \end{aligned}$ | $egin{aligned} ext{Clash} \ ext{overlap} & (ext{Å}) \end{aligned}$ | |----------------|----------------|--|---| | 1:0:1463:A:H1' | 1:0:1543:G:H22 | 1.05 | 1.14 | | 1:0:128:C:H2' | 1:0:129:A:H5" | 1.19 | 1.10 | | 1:0:1656:U:H2' | 1:0:1657:A:H5" | 1.34 | 1.10 | | 1:0:940:G:H3' | 1:0:941:U:H5" | 1.23 | 1.09 | | 1:0:2607:C:H3' | 1:0:2608:A:H5' | 1.10 | 1.08 | There are no symmetry-related clashes. ### 5.3 Torsion angles (i) #### 5.3.1 Protein backbone (i) In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution. The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues. | Mol | Chain | Analysed | alysed Favoured Allowed | | Outliers | | | |-----|-------|-----------|-------------------------|---|----------|-----|--| | 6 | 5 | 2/8 (25%) | 1 (50%) | 0 | 1 (50%) | 0 0 | | All (1) Ramachandran outliers are listed below: | Mol | Chain | Res | Type | |-----|-------|-----|------| | 6 | 5 | 2 | THR | #### 5.3.2 Protein sidechains (i) In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution. The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues. | Mol | Chain | Analysed | Rotameric | Outliers | Percei | ntiles | |-----|-------|------------|-----------|----------|--------|--------| | 6 | 5 | 2/2 (100%) | 2 (100%) | 0 | 100 | 100 | There are no protein residues with a non-rotameric sidechain to report. Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified. #### 5.3.3 RNA (i) | Mol | Chain | Analysed | Backbone Outliers | Pucker Outliers | |-----|-------|-----------------|-------------------|-----------------| | 1 | 0 | 2757/2880 (95%) | 433 (15%) | 19 (0%) | | 7 | 9 | 117/124 (94%) | 12 (10%) | 0 | | All | All | 2874/3004 (95%) | 445 (15%) | 19 (0%) | 5 of 445 RNA backbone outliers are listed below: | Mol | Chain | Res | Type | |-----|-------|-----|------| | 1 | 0 | 45 | С | | 1 | 0 | 48 | A | | 1 | 0 | 49 | U | | 1 | 0 | 50 | G | | 1 | 0 | 59 | G | 5 of 19 RNA pucker outliers are listed below: | Mol | Chain | Res | Type | |-----|-------|------|------| | 1 | 0 | 2015 | G | | 1 | 0 | 2377 | U | | 1 | 0 | 2404 | A | | 1 | 0 | 2261 | G | | 1 | 0 | 1354 | A | #### 5.4 Non-standard residues in protein, DNA, RNA chains (i) 5 non-standard protein/DNA/RNA residues are modelled in this entry. In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles). | N / - 1 | Mal True Chain D | | Das | Bond lengths | | | Bond angles | | | | |---------|------------------|-------|-----|--------------|----------|------|------------------|----------|------|----------| | Mol | Type | Chain | Res | Link | Counts | RMSZ | $\mid \# Z > 2$ | Counts | RMSZ | # Z > 2 | | 6 | 004 | 5 | 7 | 6 | 9,10,11 | 1.69 | 2 (22%) | 9,12,14 | 1.27 | 1 (11%) | | 6 | MHW | 5 | 1 | 6 | 9,9,10 | 0.76 | 0 | 10,11,13 | 1.56 | 1 (10%) | | 6 | MHV | 5 | 6 | 6 | 7,9,10 | 0.67 | 0 | 7,11,13 | 1.68 | 2 (28%) | | 6 | MHU | 5 | 5 | 6 | 14,15,16 | 1.14 | 1 (7%) | 18,19,21 | 1.11 | 1 (5%) | | 6 | DBB | 5 | 3 | 6 | 4,5,6 | 0.58 | 0 | 1,5,7 | 0.06 | 0 | In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified. | Mol | Type | Chain | Res | Link | Chirals | Torsions | Rings | |-----|------|-------|-----|------|---------|-----------|---------| | 6 | 004 | 5 | 7 | 6 | - | 2/4/6/8 | 0/1/1/1 | | 6 | MHW | 5 | 1 | 6 | - | 2/2/2/4 | 0/1/1/1 | | 6 | MHV | 5 | 6 | 6 | - | 0/1/12/14 | 0/1/1/1 | | 6 | MHU | 5 | 5 | 6 | - | 2/9/12/14 | 0/1/1/1 | | 6 | DBB | 5 | 3 | 6 | - | 1/3/4/6 | - | All (3) bond length outliers are listed below: | Mol | Chain | Res | Type | Atoms | \mathbf{Z} | Observed(A) | $Ideal(\AA)$ | |-----|-------|-----|------|--------|--------------|-------------|--------------| | 6 | 5 | 7 | 004 | CB-CA | 3.12 | 1.55 | 1.52 | | 6 | 5 | 7 | 004 | CG2-CB | -2.70 | 1.34 | 1.39 | | 6 | 5 | 5 | MHU | CZ1-NZ | -2.59 | 1.39 | 1.45 | All (5) bond angle outliers are listed below: | Mol | Chain | Res | Type | Atoms | Z | $\mathbf{Observed}(^o)$ | $\operatorname{Ideal}({}^{o})$ | |-----|-------|-----|------|-----------|-------|-------------------------|--------------------------------| | 6 | 5 | 1 | MHW | O-C-CA | -4.20 | 120.24 | 124.22 | | 6 | 5 | 6 | MHV | CE-CD2-CG | 3.22 | 117.29 | 111.89 | | 6 | 5 | 5 | MHU | O-C-CA | -2.83 | 117.37 | 124.78 | | 6 | 5 | 7 | 004 | CG2-CB-CA | 2.31 | 124.38 | 120.65 | | 6 | 5 | 6 | MHV | CB-CA-N | -2.02 | 108.33 | 112.50 | There are no chirality outliers. 5 of 7 torsion outliers are listed below: | Mol | Chain | Res | Type | Atoms | |-----|-------|-----|------|------------| | 6 | 5 | 1 | MHW | O-C-CA-N | | 6 | 5 | 1 | MHW | O-C-CA-CB | | 6 | 5 | 3 | DBB | O-C-CA-CB | | 6 | 5 | 5 | MHU | N-CA-CB-CG | | 6 | 5 | 5 | MHU | C-CA-CB-CG | There are no ring outliers. 2 monomers are involved in 5 short contacts: | Mol | Chain | Res | Type | Clashes | Symm-Clashes | |-----|-------|-----|------|---------|--------------| | 6 | 5 | 1 | MHW | 1 | 0 | | 6 | 5 | 3 | DBB | 5 | 0 | ### 5.5 Carbohydrates (i) There are no monosaccharides in this entry. ### 5.6 Ligand geometry (i) 1 ligand is modelled in this entry. In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles). | | Mol | Type | Chain Re | Res | Link | В | ond leng | $\overline{ ext{gths}}$ | В | ond ang | gles | |---|------------|------|----------|------|-------|----------|----------|-------------------------|----------|---------|----------| | | Moi Type | туре | | nes | LIIIK | Counts | RMSZ | # Z > 2 | Counts | RMSZ | # Z > 2 | | Ī | 33 | DOL | 0 | 2882 | - | 43,50,50 | 4.58 | 11 (25%) | 51,70,70 | 3.94 | 18 (35%) | In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified. | Mol | Type | Chain | Res | Link | Chirals | Torsions | Rings | |-----|------|-------|------|------|-----------|-------------|---------| | 33 | DOL | 0 | 2882 | - | 2/2/14/20 | 20/58/77/77 | 0/2/3/3 | The worst 5 of 11 bond length outliers are listed below: | Mol | Chain | Res | Type | Atoms | Z | Observed(A) | $\operatorname{Ideal}(\text{\AA})$ | |-----|-------|------|------|---------|-------|-------------|------------------------------------| | 33 | 0 | 2882 | DOL | O40-S39 | 18.61 | 1.77 | 1.44 | | 33 | 0 | 2882 | DOL | O41-S39 | 18.41 | 1.76 | 1.44 | | 33 | 0 | 2882 | DOL | C28-C29 | -8.71 | 1.11 | 1.32 | | 33 | 0 | 2882 | DOL | C1-C37 | 4.83 | 1.62 | 1.52 | | 33 | 0 | 2882 | DOL | C8-C6 | -4.51 | 1.42 | 1.50 | The worst 5 of 18 bond angle outliers are listed below: | Mol | Chain | Res | Type | Atoms | Z | $Observed(^o)$ | $\operatorname{Ideal}({}^{o})$ | |-----|-------|------|------|-------------|--------|----------------|--------------------------------| | 33 | 0 | 2882 | DOL | C4-N5-C1 | -14.71 | 94.37 | 112.45 | | 33 | 0 | 2882 | DOL | O18-C17-C16 | 13.82 | 145.78 | 109.73 | | 33 | 0 | 2882 | DOL | C28-C26-N25 | -9.38 | 97.30 | 114.97 | | 33 | 0 | 2882 | DOL | O40-S39-O41 | -7.23 | 109.95 | 118.19 | | 33 | 0 | 2882 | DOL | O27-C26-C28 | 6.58 | 138.02 | 123.03 | All (2) chirality outliers are listed below: | Mol | Chain | Res | Type | Atom | |-----|-------|------|------|------| | 33 | 0 | 2882 | DOL | C17 | | 33 | 0 | 2882 | DOL | C2 | 5 of 20 torsion outliers are listed below: | Mol | Chain | Res | Type | Atoms | |-----|-------|------|------|---------------| | 33 | 0 | 2882 | DOL | O7-C6-N5-C1 | | 33 | 0 | 2882 | DOL | C8-C6-N5-C1 | | 33 | 0 | 2882 | DOL | C1-C2-S39-O41 | | 33 | 0 | 2882 | DOL | C1-C2-S39-O40 | | 33 | 0 | 2882 | DOL | C1-C2-S39-C42 | There are no ring outliers. 1 monomer is involved in 16 short contacts: | Mol | Chain | Res | Type | Clashes | Symm-Clashes | |-----|-------|------|------|---------|--------------| | 33 | 0 | 2882 | DOL | 16 | 0 | The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry. ### 5.7 Other polymers (i) There are no such residues in this entry. ## 5.8 Polymer linkage issues (i) There are no chain breaks in this entry. ## 6 Fit of model and data (i) #### 6.1 Protein, DNA and RNA chains (i) EDS was not executed - this section is therefore empty. #### 6.2 Non-standard residues in protein, DNA, RNA chains (i) EDS was not executed - this section is therefore empty. #### 6.3 Carbohydrates (i) EDS was not executed - this section is therefore empty. ### 6.4 Ligands (i) EDS was not executed - this section is therefore empty. #### 6.5 Other polymers (i) EDS was not executed - this section is therefore empty.