

wwPDB NMR Structure Validation Summary Report (i)

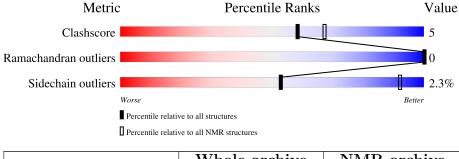
Feb 19, 2022 – 07:41 PM EST

PDB ID 1SAE : Title HIGH RESOLUTION SOLUTION NMR STRUCTURE OF THE : OLIGOMERIZATION DOMAIN OF P53 BY MULTI-DIMENSIONAL NMR (SAC STRUCTURES) Clore, G.M.; Omichinski, J.G.; Gronenborn, A.M. Authors : Deposited on 1995-03-12 :

This is a wwPDB NMR Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (i)) were used in the production of this report:


MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
ShiftChecker	:	2.26
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.26

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment was not calculated.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f NMR} { m archive} \ (\#{ m Entries})$		
	(#Entries)	(#Entries)		
Clashscore	158937	12864		
Ramachandran outliers	154571	11451		
Sidechain outliers	154315	11428		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	42	69%	31%
1	В	42	67%	33%
1	С	42	67%	33%
1	D	42	69%	31%

2 Ensemble composition and analysis (i)

This entry contains 77 models. The atoms present in the NMR models are not consistent. Some calculations may have failed as a result. All residues are included in the validation scores. Model 75 is the overall representative, medoid model (most similar to other models).

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues								
Well-defined core Residue range (total) Backbone RMSD (Å) Medoid model								
1	A:326-A:354, B:326-B:353,	0.20	75					
	C:326-C:353, D:326-D:354							
	(114)							

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 10 clusters and 4 single-model clusters were found.

Cluster number	Models
1	5, 12, 14, 15, 23, 27, 36, 39, 40, 52, 53, 56, 57, 60,
-	$\begin{array}{c} 62, 66, 70, 74, 75, 76 \\ 1, 3, 6, 9, 22, 28, 29, 34, 38, 45, 48, 59, 64, 67, 68, \end{array}$
2	69, 71, 72
3	4, 8, 10, 17, 24, 50, 51, 73, 77
4	7, 33, 37, 41, 44, 55
5	2, 19, 30, 54, 63
6	13, 43, 47, 58
7	16, 35, 49, 65
8	25, 26, 42
9	21, 46
10	18, 31
Single-model clusters	11; 20; 32; 61

3 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 2804 atoms, of which 1408 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called TUMOR SUPPRESSOR P53.

Mol	Chain	Residues	Atoms						Trace	
1	Λ	42	Total	С	Η	Ν	Ο	S	0	
	А	42	698	219	350	62	66	1	0	
1	В	42	Total	С	Η	Ν	Ο	S	0	
	D	42	698	219	350	62	66	1	0	
1	С	42	Total	С	Η	Ν	Ο	\mathbf{S}	0	
	U	42	698	219	350	62	66	1	0	
1	D	42	Total	С	Η	Ν	Ο	\mathbf{S}	0	
	D	42	698	219	350	62	66	1	0	

• Molecule 2 is water.

Mol	Chain	Residues	Atoms
2	۸	1	Total H O
	A	1	3 2 1
2	В	1	Total H O
	D	1	3 2 1
2	С	1	Total H O
	U	1	3 2 1
2	Л	1	Total H O
	D	1	3 2 1

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: TUMOR SUPPRESSOR P53

Chain A:	69%	31%
K319 K320 K321 P322 L323 L323 C325 G325 G325 G325 G325 G325 G325 C325 C325 C325 C325 C325 C325 C325 C		
• Molecule 1: TUN	MOR SUPPRESSOR P53	
Chain B:	67%	33%
K319 K320 K321 F322 F323 C325 C325 C325 C325 C325 C325 C355 C35		
• Molecule 1: TUN	MOR SUPPRESSOR P53	
Chain C:	67%	33%
K319 K320 K321 F322 F322 G325 G325 G325 G325 G355 G355 G355 G		
• Molecule 1: TUN	MOR SUPPRESSOR P53	
Chain D:	69%	31%
K319 K320 K321 L323 L323 G355 G355 K357 K357 K357 K357		

4.2 Residue scores for the representative (medoid) model from the NMR ensemble

5%

31%

The representative model is number 75. Colouring as in section 4.1 above.

64%

• Molecule 1: TUMOR SUPPRESSOR P53

Chain A:

• Molecule 1: TUMOR SUPPRESSOR P53

Chain B:	62%	5%	33%
K319 K320 K3219 K321 F322 C325 C325 C355 C355 C355 C355 C355 C	88 1997 -		
• Molecule 1: TUMOR S	SUPPRESSOR P53		
Chain C:	60%	7%	33%
K319 K321 K321 K321 F322 F322 C325 C325 C325 C325 C355 K351 K357 K357 K357 K357 K357 K357 K357 K357	0360 0386		
• Molecule 1: TUMOR S	SUPPRESSOR P53		
Chain D:	62%	7%	31%
K3219 K3219 K3210 K321 K3221 C3224 C3254 C3254 C3256 C	0900		

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: ?.

Of the ? calculated structures, 77 were deposited, based on the following criterion: ?.

The authors did not provide any information on software used for structure solution, optimization or refinement.

No chemical shift data was provided.

6 Model quality (i)

6.1 Standard geometry (i)

There are no covalent bond-length or bond-angle outliers.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	255	247	247	3 ± 2
1	В	246	239	239	3±3
1	С	246	239	239	3±3
1	D	255	247	247	3±3
All	All	77462	75460	74844	749

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

5 of 283 unique clashes are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Clash(Å)	Distance(Å)	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:354:GLN:NE2	1:B:350:LEU:HD21	0.78	1.94	44	3
1:C:350:LEU:HD21	1:D:354:GLN:NE2	0.77	1.94	44	3
1:C:347:ALA:HB1	1:D:347:ALA:HB1	0.65	1.69	64	32
1:A:347:ALA:HB1	1:B:347:ALA:HB1	0.64	1.69	64	32
1:B:331:GLN:NE2	1:D:328:PHE:O	0.55	2.39	55	2

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	29/42~(69%)	29 ± 0 (100 $\pm1\%$)	0±0 (0±1%)	0±0 (0±0%)	100	100
1	В	28/42~(67%)	28±0 (100±1%)	0±0 (0±1%)	0±0 (0±0%)	100	100
1	С	28/42~(67%)	28 ± 0 (100 $\pm1\%$)	0±0 (0±1%)	0±0 (0±0%)	100	100
1	D	29/42~(69%)	29 ± 0 (100 $\pm1\%$)	0±0 (0±1%)	0±0 (0±0%)	100	100
All	All	8778/12936~(68%)	8738 (100%)	40 (0%)	0 (0%)	100	100

There are no Ramachandran outliers.

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the side chain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	А	26/35~(74%)	$25 \pm 1 (98 \pm 3\%)$	$1\pm1~(2\pm3\%)$	54	92
1	В	25/35~(71%)	$24 \pm 1 (98 \pm 3\%)$	$1\pm1~(2\pm3\%)$	53	92
1	С	25/35~(71%)	24 ± 1 (98 $\pm3\%$)	$1\pm1~(2\pm3\%)$	53	92
1	D	26/35~(74%)	$25 \pm 1 (98 \pm 3\%)$	$1\pm1~(2\pm3\%)$	54	92
All	All	7854/10780~(73%)	7674 (98%)	180 (2%)	53	92

5 of 44 unique residues with a non-rotameric side chain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	337	ARG	10
1	В	337	ARG	10
1	С	337	ARG	10
1	D	337	ARG	10
1	А	352	ASP	7

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no monosaccharides in this entry.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

No chemical shift data were provided

