

wwPDB EM Validation Summary Report (i)

Nov 10, 2024 - 03:38 pm GMT

PDB ID	:	6RFS
EMDB ID	:	EMD-4874
Title	:	Cryo-EM structure of a respiratory complex I mutant lacking NDUFS4
Authors	:	Parey, K.; Vonck, J.
Deposited on	:	2019-04-16
Resolution	:	4.04 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.04 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} Whole \ { m archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	728	94%	• 5%
2	В	488	93%	• 7%
3	С	466	9% 81%	• 17%
4	D	87	99%	·
5	Е	375	88%	12%
6	F	144	84%	16%
7	G	281	84%	• 15%
8	Н	243	87%	• 12%
9	Ι	229	82%	• 17%

Continued on next page...

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
10	J	198	35% 59%	41%
11	Κ	210	8%	• 19%
12	L	89	20%	7%
13	М	136	86%	14%
14	О	109	71%	29%
15	Р	124	99%	
16	Q	132	64%	36%
17	R	109	97%	
18	S	249	69%	• 30%
19	U	172	99%	
20	W	123	98%	·
21	Х	169	98%	
22	Ζ	182	98%	
23	a	149	82%	• 17%
24	b	74	86%	14%
25	с	60	73%	27%
26	d	92	97%	
27	е	67	78%	22%
28	f	87	92%	8%
29	g	78	97%	•
30	h	138	96%	•••
31	i	90	91%	• 8%
32	j	93	97%	·
33	n	120	93%	• 6%
34	1	341	98%	•

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain						
35	2	469	7%						
	_	100	44%	•					
36	3	128	88%	•• 9%					
27	4	400	13%						
37	4	480	98%	•					
38	5	655	95%	••					
39	6	185	73%	25%					
			19%						
40	8	99	81%	19%					
41	9	89	74%	26%					

2 Entry composition (i)

There are 47 unique types of molecules in this entry. The entry contains 60966 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Subunit NUAM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
1	А	692	Total 5258	C 3263	N 926	O 1040	S 29	0	0

• Molecule 2 is a protein called Subunit NUBM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
2	В	456	Total 3528	C 2229	N 621	O 654	S 24	0	0

• Molecule 3 is a protein called Subunit NUCM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
3	С	387	Total 3052	C 1948	N 522	O 561	S 21	0	0

• Molecule 4 is a protein called Subunit NIMM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	D	86	Total 682	C 432	N 127	O 120	$\frac{S}{3}$	0	0

• Molecule 5 is a protein called Subunit NUEM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	331	Total 2650	C 1683	N 464	0 494	S 9	0	0

• Molecule 6 is a protein called Subunit NUFM of NADH:Ubiquinone Oxidoreductase (Com-

plex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	F	121	Total 990	C 629	N 166	O 193	${ m S} { m 2}$	0	0

• Molecule 7 is a protein called Subunit NUGM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
7	G	239	Total 1978	C 1272	N 336	O 366	S 4	0	0

• Molecule 8 is a protein called Subunit NUHM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
8	Н	213	Total 1664	C 1043	N 279	0 324	S 18	0	0

• Molecule 9 is a protein called Subunit NUIM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		A	AltConf	Trace			
9	Ι	190	Total 1519	C 966	N 254	O 289	S 10	0	0

• Molecule 10 is a protein called Subunit NUJM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	J	116	Total 790	C 495	N 146	0 147	${S \over 2}$	0	0

• Molecule 11 is a protein called Subunit NUKM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
11	K	170	Total 1347	C 857	N 236	O 239	S 15	0	0

• Molecule 12 is a protein called Subunit NULM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	L	83	Total 645	C 434	N 102	0 106	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called Subunit NUMM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	М	117	Total 912	C 568	N 163	0 176	S 5	0	0

• Molecule 14 is a protein called Acyl carrier protein ACPM1 of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
14	О	77	Total 591	C 373	N 93	O 125	0	0

• Molecule 15 is a protein called Subunit NB4M of protein NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
15	Р	123	Total 1037	C 667	N 182	0 186	${ m S} { m 2}$	0	0

• Molecule 16 is a protein called Acyl carrier protein ACPM2 of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	Q	85	Total 648	C 405	N 103	0 138	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 17 is a protein called Subunit NI2M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	R	106	Total 885	C 562	N 168	O 152	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called Subunit NESM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	S	174	Total 1430	C 920	N 245	O 263	${ m S} { m 2}$	0	0

• Molecule 19 is a protein called Subunit NUPM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
19	U	171	Total 1346	C 847	N 236	O 253	S 10	0	0

• Molecule 20 is a protein called Subunit NB6M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
20	W	121	Total 974	C 623	N 178	0 168	${ m S}{ m 5}$	0	0

• Molecule 21 is a protein called Subunit NUXM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
21	Х	167	Total 1300	C 842	N 222	0 232	$\frac{S}{4}$	0	0

• Molecule 22 is a protein called Subunit NUZM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	Z	181	Total 1390	C 893	N 240	O 256	S 1	0	0

• Molecule 23 is a protein called Subunit NIAM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
23	a	124	Total 1030	C 669	N 165	0 194	${ m S} { m 2}$	0	0

• Molecule 24 is a protein called Subunit NEBM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
24	b	64	Total 490	C 326	N 83	O 81	0	0

• Molecule 25 is a protein called Subunit NB2M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
25	0	4.4	Total	С	Ν	0	0	0
2.0	C	44	353	229	67	57	0	0

• Molecule 26 is a protein called Subunit NIDM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
26	d	90	Total 761	C 472	N 137	0 149	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called Subunit NUVM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
27	е	52	Total 436	C 293	N 75	O 65	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called Subunit NI8M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	f	80	Total 629	C 394	N 119	0 115	S 1	0	0

• Molecule 29 is a protein called Subunit NI9M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
29	g	76	Total 617	C 405	N 112	O 100	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
g	71	GLY	GLN	conflict	UNP A0A1D8NJR0

• Molecule 30 is a protein called Subunit N7BM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
30	h	136	Total 1130	С 727	N 193	O 208	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 31 is a protein called Subunit NUUM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
31	i	83	Total 646	C 413	N 117	0 115	S 1	0	0

• Molecule 32 is a protein called Subunit NB5M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
32	j	90	Total 724	C 465	N 132	O 127	0	0

• Molecule 33 is a protein called Subunit NUNM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
33	n	113	Total 904	C 582	N 153	0 168	S 1	0	0

• Molecule 34 is a protein called Subunit NU1M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		Ate	oms			AltConf	Trace
34	1	340	Total 2682	C 1826	N 393	O 456	${ m S} 7$	0	0

• Molecule 35 is a protein called Subunit NU2M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
35	2	469	Total 3775	$\begin{array}{c} \mathrm{C} \\ 2557 \end{array}$	N 550	O 656	S 12	0	0

• Molecule 36 is a protein called Subunit NU3M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
36	3	116	Total 911	C 623	N 136	O 150	${ m S} { m 2}$	0	0

• Molecule 37 is a protein called Subunit NU4M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
37	4	486	Total 3856	C 2600	N 586	O 655	S 15	0	0

• Molecule 38 is a protein called Subunit NU5M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
38	5	632	Total 4954	C 3306	N 756	O 867	S 25	0	0

• Molecule 39 is a protein called Subunit NU6M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
39	6	138	Total 1096	C 752	N 154	0 183	${f S}{7}$	0	0

• Molecule 40 is a protein called Subunit NB8M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
40	8	80	Total 662	C 420	N 120	0 114	S 8	0	0

• Molecule 41 is a protein called Subunit NIPM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
41	9	66	Total 528	C 325	N 99	O 98	S 6	0	0

• Molecule 42 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	AltConf
42	А	1	Total Fe S 8 4 4	0
42	А	1	TotalFeS844	0
42	В	1	Total Fe S 8 4 4	0
42	Ι	1	Total Fe S 8 4 4	0
42	Ι	1	Total Fe S 8 4 4	0
42	K	1	TotalFeS844	0

• Molecule 43 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	AltConf
43	Λ	1	Total Fe S	0
40	A	L	4 2 2	0
42	п	1	Total Fe S	0
40	11	1	4 2 2	0

• Molecule 44 is FLAVIN MONONUCLEOTIDE (three-letter code: FMN) (formula: $C_{17}H_{21}N_4O_9P$).

Mol	Chain	Residues	Atoms				AltConf	
4.4	В	1	Total	С	Ν	Ο	Р	0
44	44 B	T	31	17	4	9	1	0

• Molecule 45 is NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE

 $PHOSPHATE \ (three-letter \ code: \ NDP) \ (formula: \ C_{21}H_{30}N_7O_{17}P_3).$

Mol	Chain	Residues	Atoms				AltConf	
45	E	1	Total	С	Ν	0	Р	0
10	Ц	Ĩ	48	21	7	17	3	Ŭ

• Molecule 46 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
46	М	1	Total Zn 1 1	0

• Molecule 47 is S-[2-({N-[(2S)-2-hydroxy-3,3-dimethyl-4-(phosphonooxy)butanoyl]-beta-alan yl}amino)ethyl] tetradecanethioate (three-letter code: ZMP) (formula: $C_{25}H_{49}N_2O_8PS$).

Mol	Chain	Residues	Atoms				AltConf		
47	0	1	Total	С	Ν	Ο	Р	\mathbf{S}	0
41	0	L	30	19	2	7	1	1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Subunit NUAM of NADH:Ubiquinone Oxidoreductase (Complex I)

MET LL LEU LL LE • Molecule 4: Subunit NIMM of NADH: Ubiquinone Oxidoreductase (Complex I) 22% Chain D: 99% ++ D3 F4 A4 E6 A7 • Molecule 5: Subunit NUEM of NADH: Ubiquinone Oxidoreductase (Complex I) 25% Chain E: 12% 88% P22: C22: L22: V22: S22: S22: A22: N22: A30: R21 • Molecule 6: Subunit NUFM of NADH: Ubiquinone Oxidoreductase (Complex I) Chain F: 84% 16% MET TYR TTHR TTHR GLN GLN VAL CUN VAL VAL VAL VAL VAL VAL SER SER SER LYS LYS GLY GLU GLU • Molecule 7: Subunit NUGM of NADH: Ubiquinone Oxidoreductase (Complex I) 12% Chain G: 84% 15% ASH CY

Ohain II.			
Chain H:	87%	• 12%	
MET LEU LEU ARG LEU TLLE PRO ARG LLEU ALA ALA ALA CLEU	ALA ALA PRO PRO ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	E308 E1134 M1146 M1146 E1154 T1156 M1157 M1157 M1157 E1191 E1197 E1197 E1197	
K201 A202 G203 K204 M205 M205 D217 C217	A221 5223 6223 6224 7226 1227 1228 5229 8229 8229 4236 A236 A236 A236 A236 A236 A236 A236 A		
• Molecule 9: Su	bunit NUIM of NADH:Ubiquinone	e Oxidoreductase (Complex I)	
Chain I:	82%	• 17%	
MET LEU SER LEU VAL ARG ARG ARG ARG ARG SER SER	LLE LLE ARG ALY ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ILE N40 A43 A43 A43 C44 A43 C44 A43 A45 A46 A45 A46 A45 A46 A45 A46 A45 A46 A45 A46 A45 A46 A45 A46 A45 A45 A45 A45 A45 A45 A45 A45 A45 A45	
E 682 M83 E 91 E 92 E 10 6 E 10 6	E128 E150 E151 T152 D154 E198 E198 C23 D223 R223 R223		
• Molecule 10: S	ubunit NUJM of NADH:Ubiquino	ne Oxidoreductase (Complex I)	
	35%		
Chain J:	59%	41%	
MET MET SER ALU ALL HIS PIC PRO PRO PRO PRO	ARN SER SER ALA ALA ALA HIS PHE PHE PHE PHE PHE PHE CLY CLY VALL CLY VALL	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA	
	•••••	******	••
PHE SER SER SIY GLY GLY VAL THR THR PHE PHE	ALY ALA SER ALA ALA ALA ALA VAL PHE PHE C67 A69 A69 A69 A69 A69 A71 C72 E74 A73 C77 C77 C78 C78 C78 C78 C78 C78 C78 C78	W79 N80 H81 M82 M94 A95 A97 A95 A97 A96 A101 V102 C104 A101 C104 A105 A105 A105 A105 C104 A105 C104 A105 C104 A105 C106 A117 A117	F118 1119 G120
W121 PHE T122 SER V123 SER V123 SER V123 SER V123 SER V123 SER C125 ULY C125 VAL A126 VAL A127 THR A128 PHE C129 VAL A128 PHE C129 VAL	u130 ALY L131 ALA F133 ALA f133 ALA 0133 ALA 0134 PHE 1136 PHE 0136 PHE 1147 PAE 1147 PHE 1143 PHE 1147 PHE 1148 PHE 1149 PHT 1149 PHT 1156 PHT	E115 E181 ← N80 H81 + H81 H81 + H81 H82 + M82 M82 + M82 M82 + M82 M82 + M82 M82 + M82 M82 + M82 + M82 M82 + M82 + M82 M82 + M82 + M8	F118 1119 G120
ATTENDED TO A CONTRACT OF MOLECULE 11: S	Ubunit NUKM of NADH:Ubiquino	Complex I)	F118 • 1119 • 1119 • 1120
• Molecule 11: S	Ubunit NUKM of NADH:Ubiquino	ne Oxidoreductase (Complex I)	F118 1119 G120
. .	Ubunit NUKM of NADH:Ubiquino	ne Oxidoreductase (Complex I)	F118 1119 6120
• Molecule 11: S • Molecule 11: S Chain K:		0 0	F118 T119 G120
Image: State of the state	Max 1 Max 2 Max 2 <td< td=""><td>0 0</td><td>F118 1119 6120</td></td<>	0 0	F118 1119 6120
H H		ne Oxidoreductase (Complex I)	F118 1119
 M M M M M M M M M M M M M M M M M M M		<pre> State I = State</pre>	F118 1119
H H S H S H S H S H H H H H H H H H H H		In Oxidoreductase (Complex I)	F118 I119 G120

MI F2 13 L10 F1 F1 N18	R200 E30 E31 H32 L33 L33 L34 L38 L38 L38 L38 L38 L38 L38 L38	ESG LB0 VB3 VB3 ASN ASN TYR GLY ILE		
• Molecule 13: S	ubunit NUMM of NA	DH:Ubiquinone Oxido	oreductase (Com	plex I)
Chain M:	869	%	14%	
MET LEU SER SER ARG VAL VAL LYS ARG ALA ALA ALA SER VAT	SER THR THR VAL VAL K19 K19 G26 H102 E135	2		
• Molecule 14: I)	Acyl carrier protein	ACPM1 of NADH:U	biquinone Oxido	reductase (Complex
Chain O:	34%		29%	
MET LEU AEU ASN VAL SER AIA ALA ALA AC SER	PHE ALA ALA ALA CLN GLN GLN GLN CLN CLN CLN CLN CLN CLN CLN CLN CLN C	R29 931 931 833 833 833 833 843 844 841 842 842 842 842 842 843 843	146 847 949 A50 A51 153 753 753 753	A56 F58 A59 A59 L64 L64
E78 631 182 182 182 183 183 183 183 183	E91 N96 E100 E100 A104 A104 A104 A105 A12 ALA			
• Molecule 15: S	ubunit NB4M of prote	ein NADH:Ubiquinone	e Oxidoreductase	(Complex I)
Chain P:	%	99%		
MET A2 13 13 14 A7 S15 G16 G16	E44 E44 E61 E61 R64 R64 P101 P101 E102	E103 D104 D105 1106 G107 G107 G107 G110 P111 P112 S113 S113	A124	
• Molecule 16: I)	Acyl carrier protein	ACPM2 of NADH:U	biquinone Oxido	reductase (Complex
Chain Q:	64%		36%	
MET LEU ARG GLN VAL VAL ARG LEU SER ARG SER ARG	VAL VAL ALA ALA ALA PRG ALA ALA SER SER SER ALA ALA ALA	PRO GLN CLN CLN CLN CLN CLN ALA ALA ALA ALA ALA ALA ALA ALA ALA TLE TLE TTT TTTT	SER A47 A47 H48 L50 F151 A61 L62 L62	E64
NTO D71 A72 A72 N74 175 A77 A77 T78	L81 D84 L85 C86 C86 C86 D88 D88 C86 C87 C104 C104	E106 D109 H110 D111 A112 D113 E114 K115 K116 D123	A131	
• Molecule 17: S	ubunit NI2M of NAD	H:Ubiquinone Oxidore	eductase (Comple	ex I)
Chain R:	5%	97%	.	

1104 1107 1234 1107 1266 1112 1286 1112 1286 1112 1286 1112 1286 1112 1286 1112 1286 1112 1286 1113 1286 1113 1216 1115 1216 1136 1216 1136 1216 1136 1216 1136 1216 1136 1216 1136 1218 1136 1219 1136 1216 1150 1218 1150 1218 1150 1218 1150 1188 1150 1188 1150 1188 1150 1188 1150 1188 1150 1188 1150 1188 1150 1188 1150 1188 1150 1188 1150 1211

• Molecule 35: Subunit NU2M of NADH:Ubiquinone Oxidoreductase (Complex I)

• Molecule 36: Subunit NU3M of NADH:Ubiquinone Oxidore
ductase (Complex I)

• Molecule 37: Subunit NU4M of NADH:Ubiquinone Oxidoreductase (Complex I)

ILE VAL VAL ILE PRO VAL LEU ILEU TLEU TYR ILEU TYR SER SER SER

• Molecule 39: Subunit NU6M of NADH:Ubiquinone Oxidoreductase (Complex I)

• Molecule 41: Subunit NIPM of NADH:Ubiquinone Oxidoreductase (Complex I)

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	145767	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI POLARA 300	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	-2000	Depositor
Maximum defocus (nm)	-3000	Depositor
Magnification	45872	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.099	Depositor
Minimum map value	-0.014	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.002	Depositor
Recommended contour level	0.014	Depositor
Map size (Å)	497.04, 497.04, 497.04	wwPDB
Map dimensions	456, 456, 456	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.09, 1.09, 1.09	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FES, FMN, NDP, ZN, ZMP, SF4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Chain		lengths	Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.48	0/5351	0.66	3/7262~(0.0%)	
2	В	0.47	0/3605	0.67	4/4865~(0.1%)	
3	С	0.59	0/3122	0.76	5/4225~(0.1%)	
4	D	0.45	0/698	0.55	0/940	
5	Е	0.42	0/2709	0.65	0/3671	
6	F	0.41	0/1011	0.64	0/1371	
7	G	0.54	0/2040	0.69	3/2781~(0.1%)	
8	Н	0.39	0/1700	0.66	0/2307	
9	Ι	0.62	0/1557	0.72	2/2110~(0.1%)	
10	J	0.39	0/805	0.66	0/1096	
11	Κ	0.61	0/1385	0.67	0/1883	
12	L	0.49	0/653	0.73	0/883	
13	М	0.47	0/935	0.60	0/1268	
14	0	0.36	0/598	0.56	0/813	
15	Р	0.47	0/1062	0.62	0/1427	
16	Q	0.37	0/654	0.57	0/890	
17	R	0.39	0/910	0.60	0/1229	
18	S	0.42	0/1454	0.68	0/1960	
19	U	0.49	0/1375	0.69	0/1856	
20	W	0.41	0/998	0.61	0/1346	
21	Х	0.44	0/1339	0.63	1/1814~(0.1%)	
22	Ζ	0.43	0/1431	0.68	2/1955~(0.1%)	
23	a	0.46	0/1064	0.63	1/1439~(0.1%)	
24	b	0.43	0/503	0.59	0/679	
25	с	0.36	0/364	0.52	0/491	
26	d	0.47	0/777	0.58	0/1043	
27	е	0.39	0/456	0.56	0/619	
28	f	0.39	0/639	0.66	0/856	
29	g	0.45	0/643	0.56	0/880	
30	h	0.52	0/1168	0.73	$2/\overline{1589}~(0.1\%)$	
31	i	0.38	0/666	0.51	0/907	
32	j	0.44	0/745	0.58	0/1006	

Mal	Chain	Bond	lengths	В	ond angles
	Ullaill	RMSZ	# Z > 5	RMSZ	# Z > 5
33	n	0.45	0/932	0.64	1/1264~(0.1%)
34	1	0.52	0/2755	0.78	3/3764~(0.1%)
35	2	0.60	0/3855	0.76	7/5252~(0.1%)
36	3	0.47	0/930	0.76	2/1269~(0.2%)
37	4	0.53	0/3950	0.78	7/5392~(0.1%)
38	5	0.46	0/5078	0.67	1/6934~(0.0%)
39	6	0.46	0/1117	0.76	3/1524~(0.2%)
40	8	0.38	0/676	0.65	0/904
41	9	0.45	0/537	0.60	0/717
All	All	0.49	0/62247	0.68	$47/84481 \ (0.1\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	2
3	С	0	3
5	Ε	0	1
8	Н	0	1
11	Κ	0	1
18	S	0	1
22	Ζ	0	1
30	h	0	1
34	1	0	3
35	2	0	1
36	3	0	1
37	4	0	3
38	5	0	3
All	All	0	22

There are no bond length outliers.

The worst 5 of 47 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	h	56	LEU	CA-CB-CG	8.38	134.58	115.30
3	С	381	LEU	CB-CG-CD1	-7.91	97.55	111.00
37	4	36	LEU	CB-CG-CD1	-7.42	98.39	111.00
2	В	417	LEU	CA-CB-CG	-7.41	98.26	115.30
35	2	285	LEU	CB-CG-CD2	-7.15	98.85	111.00

There are no chirality outliers.

5 of 22 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	162	THR	Peptide
1	А	222	ASN	Peptide
3	С	106	GLY	Peptide
3	С	222	GLY	Peptide
3	С	229	TYR	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Favoured Allowed		Percentiles	
1	А	690/728~(95%)	628 (91%)	61 (9%)	1 (0%)	48	81
2	В	454/488~(93%)	414 (91%)	40 (9%)	0	100	100
3	С	385/466~(83%)	347 (90%)	35~(9%)	3(1%)	16	53
4	D	84/87~(97%)	74 (88%)	10 (12%)	0	100	100
5	Е	329/375~(88%)	307 (93%)	22 (7%)	0	100	100
6	F	119/144~(83%)	108 (91%)	11 (9%)	0	100	100
7	G	237/281~(84%)	221 (93%)	16 (7%)	0	100	100
8	Н	211/243~(87%)	184 (87%)	26 (12%)	1 (0%)	25	61
9	Ι	188/229~(82%)	171 (91%)	17 (9%)	0	100	100
10	J	110/198~(56%)	99~(90%)	11 (10%)	0	100	100
11	К	168/210~(80%)	149 (89%)	19 (11%)	0	100	100
12	L	81/89~(91%)	80 (99%)	1 (1%)	0	100	100
13	М	115/136~(85%)	97 (84%)	18 (16%)	0	100	100

Continued on next page...

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	J	1	r J

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
14	Ο	75/109~(69%)	70~(93%)	5(7%)	0	100	100
15	Р	121/124~(98%)	114 (94%)	7~(6%)	0	100	100
16	Q	83/132~(63%)	78~(94%)	5~(6%)	0	100	100
17	R	104/109~(95%)	92 (88%)	12 (12%)	0	100	100
18	S	168/249~(68%)	155 (92%)	12 (7%)	1 (1%)	22	58
19	U	169/172~(98%)	151 (89%)	17 (10%)	1 (1%)	22	58
20	W	119/123~(97%)	115 (97%)	4 (3%)	0	100	100
21	Х	165/169~(98%)	155 (94%)	10 (6%)	0	100	100
22	Z	179/182~(98%)	160 (89%)	19 (11%)	0	100	100
23	a	122/149~(82%)	108 (88%)	14 (12%)	0	100	100
24	b	62/74~(84%)	61 (98%)	1 (2%)	0	100	100
25	с	42/60~(70%)	36 (86%)	6 (14%)	0	100	100
26	d	88/92~(96%)	82 (93%)	5 (6%)	1 (1%)	12	45
27	е	50/67~(75%)	46 (92%)	4 (8%)	0	100	100
28	f	78/87~(90%)	69~(88%)	9 (12%)	0	100	100
29	g	74/78~(95%)	61 (82%)	13 (18%)	0	100	100
30	h	134/138~(97%)	124 (92%)	9~(7%)	1 (1%)	19	55
31	i	81/90~(90%)	78~(96%)	3~(4%)	0	100	100
32	j	88/93~(95%)	79~(90%)	9 (10%)	0	100	100
33	n	111/120~(92%)	99~(89%)	12 (11%)	0	100	100
34	1	338/341~(99%)	303 (90%)	35 (10%)	0	100	100
35	2	467/469~(100%)	429 (92%)	37 (8%)	1 (0%)	44	76
36	3	112/128 (88%)	97 (87%)	14 (12%)	1 (1%)	14	49
37	4	484/486 (100%)	460 (95%)	23 (5%)	1 (0%)	44	76
38	5	626/655~(96%)	587 (94%)	37 (6%)	2(0%)	37	70
39	6	134/185~(72%)	123 (92%)	11 (8%)	0	100	100
40	8	78/99~(79%)	72 (92%)	6 (8%)	0	100	100
41	9	64/89~(72%)	60 (94%)	4 (6%)	0	100	100
All	All	7587/8543~(89%)	6943 (92%)	630 (8%)	14 (0%)	45	76

 $5~{\rm of}~14$ Ramachandran outliers are listed below:

Mol	Chain	Res	Type
36	3	30	PRO
38	5	555	VAL
1	А	660	ASP
18	S	161	LYS
3	С	92	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	565/595~(95%)	563 (100%)	2(0%)	89	91
2	В	364/389~(94%)	364 (100%)	0	100	100
3	С	321/394~(82%)	319~(99%)	2 (1%)	84	88
4	D	68/69~(99%)	68 (100%)	0	100	100
5	Е	287/329~(87%)	287 (100%)	0	100	100
6	F	109/129~(84%)	109 (100%)	0	100	100
7	G	216/245~(88%)	215 (100%)	1 (0%)	86	90
8	Н	188/212~(89%)	188 (100%)	0	100	100
9	Ι	156/187~(83%)	155~(99%)	1 (1%)	84	88
10	J	62/147~(42%)	62 (100%)	0	100	100
11	Κ	147/180~(82%)	146 (99%)	1 (1%)	81	86
12	L	72/77~(94%)	72~(100%)	0	100	100
13	М	97/115~(84%)	97~(100%)	0	100	100
14	Ο	65/91~(71%)	65~(100%)	0	100	100
15	Р	109/110~(99%)	109 (100%)	0	100	100
16	Q	72/111~(65%)	72~(100%)	0	100	100
17	R	97/100~(97%)	97~(100%)	0	100	100
18	S	149/211~(71%)	148 (99%)	1 (1%)	81	86
19	U	147/148~(99%)	147 (100%)	0	100	100
20	W	100/102~(98%)	100 (100%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
21	Х	131/133~(98%)	131 (100%)	0	100	100
22	Z	147/148~(99%)	147 (100%)	0	100	100
23	a	108/129 (84%)	107 (99%)	1 (1%)	75	83
24	b	50/59~(85%)	50 (100%)	0	100	100
25	с	30/45~(67%)	30 (100%)	0	100	100
26	d	83/85~(98%)	83 (100%)	0	100	100
27	е	44/55~(80%)	44 (100%)	0	100	100
28	f	69/73~(94%)	69 (100%)	0	100	100
29	g	62/64~(97%)	62 (100%)	0	100	100
30	h	121/123~(98%)	121 (100%)	0	100	100
31	i	64/68~(94%)	63~(98%)	1 (2%)	58	74
32	j	71/73~(97%)	71 (100%)	0	100	100
33	n	97/102~(95%)	97 (100%)	0	100	100
34	1	292/302~(97%)	291 (100%)	1 (0%)	91	92
35	2	433/433 (100%)	433 (100%)	0	100	100
36	3	98/114 (86%)	98 (100%)	0	100	100
37	4	434/434 (100%)	434 (100%)	0	100	100
38	5	530/580~(91%)	529 (100%)	1 (0%)	92	94
39	6	122/167~(73%)	122 (100%)	0	100	100
40	8	69/76~(91%)	69 (100%)	0	100	100
41	9	57/76~(75%)	57 (100%)	0	100	100
All	All	6503/7280~(89%)	6491 (100%)	12 (0%)	91	94

Continued from previous page...

5 of 12 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
18	S	102	ARG
23	а	64	ARG
38	5	24	ARG
31	i	53	ARG
3	С	466	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 77 such side chains are listed below:

Mol	Chain	Res	Type
36	3	85	ASN
38	5	335	HIS
37	4	26	HIS
37	4	480	ASN
38	5	574	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 12 ligands modelled in this entry, 1 is monoatomic - leaving 11 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tiple	В	ond leng	gths	E	Bond ang	gles
	туре	Unam	nes	nes Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
42	SF4	В	501	2	$0,\!12,\!12$	-	-	-		
42	SF4	Ι	302	9	0,12,12	-	-	-		
42	SF4	А	802	1	$0,\!12,\!12$	-	-	-		
47	ZMP	Ο	201	14	23,29,36	1.95	6 (26%)	28,36,45	2.08	8 (28%)
42	SF4	А	801	1	0,12,12	-	-	-		
43	FES	А	803	1	0,4,4	-	-	-		
45	NDP	Е	401	-	$45,\!52,\!52$	<mark>3.94</mark>	18 (40%)	53,80,80	2.35	6 (11%)
42	SF4	Ι	301	9	$0,\!12,\!12$	-	-	-		
44	FMN	В	502	-	33,33,33	2.86	12 (36%)	48,50,50	1.57	12 (25%)

Mal	Type	Chain	Dec	Tink	В	ond leng	gths	E	ond angles	
	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ $ $ $# Z > 2$	2
43	FES	Н	301	8	$0,\!4,\!4$	-	-	-		
42	SF4	К	301	11	0,12,12	-	-	-		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
42	SF4	В	501	2	-	-	0/6/5/5
47	ZMP	О	201	14	-	17/34/36/43	-
42	SF4	А	802	1	-	-	0/6/5/5
42	SF4	Ι	302	9	-	-	0/6/5/5
42	SF4	А	801	1	-	-	0/6/5/5
43	FES	А	803	1	-	-	0/1/1/1
45	NDP	Е	401	-	-	14/30/77/77	0/5/5/5
42	SF4	Ι	301	9	-	-	0/6/5/5
44	FMN	В	502	-	-	6/18/18/18	0/3/3/3
43	FES	Н	301	8	-	-	0/1/1/1
42	SF4	Κ	301	11	-	-	0/6/5/5

The worst 5 of 36 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
45	Ε	401	NDP	O4B-C1B	13.38	1.59	1.41
45	Е	401	NDP	C6N-C5N	12.39	1.55	1.33
44	В	502	FMN	C4A-N5	7.64	1.45	1.30
45	Е	401	NDP	O4D-C1D	7.44	1.59	1.42
45	Е	401	NDP	C2D-C1D	-7.30	1.30	1.53

The worst 5 of 26 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
45	E	401	NDP	C5A-C6A-N6A	9.98	135.52	120.35
45	Е	401	NDP	C1B-N9A-C4A	-8.85	111.09	126.64
47	0	201	ZMP	C9-C10-S1	7.00	121.61	113.46
45	Е	401	NDP	N6A-C6A-N1A	-6.94	104.18	118.57
45	Е	401	NDP	N3A-C2A-N1A	-5.70	119.77	128.68

There are no chirality outliers.

5 of 37 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
44	В	502	FMN	N10-C1'-C2'-O2'
44	В	502	FMN	N10-C1'-C2'-C3'
44	В	502	FMN	C1'-C2'-C3'-O3'
44	В	502	FMN	C1'-C2'-C3'-C4'
44	В	502	FMN	O2'-C2'-C3'-O3'

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
38	5	2
10	J	2

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	5	623:ASN	С	637:SER	Ν	19.55
1	J	110:VAL	С	116:PRO	Ν	11.30
1	J	82:MET	С	94:TRP	Ν	10.82
1	5	606:LEU	С	613:SER	Ν	9.79

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-4874. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 228

Y Index: 228

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 193

Y Index: 270

Z Index: 201

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.014. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 304 $\rm nm^3;$ this corresponds to an approximate mass of 275 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.248 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.248 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-off)			
resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	4.04	-	-		
Author-provided FSC curve	4.02	4.61	4.12		
Unmasked-calculated*	-	-	-		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-4874 and PDB model 6RFS. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.014 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.014).

9.4 Atom inclusion (i)

At the recommended contour level, 83% of all backbone atoms, 55% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.014) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} ext{-score}$
All	0.5540	0.3420
1	0.5010	0.3370
2	0.5930	0.3710
3	0.3790	0.3330
4	0.5700	0.3560
5	0.5090	0.3130
6	0.4980	0.3420
8	0.4850	0.2730
9	0.5620	0.3300
A	0.5960	0.3520
В	0.5750	0.3170
С	0.6110	0.3760
D	0.5410	0.3360
E	0.4980	0.3230
F	0.5970	0.3390
G	0.6100	0.3890
Н	0.5580	0.3250
I	0.6390	0.3740
J	0.3550	0.3110
K	0.6280	0.3780
L	0.5260	0.3380
M	0.6550	0.3920
0	0.3830	0.2810
P	0.5550	0.3370
Q	0.4260	0.2770
R	0.5310	0.3110
S	0.5080	0.3010
U	0.5390	0.3260
W	0.5900	0.3420
X	0.5630	0.3500
Z	0.5930	0.3710
a	0.5040	0.3220
b	0.5930	0.3470
С	0.4780	0.2980
d	0.5870	0.3230

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
е	0.4730	0.2970
f	0.5220	0.3010
g	0.5700	0.3620
h	0.6140	0.3780
i	0.5670	0.3340
j	0.5460	0.3780
n	0.5640	0.3390

