

wwPDB X-ray Structure Validation Summary Report (i)

Oct 9, 2023 – 11:29 PM EDT

PDB ID	:	7RDW
Title	:	Crystal Structure of FH1 Fab bound to HXb2 HIV-1 gp120 core
Authors	:	Weidle, C.; Pancera, M.
Deposited on	:	2021-07-12
Resolution	:	3.55 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	4.02b-467
:	?.? (???), CSD ??CSD?? (????)
:	1.13
:	2.35.1
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	5.8.0158
:	7.0.044 (Gargrove)
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.35.1
	: : : : : : : : : : : : : : : : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.55 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution				
	$(\# { m Entries})$	(#Entries, resolution range(Å)				
R_{free}	130704	$1020 \ (3.62-3.50)$				
Clashscore	141614	1100 (3.62-3.50)				
Ramachandran outliers	138981	1065 (3.62-3.50)				
Sidechain outliers	138945	1066 (3.62-3.50)				
RSRZ outliers	127900	1009 (3.64-3.48)				

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	С	373	76% 11%		13%
1	D	373	71% 16%	•	12%
1	М	373	72% 15%	•	12%
1	Ν	373	75% 13%	•	12%
2	G	225	83%	10%	• 7%

Mol	Chain	Length	Quality of chain	
2	U	225	8% 87%	• • 8%
3	Н	225	84%	9% 7%
3	Q	225	88%	6% 6%
4	Ι	211	<mark>6%</mark> 86%	13% •
4	L	211	90%	9% •
4	R	211	90%	7% •
4	V	211	88%	6% 5%
5	0	3	33% 67%	
5	с	3	100%	
5	m	3	100%	
5	У	3	100%	

Continued from previous page...

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
5	NAG	0	2	Х	-	-	-
5	NAG	с	2	Х	-	-	-
5	BMA	с	3	X	-	-	-
5	NAG	m	2	Х	-	-	-
5	NAG	У	2	X	-	-	-
6	NAG	N	608	-	-	-	Х

2 Entry composition (i)

There are 10 unique types of molecules in this entry. The entry contains 21960 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	C	206	Total	С	Ν	0	S	0	0	0
	U	320	2390	1500	416	451	23	0	0	0
1	л	200	Total	С	Ν	0	S	0	0	0
1	D	529	2440	1524	428	466	22	0	0	
1	М	200	Total	С	Ν	0	S	0	0	0
	111	320	2405	1509	417	456	23	0	0	0
1	N	320	Total	С	Ν	0	S	0	0	0
		529	2413	1513	423	454	23	0	0	

• Molecule 1 is a protein called Glycoprotein 120.

• Molecule 2 is a protein called FH1 Fab Heavy Chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
9	С	210	Total	С	Ν	0	S	0	0	0
	G	210	1483	932	260	283	8	0	0	0
0	II	208	Total	С	Ν	0	S	0	0	0
	U	200	1454	915	258	273	8	0	0	U

• Molecule 3 is a protein called FH1 Fab Heavy Chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	п	209	Total	С	Ν	0	S	0	0	0
0	эп		1502	953	262	279	8	0	0	
9	0	010	Total	С	Ν	0	S	0	0	0
3 Q	212	1595	1010	271	306	8	0	0	0	

• Molecule 4 is a protein called FH1 Fab Light Chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	Ι	209	Total 1391	C 861	N 255	0 270	${ m S}{ m 5}$	0	0	0
4	L	208	Total 1424	C 901	N 246	O 272	${S \over 5}$	0	0	0

Conti	nued fron	ı previous pa	ge							
Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	D	205	Total	С	Ν	0	S	0	0	0
4	n	205	1439	901	244	289	5	0	0	U
4	V	200	Total	С	Ν	0	S	0	0	0
4	V	200	1344	838	240	261	5		U	U

• Molecule 5 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	I	Aton	ns		ZeroOcc	AltConf	Trace	
5	5 O	3	Total	С	Ν	0	0	0	0	
0		ى ك	39	22	2	15	0	0	0	
5	0	3	Total	С	Ν	0	0	0	0	
0	C	5	39	22	2	15	0	0	0	
5	m	2	Total	С	Ν	0	0	0	0	
0	111	3	39	22	2	15	0	0	U	
5 y	9	Total	С	Ν	0	0	0	0		
	У	5	39	22	2	15	0	0	0	

• Molecule 6 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
6	C	1	Total	С	Ν	0	0	0
0	U	1	14	8	1	5	0	0
6	С	1	Total	С	Ν	0	0	0
0	U	1	14	8	1	5	0	0
6	C	1	Total	С	Ν	Ο	0	0
	0	1	14	8	1	5	0	0
6	C	1	Total	С	Ν	Ο	0	0
		1	14	8	1	5	Ŭ	0
6	C	1	Total	С	Ν	0	0	0
		_	14	8	1	5	, , , , , , , , , , , , , , , , , , ,	-
6	C	1	Total	С	Ν	0	0	0
		_	14	8	1	5		
6	C	1	Total	С	Ν	O	0	0
		_	14	8	1	5		
6	D	1	Total	С	Ν	Ο	0	0
		-	14	8	1	5	Ŭ	<u> </u>
6	D	1	Total	С	Ν	Ο	0	0
		-	14	8	1	5	Ŭ	
6	О	1	Total	С	Ν	Ο	0	0
		1	14	8	1	5	Ŭ	•
6	О	1	Total	С	Ν	Ο	0	0
		-	14	8	1	5		
6	D	1	Total	С	Ν	Ο	0	0
		-	14	8	1	5	Ŭ	<u> </u>
6	М	1	Total	С	Ν	Ο	0	0
		_	14	8	1	5		
6	М	1	Total	С	Ν	O	0	0
		_	14	8	1	5		
6	М	1	Total	С	Ν	O	0	0
			14	8	1	5		_
6	М	1	Total	C	N	Õ	0	0
			14	8		5		
6	М	1	Total	C	N	Õ	0	0
			14	8		5		
6	М	1	Total	C	N	Õ	0	0
			14	8		5		
6	Ν	1	Total	C	N	Ũ	0	0
			14	8	1	5		
6	Ν	1	Total	C	N	Ũ	0	0
			14	8	1	5		
6	Ν	1	Total	C	N	Ũ	0	0
			14	8		5		
6	Ν	1	Total	C	N	Õ	0	0
_			14	8	1	5	-	-

Continued from previous page...

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
6	N	1	Total	С	Ν	0	0	0
0	IN	I	14	8	1	5	0	0
6	Ν	1	Total	С	Ν	Ο	0	0
0	11	I	14	8	1	5	0	0
6	Ν	1	Total	С	Ν	Ο	0	0
0	IN	T	14	8	1	5		
6	Ν	1	Total	С	Ν	Ο	0	0
0	IN	T	14	8	1	5	0	0
6	Ν	1	Total	С	Ν	Ο	0	0
0	11	T	14	8	1	5	0	0
6	N	1	Total	С	Ν	0	0	0
0	1N	I	14	8	1	5		0

• Molecule 7 is AMMONIUM ION (three-letter code: NH4) (formula: H_4N).

NH4	
NH ⁺ N	

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	С	1	Total N 1 1	0	0
7	С	1	Total N 1 1	0	0
7	D	1	Total N 1 1	0	0
7	Ι	1	Total N 1 1	0	0

• Molecule 8 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
8	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
8	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
8	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
8	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
8	Ν	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
9	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
9	М	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 10 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
10	С	11	Total O 11 11	0	0
10	D	15	Total O 15 15	0	0
10	G	8	Total O 8 8	0	0
10	Н	4	Total O 4 4	0	0
10	Ι	1	Total O 1 1	0	0
10	L	5	Total O 5 5	0	0
10	М	12	Total O 12 12	0	0
10	Ν	16	Total O 16 16	0	0
10	Q	2	Total O 2 2	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
10	R	4	Total O 4 4	0	0
10	U	7	Total O 7 7	0	0
10	V	4	Total O 4 4	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Glycoprotein 120

• Molecule 1: Glycoprotein 120

• Molecule 3: FH1 Fab Heavy Chain

Chain Q:	88%	6%	6%
41 741 741 145 145 145 145 145 854 854 854 854 854 858 858 126 99 99 858 858 858 858 858 858 858 858 8	V163 V163 S179 S179 S180 V182 V182 S180 V182 S180 V182 S180 V182 S180 V182 S180 V182 S180 V182 LVS SER		
• Molecule 4: FH1 Fab Light Chain			
Chain I:	6%	13%	
E1 133 133 133 146 146 148 148 148 148 148 148 148 148 148 188 18	A111 A111 B114 B114 P110 P120 P120 P120 P133 C133 C133 C133 C133 C133 P126	A144 K145	V150 A153 Q155 S156
D170 8171 1172 1172 1197 6200 6212 6212 613 010 6212 613 075 672 672			
• Molecule 4: FH1 Fab Light Chain			
Chain L:	90%	9%	
E1 637 637 638 638 636 650 650 650 852 852 852 852 811 712 €118 €119 €119 €119 €119 €119	V133 L136 F139 F139 W148 W150 V150 V150 V152 V152 V152 V152 V156 V152 V152 V156 V152 V150 V152 V150 V100	\$202 \$203	G212 GLU CYS
• Molecule 4: FH1 Fab Light Chain			
Chain R:	90%	7%	·
E1 146 146 146 155 155 155 155 155 155 156 156 156 15	Lide 110 170 173 1778 1776 1776 1776 1776 1776 1776 1776		
• Molecule 4: FH1 Fab Light Chain			
Chain V:	88%	6%	5%
E1 11 11 11 11 11 11 11 11 11 11 11 11 1	8127 8127 8127 8127 8128 1135 1135 1135 1135 1135 8138 8142 8144 8144 8144 8144 8144 8144 814	LEU GLN SER	6157 Y173 S174 L175 S176 S176
1178 1186 1186 1186 1186 1186 1186 1186			

• Molecule 5: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain O: 33% 67%

• Molecule 5: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain c:

100%

NAG1 NAG2 BMA3

• Molecule 5: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain m:

100%

NAG1 NAG2 BMA3

• Molecule 5: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain y:

100%

NAG1 NAG2 BMA3

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	103.36Å 106.27Å 113.22Å	Depositor
a, b, c, α , β , γ	67.57° 76.67° 60.99°	Depositor
Bosolution (Å)	50.18 - 3.55	Depositor
Resolution (A)	50.18 - 3.55	EDS
% Data completeness	76.8(50.18-3.55)	Depositor
(in resolution range)	76.9(50.18-3.55)	EDS
R _{merge}	(Not available)	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.28 (at 3.57 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.15.2_3472	Depositor
P. P.	0.260 , 0.295	Depositor
n, n_{free}	0.260 , 0.294	DCC
R_{free} test set	1842 reflections (5.09%)	wwPDB-VP
Wilson B-factor $(Å^2)$	61.8	Xtriage
Anisotropy	0.354	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.28, 38.1	EDS
L-test for twinning ²	$ < L >=0.46, < L^2>=0.28$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.82	EDS
Total number of atoms	21960	wwPDB-VP
Average B, all atoms $(Å^2)$	70.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.24% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, SO4, BMA, NH4, EDO, PCA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bo	ond angles
MIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	С	0.25	0/2440	0.42	0/3333
1	D	0.25	0/2489	0.44	0/3393
1	М	0.24	0/2455	0.43	0/3358
1	Ν	0.27	0/2462	0.50	1/3361~(0.0%)
2	G	0.25	0/1518	0.47	0/2084
2	U	0.25	0/1486	0.46	0/2039
3	Н	0.25	0/1547	0.44	0/2120
3	Q	0.24	0/1641	0.44	0/2245
4	Ι	0.25	0/1416	0.45	0/1939
4	L	0.25	0/1456	0.43	0/1996
4	R	0.25	0/1473	0.43	0/2019
4	V	0.24	0/1371	0.43	0/1878
All	All	0.25	0/21754	0.45	1/29765~(0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Ν	74	CYS	CA-CB-SG	-12.51	91.49	114.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	С	2390	0	2159	30	0
1	D	2440	0	2222	46	0
1	М	2405	0	2180	34	0
1	Ν	2413	0	2183	36	0
2	G	1483	0	1225	15	0
2	U	1454	0	1203	14	0
3	Н	1502	0	1276	11	0
3	Q	1595	0	1475	9	0
4	Ι	1391	0	1145	18	0
4	L	1424	0	1194	10	0
4	R	1439	0	1202	11	1
4	V	1344	0	1107	7	1
5	0	39	0	34	3	0
5	с	39	0	34	0	0
5	m	39	0	34	0	0
5	У	39	0	34	0	0
6	С	98	0	91	5	0
6	D	70	0	65	1	0
6	М	84	0	78	2	0
6	Ν	140	0	130	3	0
7	С	2	0	0	0	0
7	D	1	0	0	0	0
7	Ι	1	0	0	0	0
8	С	8	0	12	0	0
8	D	4	0	6	0	0
8	Н	8	0	12	0	0
8	N	4	0	6	0	0
9	С	5	0	0	0	0
9	D	5	0	0	1	0
9	М	5	0	0	0	0
10	С	11	0	0	1	0
10	D	15	0	0	0	0
10	G	8	0	0	0	0
10	Н	4	0	0	1	0
10	Ι	1	0	0	0	0
10	L	5	0	0	0	0
10	М	12	0	0	0	0
10	Ν	16	0	0	1	0
10	Q	2	0	0	0	0
10	R	4	0	0	0	0
10	U	7	0	0	0	0
10	V	4	0	0	0	0
All	All	21960	0	19107	231	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

The worst 5 of 231 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:D:57:ASP:OD1	1:D:77:THR:OG1	1.83	0.96
1:M:358:THR:HG1	1:M:466:GLU:N	1.66	0.93
3:H:200:HIS:HD1	3:H:203:SER:HG	1.16	0.88
4:I:108:ARG:NH2	4:I:170:ASP:O	2.06	0.88
4:R:49:TYR:O	4:R:53:SER:OG	1.94	0.85

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1 Atom-2		Interatomic distance (Å)	Clash overlap (Å)
4:R:57:GLY:O	4:V:45:ARG:NH1[1_565]	2.14	0.06

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	С	318/373~(85%)	302 (95%)	16 (5%)	0	100	100
1	D	319/373~(86%)	299 (94%)	20 (6%)	0	100	100
1	М	320/373~(86%)	302 (94%)	17 (5%)	1 (0%)	41	74
1	Ν	319/373~(86%)	305 (96%)	14 (4%)	0	100	100
2	G	206/225~(92%)	197 (96%)	8 (4%)	1 (0%)	29	67
2	U	204/225~(91%)	191 (94%)	13 (6%)	0	100	100
3	Н	205/225~(91%)	195~(95%)	10 (5%)	0	100	100
3	Q	208/225~(92%)	202 (97%)	6 (3%)	0	100	100
4	Ι	207/211~(98%)	193 (93%)	14 (7%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	L	204/211~(97%)	189~(93%)	14 (7%)	1 (0%)	29	67
4	R	201/211~(95%)	182 (90%)	19 (10%)	0	100	100
4	V	194/211~(92%)	183~(94%)	11 (6%)	0	100	100
All	All	2905/3236~(90%)	2740 (94%)	162 (6%)	3~(0%)	51	84

Continued from previous page...

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	G	2	VAL
4	L	91	MET
1	М	269	GLU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	С	244/328~(74%)	239~(98%)	5(2%)	55	79
1	D	254/328~(77%)	249~(98%)	5(2%)	55	79
1	М	247/328~(75%)	241 (98%)	6 (2%)	49	76
1	Ν	247/328~(75%)	243~(98%)	4 (2%)	62	83
2	G	124/190~(65%)	120 (97%)	4 (3%)	39	70
2	U	119/190~(63%)	116 (98%)	3 (2%)	47	75
3	Н	130/191 (68%)	127 (98%)	3 (2%)	50	77
3	Q	166/191~(87%)	164 (99%)	2 (1%)	71	87
4	Ι	108/184~(59%)	107 (99%)	1 (1%)	78	90
4	L	118/184 (64%)	118 (100%)	0	100	100
4	R	129/184 (70%)	128 (99%)	1 (1%)	81	92
4	V	109/184~(59%)	108 (99%)	1 (1%)	78	90
All	All	1995/2810 (71%)	1960 (98%)	35~(2%)	59	81

 $5~{\rm of}~35$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
3	Q	71	ARG
3	Q	94	ARG
2	U	99	GLN
2	G	94	ARG
2	G	71	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such sidechains are listed below:

Mol	Chain	Res	Type
1	D	66	HIS
2	U	52	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

2 non-standard protein/DNA/RNA residues are modelled in this entry.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

12 monosaccharides are modelled in this entry.

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	NAG	0	2	5	1/1/5/7	-	-
5	NAG	с	2	5	1/1/5/7	-	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	BMA	с	3	5	1/1/4/5	-	-
5	NAG	m	2	5	1/1/5/7	-	-
5	NAG	У	2	5	1/1/5/7	-	-

Continued from previous page...

There are no bond length outliers.

There are no bond angle outliers.

All (5) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
5	0	2	NAG	C1
5	с	2	NAG	C1
5	с	3	BMA	C1
5	m	2	NAG	C1
5	у	2	NAG	C1

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	0	2	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 41 ligands modelled in this entry, 4 are modelled with single atom - leaving 37 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	С	326/373~(87%)	-0.50	0 100 100	30, 62, 95, 128	0
1	D	329/373~(88%)	-0.55	1 (0%) 94 88	26, 60, 89, 114	0
1	М	328/373~(87%)	-0.50	0 100 100	27,60,93,106	0
1	Ν	329/373~(88%)	-0.50	0 100 100	29,62,92,117	0
2	G	209/225~(92%)	-0.19	7 (3%) 46 32	36, 65, 130, 141	0
2	U	207/225~(92%)	0.14	17 (8%) 11 8	35, 60, 164, 172	0
3	Н	209/225~(92%)	-0.42	3 (1%) 75 60	29, 59, 117, 137	0
3	Q	212/225~(94%)	-0.49	1 (0%) 91 83	35, 62, 100, 114	0
4	Ι	209/211~(99%)	-0.12	12 (5%) 23 14	37, 87, 143, 152	0
4	L	208/211~(98%)	-0.30	8 (3%) 40 27	31, 73, 123, 127	0
4	R	205/211~(97%)	-0.48	0 100 100	32, 74, 108, 121	0
4	V	200/211~(94%)	0.24	29 (14%) 2 2	32, 81, 169, 186	0
All	All	2971/3236~(91%)	-0.34	78 (2%) 56 39	26, 64, 137, 186	0

The worst 5 of 78 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
4	V	133	VAL	9.2
4	V	145	LYS	9.1
2	U	140	CYS	8.4
4	V	134	CYS	8.2
4	V	144	ALA	7.8

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum,

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	PCA	U	1	8/9	0.90	0.17	70,77,82,91	0
2	PCA	G	1	8/9	0.92	0.14	64,67,78,79	0

median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
5	BMA	m	3	11/12	0.79	0.22	50,62,72,74	0
5	NAG	у	1	14/15	0.80	0.27	54,66,77,78	0
5	BMA	с	3	11/12	0.82	0.19	55,70,80,84	0
5	BMA	0	3	11/12	0.87	0.18	49,56,70,84	0
5	NAG	m	1	14/15	0.90	0.17	$51,\!64,\!72,\!74$	0
5	NAG	m	2	14/15	0.90	0.20	59,74,81,86	0
5	NAG	с	2	14/15	0.92	0.17	60,68,82,85	0
5	NAG	0	1	14/15	0.93	0.23	46,54,62,67	0
5	NAG	с	1	14/15	0.93	0.20	46,50,64,66	0
5	BMA	У	3	11/12	0.94	0.12	$56,\!61,\!78,\!87$	0
5	NAG	у	2	14/15	0.95	0.15	58,70,79,86	0
5	NAG	0	2	14/15	0.95	0.18	54,65,74,83	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
6	NAG	М	605	14/15	0.70	0.22	92,99,109,110	0
6	NAG	М	603	14/15	0.72	0.39	94,125,140,144	0
6	NAG	М	602	14/15	0.73	0.32	90,97,106,109	0
6	NAG	N	603	14/15	0.73	0.20	84,98,107,107	0
6	NAG	D	603	14/15	0.75	0.28	103,123,132,136	0
8	EDO	С	610	4/4	0.75	0.27	69,72,73,77	0
6	NAG	М	604	14/15	0.77	0.32	107,114,130,130	0
6	NAG	N	608	14/15	0.78	0.46	146,163,168,171	0
6	NAG	С	602	14/15	0.78	0.30	96,105,110,127	0
6	NAG	С	604	14/15	0.81	0.36	106,116,130,135	0
6	NAG	N	607	14/15	0.81	0.36	94,110,128,133	0
6	NAG	С	607	14/15	0.83	0.15	93,107,114,117	0
6	NAG	N	601	14/15	0.83	0.31	$68,\!80,\!85,\!88$	0
6	NAG	N	609	14/15	0.84	0.18	82,93,99,102	0
6	NAG	D	605	14/15	0.84	0.20	62,86,95,96	0
6	NAG	М	601	14/15	0.85	0.25	81,88,101,108	0
6	NAG	N	605	14/15	0.85	0.23	84,108,134,140	0
6	NAG	N	610	14/15	0.85	0.18	$65,\!105,\!110,\!113$	0
6	NAG	С	605	14/15	0.85	0.17	76,85,89,90	0
8	EDO	Н	301	4/4	0.85	0.18	$50,\!53,\!64,\!66$	0
6	NAG	С	603	14/15	0.86	0.28	101,109,118,132	0
6	NAG	N	604	14/15	0.87	0.17	$70,\!85,\!93,\!98$	0
6	NAG	Ν	606	14/15	0.87	0.30	74,91,109,110	0
8	EDO	С	611	4/4	0.88	0.21	$50,\!62,\!69,\!75$	0
6	NAG	N	602	14/15	0.89	0.25	$89,\!97,\!108,\!123$	0
6	NAG	D	604	14/15	0.89	0.16	$82,\!88,\!97,\!98$	0
6	NAG	С	606	14/15	0.89	0.17	85,94,104,110	0
6	NAG	D	602	14/15	0.91	0.23	82,98,108,115	0
8	EDO	Ν	611	4/4	0.91	0.19	$69,\!70,\!75,\!80$	0
6	NAG	D	601	14/15	0.92	0.20	62,77,84,92	0
6	NAG	С	601	14/15	0.92	0.17	58,69,73,75	0
9	SO4	С	612	5/5	0.92	0.23	79,94,107,113	0
8	EDO	D	607	4/4	0.93	0.20	42,55,57,62	0
7	NH4	D	606	1/1	0.94	0.39	17,17,17,17	0
8	EDO	Н	302	4/4	0.94	0.12	33,37,38,38	0
6	NAG	М	606	14/15	0.95	0.19	$\overline{64,\!80,\!90,\!101}$	0
7	NH4	C	609	1/1	0.95	0.40	4,4,4,4	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
9	SO4	D	608	5/5	0.96	0.15	62,63,66,70	0
7	NH4	С	608	1/1	0.97	0.37	24,24,24,24	0
7	NH4	Ι	301	1/1	0.97	0.42	21,21,21,21	0
9	SO4	М	607	5/5	0.97	0.14	66,68,83,88	0

Continued from previous page...

6.5 Other polymers (i)

There are no such residues in this entry.

