

wwPDB X-ray Structure Validation Summary Report (i)

Nov 4, 2024 – 09:10 AM EST

PDB ID : 2R6H

Title: Crystal structure of the domain comprising the NAD binding and the FAD

binding regions of the NADH:ubiquinone oxidoreductase, Na translocating, F

subunit from Porphyromonas gingivalis

Authors : Kim, Y.; Mulligan, R.; Moy, S.; Joachimiak, A.; Midwest Center for Structural

Genomics (MCSG)

Deposited on : 2007-09-05

Resolution : 2.95 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

 $Mol Probity \quad : \quad 4.02b\text{--}467$

Mogul : 2022.3.0, CSD as 543 be (2022)

 $Xtriage\ (Phenix) \quad : \quad 1.20.1$

EDS: 3.0

buster-report : 1.1.7 (2018)

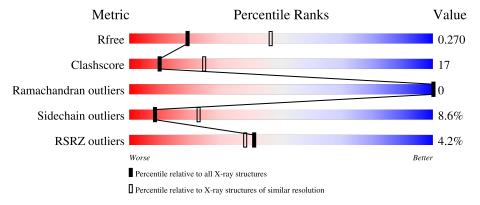
Percentile statistics : 20231227.v01 (using entries in the PDB archive December 27th 2023)

CCP4 : 9.0.003 (Gargrove)

Density-Fitness : 1.0.11

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)

Validation Pipeline (wwPDB-VP) : 2.39



1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.95 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\# \mathrm{Entries})$	$\begin{array}{c} {\rm Similar\ resolution} \\ (\#{\rm Entries},{\rm resolution\ range}(\mathring{\rm A})) \end{array}$
R_{free}	164625	1044 (2.98-2.94)
Clashscore	180529	1097 (2.98-2.94)
Ramachandran outliers	177936	1049 (2.98-2.94)
Sidechain outliers	177891	1049 (2.98-2.94)
RSRZ outliers	164620	1044 (2.98-2.94)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

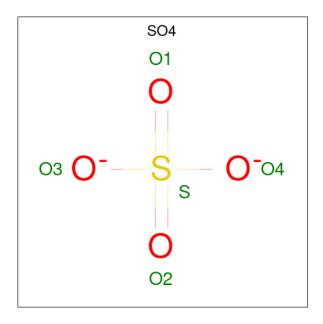
Mol	Chain	Length	Quality of chain		
1	A	290	69%	27%	
1	В	290	6%	29%	6% •
1	С	290	66%	30%	•
1	D	290	64%	29%	

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 9919 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

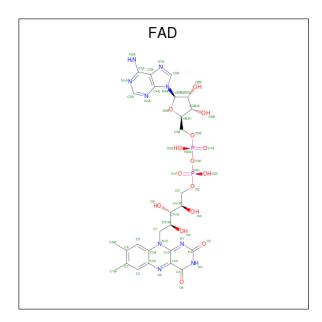
• Molecule 1 is a protein called NADH: ubiquinone oxidoreductase, Na translocating, F subunit.


Mol	Chain	Residues		Atoms				ZeroOcc	AltConf	Trace	
1	Λ	285	Total	С	N	О	S	Se	0	4	0
1	A	200	2349	1505	394	436	3	11	0	4	0
1	В	286	Total	С	N	О	S	Se	0	1	0
1	D	200	2331	1499	384	434	3	11	0	1	
1	С	289	Total	С	N	О	S	Se	0	6	0
1		209	2397	1538	402	443	3	11		0	
1	D	284	Total	С	N	О	S	Se	0	9	0
1	D	204	2321	1489	384	434	3	11		<u> </u>	U

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	123	SER	-	expression tag	UNP Q7MT22
A	124	ASN	-	expression tag	UNP Q7MT22
A	125	ALA	-	expression tag	UNP Q7MT22
В	123	SER	-	expression tag	UNP Q7MT22
В	124	ASN	-	expression tag	UNP Q7MT22
В	125	ALA	-	expression tag	UNP Q7MT22
С	123	SER	-	expression tag	UNP Q7MT22
С	124	ASN	-	expression tag	UNP Q7MT22
С	125	ALA	-	expression tag	UNP Q7MT22
D	123	SER	-	expression tag	UNP Q7MT22
D	124	ASN	_	expression tag	UNP Q7MT22
D	125	ALA	_	expression tag	UNP Q7MT22

• Molecule 2 is SULFATE ION (three-letter code: SO4) (formula: O₄S).

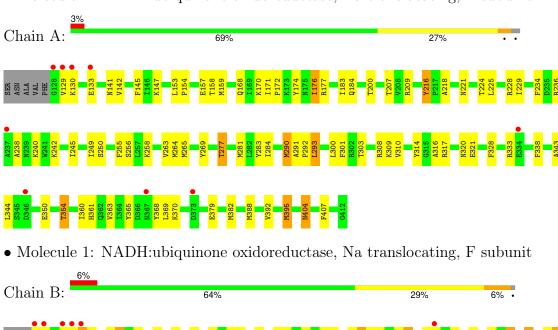


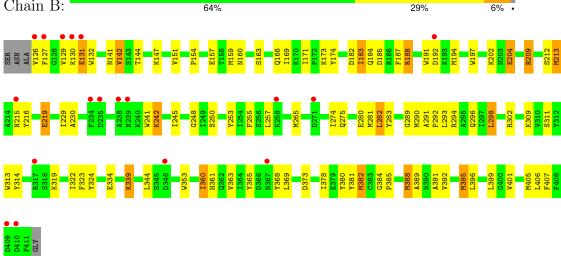
Mol	Chain	Residues	Ato	oms		ZeroOcc	AltConf	
2	A	1	Total	O	S	0	0	
_		_	5	4	1	, and the second	-	
2	A	1	Total	Ο	S	0	0	
	11	-	5	4	1	Ŭ	0	
2	A	1	Total	Ο	S	0	0	
	71	1	5	4	1	0	U	
2	В	1	Total	О	S	0	0	
	Б	1	5	4	1	0	0	
2	В	1	Total	О	S	0	0	
2	Б	1	5	4	1	0		
2	С	1	Total	О	S	0	0	
2		1	5	4	1	U	U	
0	С	1	Total	О	S	0	0	
2		1	5	4	1	U	0	
	C	1	Total	О	S	0	0	
2	С	1	5	4	1	0	0	
0	C	1	Total	О	S	0	0	
2	С	1	5	4	1	0	0	
0	D	1	Total	О	S	0	0	
2	D	1	5	4	1	0	0	
	D	1	Total	О	S	0	0	
2	D	1	5	4	1	0	0	

• Molecule 3 is FLAVIN-ADENINE DINUCLEOTIDE (three-letter code: FAD) (formula: $C_{27}H_{33}N_9O_{15}P_2$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf		
3	Λ	1	Total	С	N	О	Р	0	0	
3	A	1	53	27	9	15	2	U	U	
3	В	1	Total	С	N	О	Р	0	0	
3		1	53	27	9	15	2	U		
3	C	1	Total	С	N	О	Р	0	0	
3		1	53	27	9	15	2	U		
2	D	1	Total	С	N	О	Р	0	0	
)	3 D	1	53	27	9	15	2	U		

• Molecule 4 is water.

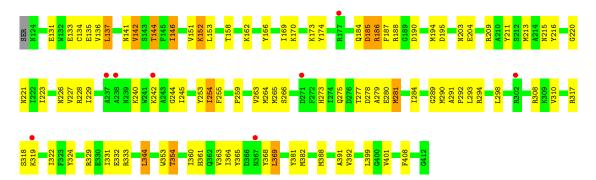

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	A	58	Total O 58 58	0	0
4	В	51	Total O 51 51	0	0
4	С	80	Total O 80 80	0	0
4	D	65	Total O 65 65	0	0

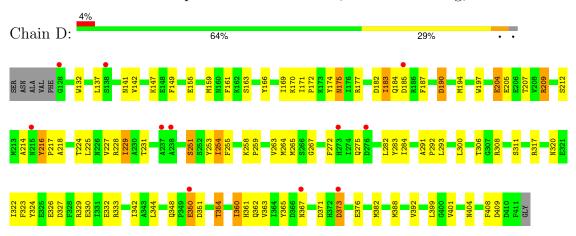


3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: NADH:ubiquinone oxidoreductase, Na translocating, F subunit




 \bullet Molecule 1: NADH: ubiquinone oxidoreductase, Na translocating, F subunit

• Molecule 1: NADH:ubiquinone oxidoreductase, Na translocating, F subunit

4 Data and refinement statistics (i)

Property	Value	Source
Space group	I 41 2 2	Depositor
Cell constants	175.68Å 175.68Å 244.29Å	Donositon
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	47.54 - 2.95	Depositor
Resolution (A)	47.54 - 2.95	EDS
% Data completeness	93.7 (47.54-2.95)	Depositor
(in resolution range)	93.7 (47.54-2.95)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	0.18	Depositor
$< I/\sigma(I) > 1$	5.06 (at 2.96Å)	Xtriage
Refinement program	PHENIX	Depositor
D D	0.215 , 0.271	Depositor
R, R_{free}	0.213 , 0.270	DCC
R_{free} test set	3826 reflections (10.10%)	wwPDB-VP
Wilson B-factor (Å ²)	45.1	Xtriage
Anisotropy	0.107	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.33, 39.6	EDS
L-test for twinning ²	$< L > = 0.50, < L^2> = 0.34$	Xtriage
	0.008 for -1/2 *h + 1/2 *k - 1/2 *l, 1/2 *h - 1/2 *k - 1	
Estimated twinning fraction	1/2*l,-h-k 0.015 for -1/2*h-1/2*k+1/2*l,-1/2*h-1/2*k-	Xtriage
220111111111111111111111111111111111111		110110.80
E E completion	1/2*l,h-k	EDC
F_o, F_c correlation	0.92	EDS
Total number of atoms	9919	wwPDB-VP
Average B, all atoms (\mathring{A}^2)	47.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.94% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FAD, SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	nd lengths	Bond angles		
MIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.43	0/2405	0.56	0/3232	
1	В	0.46	$1/2387 \ (0.0\%)$	0.50	0/3210	
1	С	0.46	0/2453	0.56	0/3294	
1	D	0.42	0/2376	0.53	0/3195	
All	All	0.44	1/9621 (0.0%)	0.54	0/12931	

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	${f Z}$	Observed(Å)	$\operatorname{Ideal}(\text{\AA})$
1	В	368	TYR	CD2-CE2	-5.57	1.30	1.39

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	2349	0	2244	79	0
1	В	2331	0	2229	85	0
1	С	2397	0	2303	91	1
1	D	2321	0	2216	81	1
2	A	15	0	0	0	0
2	В	10	0	0	1	0

Continued on next page...

$\alpha \cdots$, r	•	
Continued	trom	mromonie	maaa
-	110116	DICULUUS	Duuc
	J	1	1

Mol	Chain	Non-H	H(model)	$\mathbf{H}(\mathbf{added})$	Clashes	Symm-Clashes
2	С	20	0	0	1	0
2	D	10	0	0	0	0
3	A	53	0	31	1	0
3	В	53	0	31	0	0
3	С	53	0	31	1	0
3	D	53	0	31	1	0
4	A	58	0	0	3	0
4	В	51	0	0	2	0
4	С	80	0	0	6	0
4	D	65	0	0	5	0
All	All	9919	0	9116	321	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 17.

The worst 5 of 321 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	$\begin{array}{c} \text{Clash} \\ \text{overlap } (\text{\AA}) \end{array}$
1:C:277:THR:HG22	1:C:279:ALA:H	1.07	1.09
1:C:382:MSE:HE1	1:C:392:VAL:HG21	1.31	1.05
1:D:382:MSE:HE2	1:D:388:MSE:HE3	1.40	1.02
1:B:242:LYS:HG2	1:B:245:ILE:HD12	1.43	1.01
1:A:291:ALA:HB3	1:A:292:PRO:HD3	1.37	1.00

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	$\begin{array}{c} \text{Interatomic} \\ \text{distance (Å)} \end{array}$	Clash overlap (Å)
1:C:185[A]:ASP:OD2	1:D:365:TYR:OH[10_655]	1.90	0.30

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Favoured Allowed		Percentiles		
1	A	287/290 (99%)	278 (97%)	9 (3%)	0	100	100	
1	В	285/290~(98%)	274~(96%)	11 (4%)	0	100	100	
1	C	293/290 (101%)	283 (97%)	10 (3%)	0	100	100	
1	D	284/290~(98%)	277 (98%)	7 (2%)	0	100	100	
All	All	1149/1160 (99%)	1112 (97%)	37 (3%)	0	100	100	

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perc	entiles
1	A	$247/236\ (105\%)$	229 (93%)	18 (7%)	11	29
1	В	$246/236 \ (104\%)$	223 (91%)	23 (9%)	7	20
1	\mathbf{C}	$252/236\ (107\%)$	231 (92%)	21 (8%)	9	24
1	D	$245/236\ (104\%)$	222 (91%)	23 (9%)	7	20
All	All	990/944 (105%)	905 (91%)	85 (9%)	8	23

5 of 85 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	С	344	LEU
1	D	216	TYR
1	С	360	ILE
1	D	177	ARG
1	D	254	ILE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 7 such sidechains are listed below:

Mol	Chain	Res	Type
1	D	175	ASN
1	D	348	GLN
1	D	404	ASN

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
1	D	367	ASN
1	В	226	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

15 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

N / - 1	Т	Clasica	Das	Link	Во	ond leng	ths	Bond angles		
Mol	Type	Chain	Res	Lilik	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	SO4	A	10	-	4,4,4	0.25	0	6,6,6	0.37	0
2	SO4	D	5	-	4,4,4	0.29	0	6,6,6	0.13	0
2	SO4	В	11	_	4,4,4	0.30	0	6,6,6	0.10	0
2	SO4	С	4	-	4,4,4	0.26	0	6,6,6	0.11	0
2	SO4	A	2	-	4,4,4	0.19	0	6,6,6	0.21	0
3	FAD	В	2	-	54,58,58	1.16	5 (9%)	71,89,89	1.37	8 (11%)
3	FAD	С	413	-	54,58,58	1.27	5 (9%)	71,89,89	1.39	8 (11%)
3	FAD	A	1	-	54,58,58	1.22	5 (9%)	71,89,89	1.45	10 (14%)
2	SO4	A	8	-	4,4,4	0.23	0	6,6,6	0.14	0
3	FAD	D	4	-	54,58,58	1.20	4 (7%)	71,89,89	1.45	10 (14%)
2	SO4	С	7	-	4,4,4	0.25	0	6,6,6	0.21	0

Mol	Type	Chain	Res	Link	Bond lengths			Bond angles			
MIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
2	SO4	С	9	-	4,4,4	0.21	0	6,6,6	0.30	0	
2	SO4	D	6	-	4,4,4	0.25	0	6,6,6	0.08	0	
2	SO4	С	3	-	4,4,4	0.23	0	6,6,6	0.44	0	
2	SO4	В	1	-	4,4,4	0.28	0	6,6,6	0.22	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	FAD	В	2	-	-	4/30/50/50	0/6/6/6
3	FAD	A	1	-	-	2/30/50/50	0/6/6/6
3	FAD	D	4	-	-	3/30/50/50	0/6/6/6
3	FAD	С	413	-	-	1/30/50/50	0/6/6/6

The worst 5 of 19 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\text{\AA})$	Ideal(A)
3	D	4	FAD	C2A-N3A	4.59	1.39	1.32
3	A	1	FAD	C2A-N3A	4.59	1.39	1.32
3	С	413	FAD	C2A-N3A	4.38	1.38	1.32
3	В	2	FAD	C2A-N3A	4.30	1.38	1.32
3	С	413	FAD	C4X-N5	3.60	1.38	1.30

The worst 5 of 36 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^o)$	$\operatorname{Ideal}({}^{o})$
3	D	4	FAD	N3A-C2A-N1A	-6.75	119.51	128.67
3	С	413	FAD	N3A-C2A-N1A	-6.56	119.76	128.67
3	A	1	FAD	N3A-C2A-N1A	-6.54	119.79	128.67
3	В	2	FAD	N3A-C2A-N1A	-6.45	119.91	128.67
3	D	4	FAD	C4X-C10-N10	3.37	121.30	116.48

There are no chirality outliers.

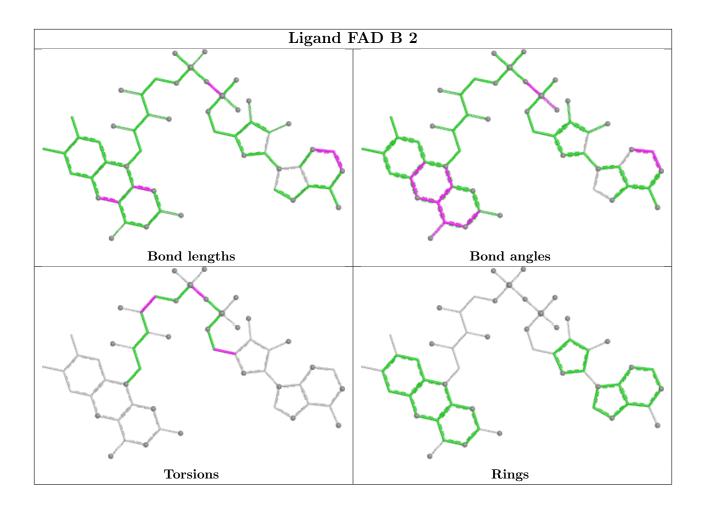
5 of 10 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	D	4	FAD	C5B-O5B-PA-O1A
3	D	4	FAD	C5B-O5B-PA-O3P
3	В	2	FAD	O4B-C4B-C5B-O5B

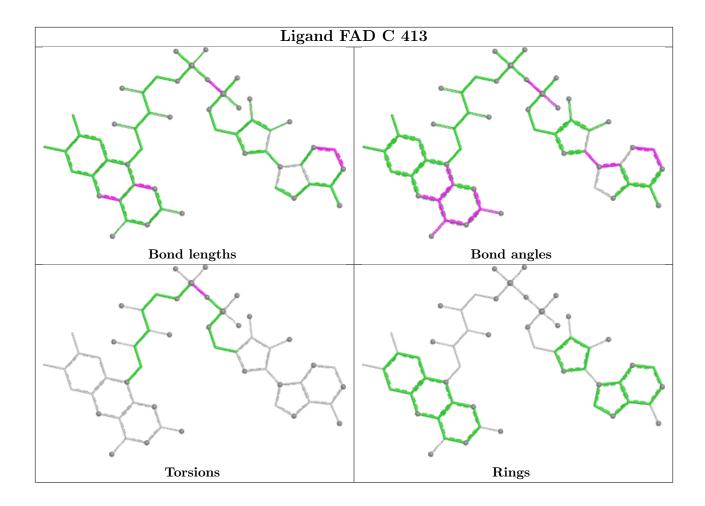
Continued on next page...

Continued from previous page...

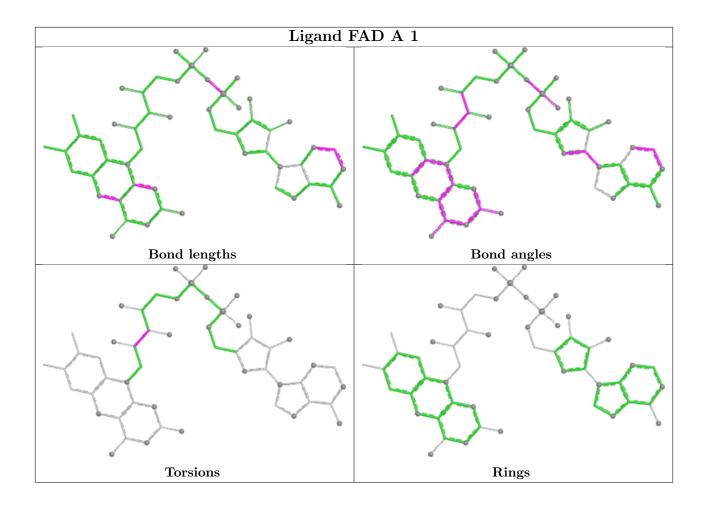
Mol	Chain	Res	Type	Atoms
3	В	2	FAD	C3B-C4B-C5B-O5B
3	В	2	FAD	C3'-C4'-C5'-O5'

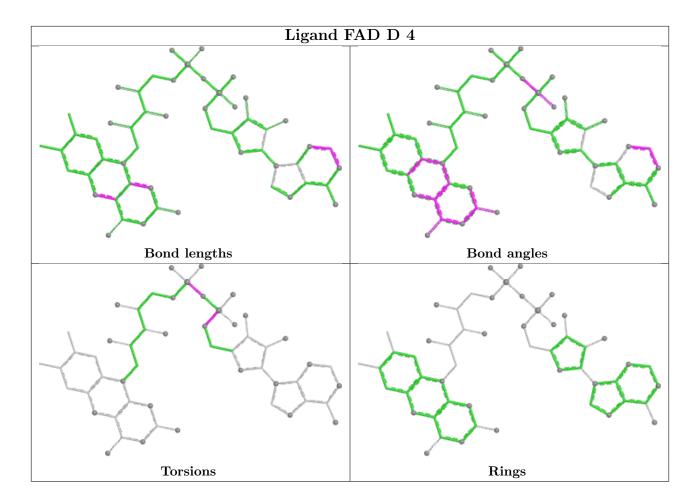

There are no ring outliers.

5 monomers are involved in 5 short contacts:


Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	В	11	SO4	1	0
3	С	413	FAD	1	0
3	A	1	FAD	1	0
3	D	4	FAD	1	0
2	С	3	SO4	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.





5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	# RSRZ > 2	$OWAB(A^2)$	Q<0.9
1	A	274/290 (94%)	-0.02	9 (3%) 49 47	21, 41, 77, 129	4 (1%)
1	В	275/290 (94%)	0.30	18 (6%) 26 24	22, 49, 87, 110	1 (0%)
1	С	278/290 (95%)	-0.05	8 (2%) 54 50	18, 37, 65, 99	6 (2%)
1	D	273/290 (94%)	0.05	11 (4%) 43 40	20, 45, 77, 105	2 (0%)
All	All	1100/1160 (94%)	0.07	46 (4%) 41 38	18, 43, 79, 129	13 (1%)

The worst 5 of 46 RSRZ outliers are listed below:

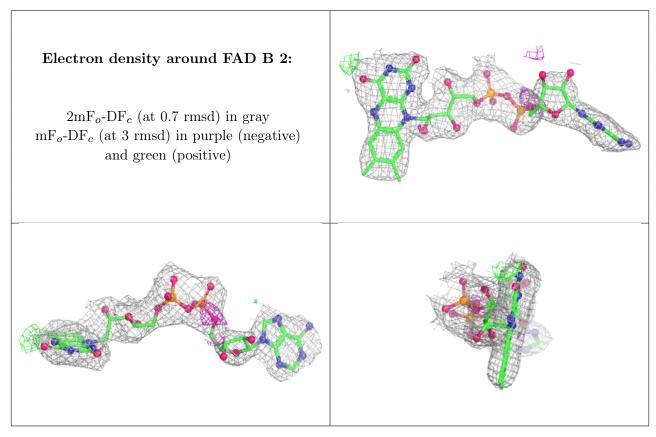
Mol	Chain	Res	Type	RSRZ
1	В	126	VAL	5.5
1	A	130	LYS	5.4
1	В	367	ASN	5.0
1	В	215	ASN	4.1
1	A	129	VAL	4.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

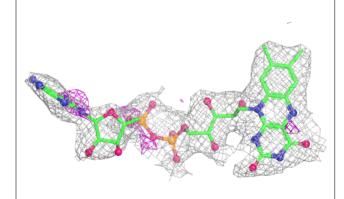
6.3 Carbohydrates (i)

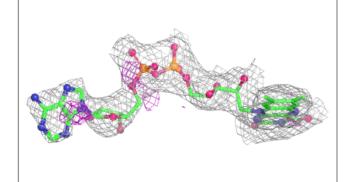
There are no monosaccharides in this entry.

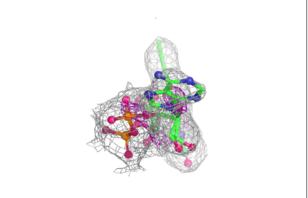

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\operatorname{B-factors}(\mathring{\mathbf{A}}^2)$	Q<0.9
2	SO4	D	6	5/5	0.68	0.20	118,119,120,120	0
2	SO4	С	4	5/5	0.69	0.18	136,136,137,137	0
2	SO4	С	7	5/5	0.75	0.18	117,118,118,118	0
2	SO4	A	8	5/5	0.75	0.16	128,128,128,129	0
2	SO4	A	10	5/5	0.78	0.26	130,130,130,130	0
2	SO4	С	9	5/5	0.81	0.14	102,102,102,102	0
2	SO4	D	5	5/5	0.81	0.14	84,84,85,85	0
2	SO4	В	11	5/5	0.81	0.14	138,138,138,138	0
2	SO4	В	1	5/5	0.84	0.15	80,81,81,83	0
2	SO4	С	3	5/5	0.88	0.12	87,89,89,90	0
2	SO4	A	2	5/5	0.91	0.10	75,76,77,78	0
3	FAD	В	2	53/53	0.93	0.11	48,54,75,75	0
3	FAD	A	1	53/53	0.94	0.10	30,48,85,85	0
3	FAD	С	413	53/53	0.94	0.09	25,37,51,54	0
3	FAD	D	4	53/53	0.94	0.09	33,43,73,74	0

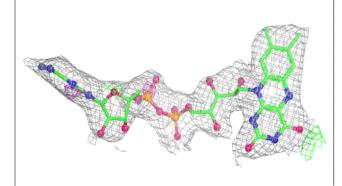

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

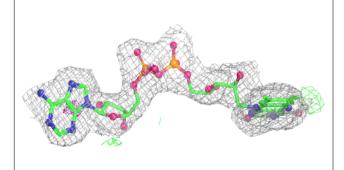


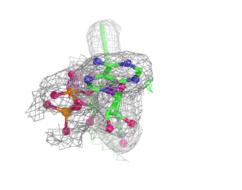


Electron density around FAD A 1:

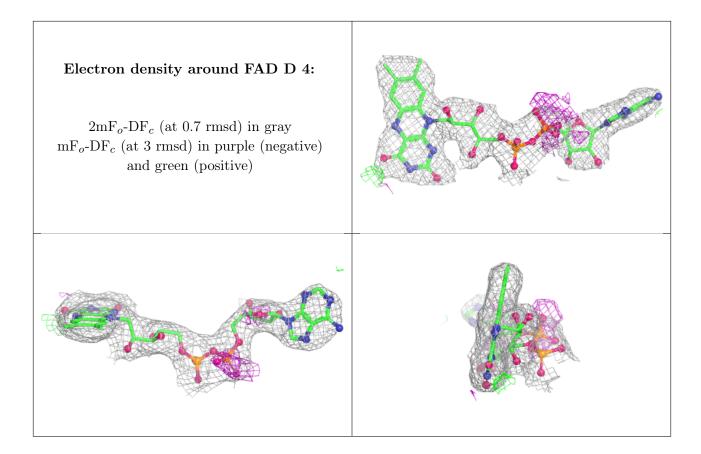
 $2 {\rm mF}_o\text{-}{\rm DF}_c$ (at 0.7 rmsd) in gray ${\rm mF}_o\text{-}{\rm DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)







Electron density around FAD C 413:


 $2 \mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 0.7 rmsd) in gray $\mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)

6.5 Other polymers (i)

There are no such residues in this entry.

