

wwPDB EM Validation Summary Report (i)

Mar 11, 2025 – 12:41 pm GMT

PDB ID	:	8QOA
EMDB ID	:	EMD-18534
Title	:	Structure of SecM-stalled Escherichia coli 70S ribosome
Authors	:	Gersteuer, F.; Morici, M.; Wilson, D.N.
Deposited on	:	2023-09-28
Resolution	:	2.00 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	0	55	89%	11%
2	1	46	96%	•
3	2	65	94%	5% •
4	3	38	97%	•
5	5	2	50% 50%	
6	В	241	91%	• 7%
7	С	233	88%	• 12%
8	D	206	97%	·
9	Е	167	92%	• 7%

Mol	Chain	Length	Quality of chain	
10	F	135	76%	24%
11	G	179	84%	• 15%
12	Н	130	97%	••
13	Ι	130	95%	•••
14	L	124	95%	
15	М	118	97%	•••
16	Ν	101	98%	
17	Ο	89	98%	
18	Р	82	95%	•••
19	Q	84	89%	• 8%
20	R	75	88%	12%
21	S	92	91%	9%
22	Т	87	98%	••
23	U	71	97%	••
24	Х	9	89%	11%
25	Ζ	76	80%	20%
26	b	120	87%	11% ••
27	с	273	99%	
28	d	209	99%	
29	е	201	99%	•
30	f	179	99%	
31	g	177	97%	
32	h	149	28% 72%	
33	i	142	97%	••
34	j	123	99%	

Continued from previous page...

Mol	Chain	Length	Quality of chain
35	k	144	100%
36	m	127	92% · 7%
37	n	117	99% •
38	0	115	97% ···
39	р	118	97%
40	q	103	99% .
41	r	110	96%
42	s	100	93% 7%
43	t	104	96%
44	u	94	99%
45	V	85	98%
46	W	78	96%
47	х	63	94%
48	у	59	95% 5%
49	Z	57	93% 7%
50	Y	77	81% 19%
51	4	70	86% 14%
52	a	2904	82% 12% • 5%
53	А	1542	78% 18% •••
54	J	103	91% • 5%
55	6	34	94% 6%
56	1	136	99%
57	K	129	88% · 10%
	(

Continued from previous page...

2 Entry composition (i)

There are 62 unique types of molecules in this entry. The entry contains 147750 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Large ribosomal subunit protein bL33.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	0	49	Total 405	C 261	N 74	O 70	0	0

• Molecule 2 is a protein called Large ribosomal subunit protein bL34.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	1	46	Total 377	C 228	N 90	O 57	${ m S} { m 2}$	0	0

• Molecule 3 is a protein called Large ribosomal subunit protein bL35.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	2	64	Total 504	C 323	N 105	0 74	${ m S} { m 2}$	0	0

• Molecule 4 is a protein called Large ribosomal subunit protein bL36A.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	3	38	Total 302	C 185	N 65	0 48	${f S}{4}$	0	0

• Molecule 5 is a RNA chain called E-site tRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	5	2	Total 42	C 19	N 8	O 13	Р 2	0	0

• Molecule 6 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	В	224	Total 1753	C 1109	N 315	0 321	S 8	0	0

• Molecule 7 is a protein called Small ribosomal subunit protein uS3.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
7	С	206	Total 1624	C 1028	N 305	0 288	${ m S} { m 3}$	0	0

• Molecule 8 is a protein called Small ribosomal subunit protein uS4.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
8	D	205	Total 1643	C 1026	N 315	O 298	$\frac{S}{4}$	0	0

• Molecule 9 is a protein called Small ribosomal subunit protein uS5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	Е	155	Total 1144	С 711	N 216	0 211	S 6	0	0

• Molecule 10 is a protein called 30S ribosomal protein S6, fully modified isoform.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	F	103	Total 839	C 530	N 151	0 151	${f S}7$	0	0

• Molecule 11 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	G	153	Total 1203	C 750	N 231	0 218	${S \atop 4}$	0	0

• Molecule 12 is a protein called Small ribosomal subunit protein uS8.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	Н	129	Total 979	C 616	N 173	0 184	S 6	0	0

• Molecule 13 is a protein called Small ribosomal subunit protein uS9.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Ι	127	Total 1022	C 634	N 206	0 179	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called Small ribosomal subunit protein uS12.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	L	123	Total 957	C 591	N 196	O 165	${ m S}{ m 5}$	0	0

• Molecule 15 is a protein called Small ribosomal subunit protein uS13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	М	115	Total 891	C 552	N 179	0 157	${ m S} { m 3}$	0	0

• Molecule 16 is a protein called Small ribosomal subunit protein uS14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	N	100	Total 805	C 499	N 164	0 139	$\frac{S}{3}$	0	0

• Molecule 17 is a protein called Small ribosomal subunit protein uS15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	О	88	Total 714	C 439	N 144	0 130	S 1	0	0

• Molecule 18 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
18	Р	80	Total 635	C 398	N 126	0 111	0	0

• Molecule 19 is a protein called Small ribosomal subunit protein uS17.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
19	Q	77	Total 624	C 394	N 117	0 110	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called Small ribosomal subunit protein bS18.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
20	R	66	Total 544	C 345	N 102	O 96	S 1	0	0

• Molecule 21 is a protein called Small ribosomal subunit protein uS19.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	S	84	Total 668	C 427	N 127	0 112	${ m S} { m 2}$	0	0

• Molecule 22 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	Т	86	Total 670	C 414	N 138	0 115	${ m S} { m 3}$	0	0

• Molecule 23 is a protein called Small ribosomal subunit protein bS21.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
23	U	70	Total 589	C 366	N 125	O 97	S 1	0	0

• Molecule 24 is a RNA chain called mRNA.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	Х	9	Total 189	C 84	N 31	O 65	Р 9	0	0

• Molecule 25 is a RNA chain called P-site tRNA-gly.

Mol	Chain	Residues		A	toms	AltConf	Trace		
25	Z	76	Total 1621	C 722	N 287	O 536	Р 76	0	0

• Molecule 26 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
26	b	119	Total 2549	C 1135	N 466	O 829	Р 119	0	0

• Molecule 27 is a protein called Large ribosomal subunit protein uL2.

Mol	Chain	Residues		At	AltConf	Trace			
27	С	271	Total 2082	C 1288	N 423	0 364	${f S}7$	0	0

• Molecule 28 is a protein called Large ribosomal subunit protein uL3.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	d	208	Total 1558	$\begin{array}{c} \mathrm{C} \\ 975 \end{array}$	N 287	O 293	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called Large ribosomal subunit protein uL4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	е	201	Total 1552	C 974	N 283	O 290	${f S}{5}$	0	0

• Molecule 30 is a protein called Large ribosomal subunit protein uL5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	f	177	Total 1410	C 899	N 249	0 256	S 6	0	0

• Molecule 31 is a protein called Large ribosomal subunit protein uL6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	g	174	Total 1304	C 820	N 239	0 243	${S \over 2}$	0	0

• Molecule 32 is a protein called Large ribosomal subunit protein bL9.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
32	h	41	Total 303	C 194	N 54	0 54	S 1	0	0

• Molecule 33 is a protein called Large ribosomal subunit protein uL13.

Mol	Chain	Residues		At	AltConf	Trace			
33	i	141	Total 1120	C 708	N 211	0 197	${S \atop 4}$	0	0

• Molecule 34 is a protein called Large ribosomal subunit protein uL14.

Mol	Chain	Residues		At	AltConf	Trace			
34	j	123	Total 946	C 593	N 181	0 166	${f S}{f 6}$	0	0

• Molecule 35 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	k	144	Total 1053	$\begin{array}{c} \mathrm{C} \\ 654 \end{array}$	N 207	0 190	${ m S} { m 2}$	0	0

• Molecule 36 is a protein called Large ribosomal subunit protein bL17.

Mol	Chain	Residues		At	AltConf	Trace			
36	m	118	Total 945	$\begin{array}{c} \mathrm{C} \\ 585 \end{array}$	N 194	0 161	${f S}{5}$	0	0

• Molecule 37 is a protein called Large ribosomal subunit protein uL18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
37	n	116	Total 892	C 552	N 178	0 162	0	0

• Molecule 38 is a protein called Large ribosomal subunit protein bL19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	О	113	Total 908	C 570	N 177	O 160	S 1	0	0

• Molecule 39 is a protein called Large ribosomal subunit protein bL20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
39	р	117	Total 947	C 604	N 192	O 151	0	0

• Molecule 40 is a protein called Large ribosomal subunit protein bL21.

Mol	Chain	Residues		At	AltConf	Trace			
40	q	103	Total 816	C 516	N 153	0 145	${S \over 2}$	0	0

• Molecule 41 is a protein called Large ribosomal subunit protein uL22.

Mol	Chain	Residues		At	AltConf	Trace			
41	r	109	Total 845	C 526	N 162	0 154	${ m S} { m 3}$	0	0

• Molecule 42 is a protein called Large ribosomal subunit protein uL23.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	s	93	Total 738	C 466	N 139	0 131	${ m S} { m 2}$	0	0

• Molecule 43 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
43	t	102	Total 779	C 492	N 146	O 141	0	0

• Molecule 44 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	u	94	Total 753	C 479	N 137	0 134	${f S}\ 3$	0	0

• Molecule 45 is a protein called Large ribosomal subunit protein bL27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
45	V	84	Total 628	C 388	N 126	0 113	S 1	0	0

• Molecule 46 is a protein called Large ribosomal subunit protein bL28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
46	W	77	Total 625	C 388	N 129	O 106	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 47 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
47	х	61	Total 492	C 302	N 96	0 03	S 1	0	0
			492	302	90	93	T		

• Molecule 48 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
48	У	56	Total 435	C 272	N 84	O 77	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 49 is a protein called Large ribosomal subunit protein bL32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
49	Z	53	Total 421	$\begin{array}{c} \mathrm{C} \\ 254 \end{array}$	N 90	O 76	S 1	0	0

• Molecule 50 is a RNA chain called A-site tRNA-pro.

Mol	Chain	Residues		A	toms		AltConf	Trace	
50	Y	77	Total 1644	C 733	N 295	O 540	Р 76	0	0

• Molecule 51 is a protein called Large ribosomal subunit protein bL31A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
51	4	60	Total 480	C 299	N 90	O 85	S 6	0	0

• Molecule 52 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
52	a	2753	Total 59130	C 26384	N 10897	O 19096	Р 2753	0	0

• Molecule 53 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		I	Atoms			AltConf	Trace
53	А	1513	Total 32469	C 14484	N 5958	O 10514	Р 1513	0	0

• Molecule 54 is a protein called Small ribosomal subunit protein uS10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
54	J	98	Total 786	C 493	N 150	0 142	S 1	0	0

• Molecule 55 is a protein called Secretion monitor.

Mol	Chain	Residues	Atoms			AltConf	Trace	
55	6	34	Total 270	C 174	N 48	0 48	0	0

• Molecule 56 is a protein called Large ribosomal subunit protein uL16.

Mol	Chain	Residues	Atoms				AltConf	Trace	
56	1	136	Total 1075	C 686	N 205	0 177	${ m S} 7$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	82	MS6	MET	variant	UNP P0ADY7

• Molecule 57 is a protein called Small ribosomal subunit protein uS11.

Mol	Chain	Residues	Atoms			AltConf	Trace		
57	K	116	Total 869	C 535	N 172	O 159	${ m S} { m 3}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
K	119	IAS	ASN	variant	UNP P0A7R9

• Molecule 58 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
58	3	1	Total Zn 1 1	0
58	4	1	Total Zn 1 1	0

• Molecule 59 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
59	D	1	Total K 1 1	0
59	F	1	Total K 1 1	0
59	М	1	Total K 1 1	0
59	Ζ	1	Total K 1 1	0
59	С	3	Total K 3 3	0
59	е	1	Total K 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
59	v	1	Total K 1 1	0
59	a	89	Total K 89 89	0
59	А	34	Total K 34 34	0

• Molecule 60 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
60	Х	1	Total Mg 1 1	0
60	Ζ	1	Total Mg 1 1	0
60	b	5	Total Mg 5 5	0
60	с	2	Total Mg 2 2	0
60	d	1	Total Mg 1 1	0
60	р	1	Total Mg 1 1	0
60	Z	1	Total Mg 1 1	0
60	a	217	Total Mg 217 217	0
60	А	59	TotalMg5959	0

• Molecule 61 is PROLINE (three-letter code: PRO) (formula: $C_5H_9NO_2$).

Mol	Chain	Residues	Atoms			AltConf	
61	Y	1	Total 7	C 5	N 1	0 1	0

• Molecule 62 is water.

Mol	Chain	Residues	Atoms	AltConf
62	0	9	Total O 9 9	0
62	1	19	Total O 19 19	0
62	2	23	TotalO2323	0
62	3	5	Total O 5 5	0
62	5	2	Total O 2 2	0
62	С	1	Total O 1 1	0
62	D	2	Total O 2 2	0
62	Е	4	Total O 4 4	0
62	G	1	Total O 1 1	0
62	Н	4	Total O 4 4	0
62	L	11	Total O 11 11	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
62	Ν	1	Total O 1 1	0
62	0	2	Total O 2 2	0
62	Р	2	Total O 2 2	0
62	Q	1	Total O 1 1	0
62	R	3	Total O 3 3	0
62	Т	1	Total O 1 1	0
62	U	2	Total O 2 2	0
62	Х	5	Total O 5 5	0
62	Ζ	8	Total O 8 8	0
62	b	60	Total O 60 60	0
62	с	109	Total O 109 109	0
62	d	59	Total O 59 59	0
62	е	45	$\begin{array}{cc} \text{Total} & \text{O} \\ 45 & 45 \end{array}$	0
62	f	1	Total O 1 1	0
62	h	1	Total O 1 1	0
62	i	28	TotalO2828	0
62	j	18	Total O 18 18	0
62	k	40	Total O 40 40	0
62	m	26	Total O 26 26	0
62	n	5	Total O 5 5	0
62	0	18	Total O 18 18	0

Mol	Chain	Residues	Atoms	AltConf
62	р	40	$\begin{array}{cc} \text{Total} & \text{O} \\ 40 & 40 \end{array}$	0
62	q	20	Total O 20 20	0
62	r	28	TotalO2828	0
62	s	15	Total O 15 15	0
62	t	4	Total O 4 4	0
62	u	8	Total O 8 8	0
62	V	19	Total O 19 19	0
62	W	13	Total O 13 13	0
62	x	1	Total O 1 1	0
62	У	12	Total O 12 12	0
62	Z	26	TotalO2626	0
62	Y	4	Total O 4 4	0
62	a	4351	Total O 4351 4351	0
62	А	650	Total O 650 650	0
62	J	3	Total O 3 3	0
62	6	12	TotalO1212	0
62	1	27	TotalO2727	0
62	K	4	Total O 4 4	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Large ribosomal subunit protein bL33

Image: Signal subunit protein bL34 • Molecule 2: Large ribosomal subunit protein bL34 Chain 1: 96% Image: Signal subunit protein bL34	<u> </u>
• Molecule 2: Large ribosomal subunit protein bL34 Chain 1:	<u> </u>
Chain 1: 96%	·
\bullet Molecule 3: Large ribosomal subunit protein bL35	
Chain 2: 94%	5%•
MET ME ME ME ME ME ME ME ME ME ME	
\bullet Molecule 4: Large ribosomal subunit protein bL36A	
Chain 3: 97%	·
• Molecule 5: E-site tRNA	
Chain 5: 50% 50%	
A76	
• Molecule 6: 30S ribosomal protein S2 $$	
Chain B: 91% ·	7%

• Molecule 7: Small ribosomal subunit protein uS3

Chain C:	88%	• 12%
MET 62 1178 1185 1207	LEU GLY MET ALA ALA ALA ALA ALA CLU CLU PRO CLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	
• Molecule	e 8: Small ribosomal subunit protein uS4	
Chain D:	97%	•
MET A2 K8 R62 K121	D141 K148 K206	
• Molecule	e 9: Small ribosomal subunit protein uS5	
Chain E:	92%	• 7%
MET ALA HIS ILE GLU GLN ALA		
• Molecule	e 10: 30S ribosomal protein S6, fully modified isoform	
Chain F:	76%	24%
M1 V103 LYS ALA LYS ASP GLU	ARG ARG ARG ARG ASP ASP ALA ASP ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	
• Molecule	e 11: 30S ribosomal protein S7	
Chain G:	84%	• 15%
MET P2 L30 R79 Y 154	ARG TRP LEU SER SER SER SER ALA ALA ALA CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	
• Molecule	e 12: Small ribosomal subunit protein uS8	
Chain H:	97%	
MET S2 E60 K89 M96		
• Molecule	e 13: Small ribosomal subunit protein uS9	
Chain I:	95%	•••

 \bullet Molecule 14: Small ribosomal subunit protein uS12

 \bullet Molecule 21: Small ribosomal subunit protein uS19

Chain S:	91%	9%
MET P2 A85 A85 LYS LYS LYS LYS LYS LYS	2	
• Molecule 22:	30S ribosomal protein S20	
Chain T:	98%	
MET A2 K44 A87		
• Molecule 23:	Small ribosomal subunit protein $bS21$	
Chain U:	97%	
MET P2 K58 Y71		
• Molecule 24:	mRNA	
Chain X:	89%	11%
613 C14 U15 U21		
• Molecule 25:	P-site tRNA-gly	
Chain Z:	80%	20%
G1 A14 A14 G18 G18 U17 G18 U20	A37 A37 C46 C50 A55 A55 A55 A55 A55 A55 A55 A55	
• Molecule 26:	5S rRNA	
Chain b:	87%	11% ••
62 63 63 63 63 65 7 64 65 65 7 65 65 7 65 65 7 65 65 65 7 65 65 65 7 65 65 7 65 65 7 65 65 7 65 65 7 65 65 7 65	C 00 C 04 C 04 C 05 C 03 C 05 C 05	
• Molecule 27:	Large ribosomal subunit protein uL2	
Chain c:	99%	.

• Molecule 28: Large ribosomal subunit protein uL3

Chain d: 99%

• Molecule 29: Large ribosomal subunit protein uL4

Chain e:	99%	
M1 R67 D140		
• Molecu	ıle 30: Large ribosomal subunit protein uL5	
Chain f:	99%	
MET A2 R178 LYS		
• Molecu	ule 31: Large ribosomal subunit protein uL6	
Chain g:	97%	I
MET S2 D39 I103	TVS 22	
• Molecu	ıle 32: Large ribosomal subunit protein bL9	
Chain h:	28% 72%	
M1 K41 LYS ASN TLE	PHE PHE ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ILE GLY ARG ASP
ILE ALA ASP ALA VAL THR	ALA ALA GUY VAL VAL LYS SER SER ALA ALA ALA ALA VAL VAL VAL VAL VAL VAL	
• Molecu	ıle 33: Large ribosomal subunit protein uL13	
Chain i:	97%	
M1 H80 R95 R96	LLE 11	

• Molecule 34: Large ribosomal subunit protein uL14

Chain j: 99%	•
\bullet Molecule 35: 50S ribosomal protein L15	
Chain k: 100%	
There are no outlier residues recorded for this chain.	
\bullet Molecule 36: Large ribosomal subunit protein bL17	
Chain m: 92%	• 7%
M1 R4 SER GLU ALA ALA ALA ALA GLU GLU	
\bullet Molecule 37: Large ribosomal subunit protein uL18	
Chain n: 99%	·
• Molecule 38: Large ribosomal subunit protein bL19	
Chain o: 97%	
A ST	
\bullet Molecule 39: Large ribosomal subunit protein bL20	
Chain p: 97%	
• Molecule 40: Large ribosomal subunit protein bL21	
Chain q: 99%	·
\bullet Molecule 41: Large ribosomal subunit protein uL22	
Chain r: 96%	

WORLDWIDE PROTEIN DATA BANK

• Molecule 42: Large ribosomal subunit protein uL23

Chain s:	93%	7%
M1 L93 ASP PHE GLY GLY GLY GLY GLU		
• Molecule 43:	Large ribosomal subunit protein uL24	
Chain t:	96%	• •
MET A2 K24 N74 I103 LYS		
• Molecule 44:	50S ribosomal protein L25	
Chain u:	99%	•
M1 K68 A94		
• Molecule 45:	Large ribosomal subunit protein bL27	
Chain v:	98%	
NET A2 A84 E85		
• Molecule 46:	Large ribosomal subunit protein bL28	
Chain w:	96%	•
MET S2 N16 M56 M56 Y78		
• Molecule 47:	Large ribosomal subunit protein uL29	
Chain x:	94%	
MET LYS A3 A3 LYS LS6 A63		
• Molecule 48:	Large ribosomal subunit protein uL30	
Chain y:	95%	5%

• Molecule 49: Large ribosomal subunit protein bL32

Chain z:	93%	7%
MET A2 V154 V154 ALA LYS LYS		
• Molecule 50: A-site tR	NA-pro	
Chain Y:	81%	19%
C1 C10 C10 C10 A14 C13 A14 C13 C13 C13 C13 C13 C13 C13 C13 C13 C13	A74 C75 C76 A77	
• Molecule 51: Large rib	osomal subunit protein bL31A	
Chain 4:	86%	14%
M1 AR4 AR4 AR4 AR5 AR5 AR5 GLY GLY GLY GLY GLY GLY GLY GLY CLY SER LYS		
• Molecule 52: 23S rRNA	A	
Chain a:	82%	12% • 5%
61 04 40 40 627 627 627 627 627 634 671 675 710 1002 1002	A118 4119 4125 4125 4125 4142 4142 4142 4165 4165 4165 4165 4165 4165 4165 4165	A221 A222 A222 C242 C248 A272 C274 C274 C274 C274 C274
(2285 1286 1286 (2289 (2291 (2291 (2291 (239) (239) (3361 (3361 (3361 (3361 (3361) (3362) (3362) (3362) (3362) (3362) (3362) (3366) (36	0395 04604 0405 04405 04405 04411 04451 04412 0412 0451 0451 0450 0509 0509 0512 0509 0512 0512	A528 A529 (5331 (5331 (5332) (
A574 A575 A575 A586 A586 A586 A587 A527 A627 A627 A627 A627 C645 U646 U646 U646 U646	U653 A654 A654 A654 A654 C664 U886 A689 C696 C717 A730 C717 A730 C717 C748 C748 C765 A765	6775 6776 8781 8781 8781 8785 6785 6785 6785 6785 6785 6785 6785
1828 1846 1846 1846 1888 1884 1884 1884 188	A896 C897 C897 C915 C915 C915 C915 U934 U934 C946 C946 C961 C961 C961 C961 C961 C961 C961 C96	1012 1012 1013 1022 1026 1026 1026 1026 1026 1026 1033 1033 1033 1046 1047 1047
い < ひ ひ < つ ひ つ つ ひ ひ つ ⊃ > < ひ < < <	೮ ೮ < ೮ ೮ ೮ < ⊃ ೮ < ⊃ □ ⊃ > < < < ೮ < < < ೮ ೮ ♡ ⊃ < <	а а ссоссосс ссоссосс ссоссосс ссоссосс ссоссо
A1129 U1132 A1133 A1134 C1135 C1135 C1135 C1175 C1177 U U U C1177 U U C1177 C1177 C1177 C1177 C1177 C1177 C1177 C1177 C1177 C1177 C1177 C1177 C1177 C1177 C1175 C1	G1187 G1286 G1236 A1246 A1256 G1271 A1273 G1271 A1273 G1300 G1300 G1324 G1324 G1324 G1324	U1379 U1379 G1416 G1419 C1428 G1452 A1453 A1453
61 482 C1 493 C1 493 A1 508 A1 508 A1 508 C1 528 C1 535 C1 535 C1 535 C1 535 C1 535 C1 535	A1569 V1578 A1583 V1584 C1585 C1585 C1585 A1609 A1609 A1609 A1609 C1585 C1585 C1649 C1649 C1649 C1649 C1766 C1706 C1706 C1706 C1706 C1706	C1730 C1730 C1732 C1732 C1732 C1738 C1738 C1764 M1773 M1773 M173 M173 M173 M173

G1032 G1033 G1034 G1034

U1202 U1211 U1211 U1213 A1213 A1225 A1225 A1225 A1226 A1256 A1256 A1256 A1256 A1256 A1256 A1256 A1256 A1256 C1281 C1281 C1336 C1337 C1337 C1336 C1336 C1337 C1336 C1336 C1337 C1336 C1336 C1337 C1337 C1336 C1337 C1337 C1336 C1337 C1336 C1337 C1337 C1337 C1337 C1337 C1337 C1337 C1337 C1336 C1346 C1357 C1357

 \bullet Molecule 54: Small ribosomal subunit protein uS10

Chain J:	91%	• 5%
MET GLN ASN ASN GLN GLN R5 R52 R62 C102 GLY		
• Molecule 55: Secretion	monitor	
Chain 6:	94%	6%
P132 S133 E134 R136 G165 G165		
• Molecule 56: Large ribe	osomal subunit protein uL16	
Chain l:	99%	
M 4948 M 36		
• Molecule 57: Small ribe	osomal subunit protein uS11	
Chain K:	88%	• 10%
MET ALA ALA PRO PRO PRO ALA ALA ARG ARG ARG ARG ARG PRO PRO PRO		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	300107	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	300	Depositor
Maximum defocus (nm)	900	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 1MG, MA6, MEQ, 2MA, ZN, 5MU, 6MZ, 3TD, OMC, IAS, 5MC, 4D4, OMU, G7M, OMG, MS6, MG, K, D2T, 2MG, PSU, H2U

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	0	0.31	0/412	0.63	0/549
2	1	0.32	0/380	0.76	0/498
3	2	0.31	0/513	0.69	0/676
4	3	0.30	0/303	0.73	0/397
5	5	0.78	0/46	1.05	0/69
6	В	0.29	0/1784	0.61	0/2403
7	С	0.28	0/1651	0.62	0/2225
8	D	0.30	0/1665	0.63	0/2227
9	Е	0.30	0/1157	0.64	0/1557
10	F	0.29	0/858	0.62	0/1160
11	G	0.30	0/1219	0.65	0/1635
12	Н	0.30	0/989	0.63	0/1326
13	Ι	0.31	0/1034	0.68	0/1375
14	L	0.32	0/960	0.75	0/1286
15	М	0.30	0/900	0.64	0/1204
16	Ν	0.30	0/817	0.60	0/1088
17	0	0.29	0/722	0.56	0/964
18	Р	0.30	0/645	0.66	0/867
19	Q	0.28	0/633	0.66	0/849
20	R	0.29	0/553	0.64	0/742
21	S	0.31	0/685	0.61	0/922
22	Т	0.28	0/676	0.56	0/895
23	U	0.28	0/597	0.68	0/792
24	Х	0.66	0/209	1.19	0/323
25	Ζ	0.58	0/1810	1.13	0/2820
26	b	0.51	0/2850	1.16	2/4444~(0.0%)
27	с	0.31	0/2121	0.71	0/2852
28	d	0.30	0/1568	0.65	0/2109
29	е	0.29	0/1571	0.60	0/2113
30	f	0.29	0/1434	0.61	0/1926
31	g	0.30	0/1324	0.65	0/1794

Mol Chain		Bond lengths		Bond angles	
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
32	h	0.31	0/306	0.69	0/413
33	i	0.30	0/1143	0.65	0/1540
34	j	0.30	0/955	0.69	0/1279
35	k	0.33	0/1062	0.62	0/1413
36	m	0.29	0/958	0.67	0/1281
37	n	0.29	0/902	0.62	0/1209
38	0	0.31	0/920	0.69	0/1231
39	р	0.30	0/960	0.66	0/1278
40	q	0.31	0/829	0.68	0/1107
41	r	0.28	0/852	0.63	0/1142
42	s	0.27	0/744	0.61	0/994
43	t	0.29	0/787	0.67	0/1051
44	u	0.30	0/766	0.63	0/1025
45	V	0.33	0/636	0.68	0/841
46	W	0.32	0/635	0.71	0/848
47	Х	0.27	0/493	0.56	0/656
48	У	0.30	0/439	0.66	0/587
49	Z	0.33	0/427	0.67	0/570
50	Y	0.60	0/1837	1.12	0/2864
51	4	0.31	0/488	0.64	0/649
52	a	0.49	0/65651	1.15	82/102413~(0.1%)
53	А	0.52	0/36272	1.14	38/56577~(0.1%)
54	J	0.28	0/796	0.66	0/1077
55	6	0.32	$\overline{0/279}$	0.67	0/377
56	1	0.30	0/1073	0.69	0/1433
57	К	0.31	0/876	0.67	0/1181
All	All	0.46	0/153172	1.04	$\boxed{122}/229123~(0.1\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	2	0	2
4	3	0	1
6	В	0	1
8	D	0	1
11	G	0	1
14	L	0	2
15	М	0	1
17	0	0	1

Mol	Chain	#Chirality outliers	#Planarity outliers
19	Q	0	1
29	е	0	1
33	i	0	2
36	m	0	1
38	0	0	1
39	р	0	2
41	r	0	1
46	W	0	1
47	Х	0	1
52	a	0	1
54	J	0	1
All	All	0	23

Continued from previous page...

There are no bond length outliers.

The worst 5 of 122 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
52	a	574	A	O5'-P-OP1	-11.68	95.19	105.70
52	a	512	G	O4'-C1'-N9	11.43	117.34	108.20
53	А	115	G	P-O3'-C3'	9.42	131.00	119.70
26	b	7	G	O4'-C1'-N9	8.81	115.25	108.20
53	А	227	G	O4'-C1'-N9	8.76	115.21	108.20

There are no chirality outliers.

5 of 23 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
3	2	13	ARG	Sidechain
3	2	8	ARG	Sidechain
4	3	36	ARG	Sidechain
6	В	95	ARG	Sidechain
8	D	62	ARG	Sidechain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
1	0	47/55~(86%)	47 (100%)	0	0	100	100
2	1	44/46~(96%)	44 (100%)	0	0	100	100
3	2	62/65~(95%)	60 (97%)	2(3%)	0	100	100
4	3	36/38~(95%)	36 (100%)	0	0	100	100
6	В	222/241~(92%)	214 (96%)	7(3%)	1 (0%)	25	21
7	С	204/233~(88%)	196 (96%)	8 (4%)	0	100	100
8	D	203/206~(98%)	194 (96%)	7(3%)	2(1%)	13	8
9	Ε	153/167~(92%)	144 (94%)	9~(6%)	0	100	100
10	F	101/135~(75%)	98~(97%)	3(3%)	0	100	100
11	G	151/179~(84%)	145 (96%)	6 (4%)	0	100	100
12	Н	127/130~(98%)	121 (95%)	6 (5%)	0	100	100
13	Ι	125/130~(96%)	118 (94%)	7 (6%)	0	100	100
14	L	120/124~(97%)	114 (95%)	6 (5%)	0	100	100
15	М	113/118~(96%)	110 (97%)	3 (3%)	0	100	100
16	Ν	98/101~(97%)	97~(99%)	1 (1%)	0	100	100
17	Ο	86/89~(97%)	83~(96%)	3(4%)	0	100	100
18	Р	78/82~(95%)	73~(94%)	5~(6%)	0	100	100
19	Q	75/84~(89%)	70 (93%)	5 (7%)	0	100	100
20	R	64/75~(85%)	64 (100%)	0	0	100	100
21	S	82/92~(89%)	79~(96%)	3 (4%)	0	100	100
22	Т	84/87~(97%)	83 (99%)	1 (1%)	0	100	100
23	U	68/71~(96%)	66 (97%)	2 (3%)	0	100	100
27	с	269/273~(98%)	260 (97%)	9 (3%)	0	100	100
28	d	205/209~(98%)	198 (97%)	7 (3%)	0	100	100
29	е	199/201~(99%)	193 (97%)	6 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
30	f	175/179~(98%)	169~(97%)	6 (3%)	0	100	100
31	g	172/177~(97%)	163~(95%)	8~(5%)	1 (1%)	22	17
32	h	39/149~(26%)	36~(92%)	3~(8%)	0	100	100
33	i	139/142~(98%)	137~(99%)	2(1%)	0	100	100
34	j	121/123~(98%)	116 (96%)	5(4%)	0	100	100
35	k	142/144~(99%)	137~(96%)	5(4%)	0	100	100
36	m	116/127~(91%)	111 (96%)	5(4%)	0	100	100
37	n	114/117~(97%)	110 (96%)	4 (4%)	0	100	100
38	О	111/115~(96%)	107~(96%)	4 (4%)	0	100	100
39	р	115/118~(98%)	115 (100%)	0	0	100	100
40	q	101/103~(98%)	99~(98%)	2(2%)	0	100	100
41	r	107/110~(97%)	104 (97%)	3~(3%)	0	100	100
42	s	91/100 (91%)	90~(99%)	1 (1%)	0	100	100
43	t	100/104~(96%)	96~(96%)	4 (4%)	0	100	100
44	u	92/94~(98%)	91~(99%)	1 (1%)	0	100	100
45	v	82/85~(96%)	79~(96%)	2(2%)	1 (1%)	11	6
46	w	75/78~(96%)	75~(100%)	0	0	100	100
47	х	59/63~(94%)	57~(97%)	2(3%)	0	100	100
48	У	54/59~(92%)	53~(98%)	1 (2%)	0	100	100
49	Z	51/57~(90%)	50~(98%)	1 (2%)	0	100	100
51	4	56/70~(80%)	53~(95%)	3~(5%)	0	100	100
54	J	96/103~(93%)	91~(95%)	4 (4%)	1 (1%)	13	8
55	6	32/34~(94%)	30~(94%)	2~(6%)	0	100	100
56	1	132/136~(97%)	127 (96%)	5 (4%)	0	100	100
57	K	112/129~(87%)	103 (92%)	9~(8%)	0	100	100
All	All	$5500/59\overline{47}\;(92\%)$	5306 (96%)	188 (3%)	6(0%)	50	47

Continued from previous page...

5 of 6 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
8	D	121	LYS
6	В	76	ALA
45	V	84	ALA

Continued from previous page...

Mol	Chain	Res	Type
54	J	57	VAL
31	g	39	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers Percer		\mathbf{ntiles}
1	0	45/49~(92%)	45 (100%)	0	100	100
2	1	38/38~(100%)	36~(95%)	2(5%)	19	16
3	2	51/52~(98%)	50 (98%)	1 (2%)	50	55
4	3	34/34~(100%)	33~(97%)	1 (3%)	37	39
6	В	186/199~(94%)	183 (98%)	3(2%)	58	64
7	С	170/190~(90%)	168 (99%)	2(1%)	67	73
8	D	172/173~(99%)	169 (98%)	3(2%)	56	61
9	Е	118/126~(94%)	117 (99%)	1 (1%)	79	84
10	F	90/116~(78%)	90 (100%)	0	100	100
11	G	126/147~(86%)	125~(99%)	1 (1%)	79	84
12	Н	104/105~(99%)	101 (97%)	3~(3%)	37	39
13	Ι	105/107~(98%)	102 (97%)	3~(3%)	37	39
14	L	102/103~(99%)	99~(97%)	3(3%)	37	39
15	М	93/96~(97%)	93 (100%)	0	100	100
16	Ν	83/84~(99%)	82 (99%)	1 (1%)	67	73
17	Ο	76/77~(99%)	76 (100%)	0	100	100
18	Р	64/65~(98%)	62~(97%)	2(3%)	35	36
19	Q	71/78~(91%)	70~(99%)	1 (1%)	62	68
20	R	57/65~(88%)	57 (100%)	0	100	100
21	S	$7\overline{2}/79~(91\%)$	72~(100%)	0	100	100
22	Т	65/66~(98%)	64 (98%)	1 (2%)	60	66
23	U	60/61~(98%)	59 (98%)	1 (2%)	56	61

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
27	с	216/218~(99%)	215 (100%)	1 (0%)	86	90
28	d	162/163~(99%)	162 (100%)	0	100	100
29	е	165/165~(100%)	164 (99%)	1 (1%)	84	88
30	f	148/150~(99%)	148 (100%)	0	100	100
31	g	135/138~(98%)	133 (98%)	2(2%)	60	66
32	h	32/114~(28%)	32 (100%)	0	100	100
33	i	115/116~(99%)	114 (99%)	1 (1%)	75	81
34	j	104/104~(100%)	103 (99%)	1 (1%)	73	78
35	k	103/103~(100%)	103 (100%)	0	100	100
36	m	98/103~(95%)	98 (100%)	0	100	100
37	n	86/87~(99%)	86 (100%)	0	100	100
38	О	98/100~(98%)	98 (100%)	0	100	100
39	р	89/90~(99%)	89 (100%)	0	100	100
40	q	84/84 (100%)	83 (99%)	1 (1%)	67	73
41	r	92/93~(99%)	90 (98%)	2 (2%)	47	51
42	s	80/84~(95%)	80 (100%)	0	100	100
43	t	83/85~(98%)	81 (98%)	2(2%)	44	47
44	u	78/78~(100%)	77~(99%)	1 (1%)	65	71
45	v	61/63~(97%)	61 (100%)	0	100	100
46	W	67/68~(98%)	66~(98%)	1 (2%)	60	66
47	х	53/55~(96%)	52 (98%)	1 (2%)	52	57
48	У	47/49~(96%)	47 (100%)	0	100	100
49	Z	45/48~(94%)	45 (100%)	0	100	100
51	4	55/62~(89%)	55~(100%)	0	100	100
54	J	86/90 (96%)	84 (98%)	2 (2%)	45	49
55	6	27/27~(100%)	25~(93%)	2 (7%)	11	8
56	1	107/107~(100%)	107 (100%)	0	100	100
57	K	88/98~(90%)	85 (97%)	3(3%)	32	32
All	All	4586/4852 (94%)	4536 (99%)	50 (1%)	69	76

 $5~{\rm of}~50$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
23	U	58	LYS
40	q	71	LYS
57	Κ	94	GLU
27	с	240	PHE
31	g	155	GLU

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 20 such side chains are listed below:

Mol	Chain	Res	Type
39	р	52	GLN
43	t	74	ASN
56	l	13	HIS
46	W	6	GLN
18	Р	18	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
24	Х	8/9~(88%)	1 (12%)	0
25	Ζ	75/76~(98%)	15 (20%)	4(5%)
26	b	118/120~(98%)	15 (12%)	0
5	5	1/2~(50%)	1 (100%)	0
50	Y	76/77~(98%)	14 (18%)	4(5%)
52	a	2745/2904~(94%)	290 (10%)	0
53	А	1508/1542~(97%)	268 (17%)	42 (2%)
All	All	4531/4730 (95%)	604 (13%)	50 (1%)

5 of 604 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
5	5	76	A
24	Х	15	U
25	Ζ	6	А
25	Ζ	14	А
25	Ζ	17	U

5 of 50 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
53	А	533	А
53	А	843	U

Continued from previous page...

Mol	Chain	Res	Type
53	А	1536	С
53	А	544	G
53	А	653	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

31 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tiple	Bo	ond leng	ths	B	ond ang	les
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
52	PSU	a	2604	52	18,21,22	0.96	1 (5%)	22,30,33	0.83	1 (4%)
52	5MU	a	1939	$52,\!59$	19,22,23	0.32	0	28,32,35	0.56	0
52	PSU	a	2580	$52,\!59$	18,21,22	1.01	1 (5%)	22,30,33	0.69	1 (4%)
52	1MG	a	745	52	18,26,27	1.03	2 (11%)	19,39,42	0.49	0
52	3TD	a	1915	52	19,22,23	1.01	1 (5%)	21,32,35	0.70	0
53	MA6	А	1519	53	18,26,27	0.80	1 (5%)	19,38,41	0.76	0
53	G7M	А	527	53	20,26,27	1.10	2 (10%)	17,39,42	0.76	0
56	4D4	1	81	56	9,11,12	0.81	0	8,13,15	1.22	1 (12%)
52	OMG	a	2251	$25,\!52,\!59$	18,26,27	0.99	2 (11%)	19,38,41	0.82	1 (5%)
52	OMU	a	2552	52,60	19,22,23	0.27	0	26,31,34	0.48	0
52	H2U	a	2449	52	18,21,22	0.59	0	21,30,33	0.62	0
52	6MZ	a	2030	52	18,25,26	0.75	0	16,36,39	0.89	1 (6%)
52	PSU	a	955	52	18,21,22	0.91	1 (5%)	22,30,33	0.75	0
52	5MU	a	747	52	19,22,23	0.30	0	28,32,35	0.49	0
52	2MG	a	1835	52	18,26,27	1.06	2 (11%)	16,38,41	0.72	0
52	5MC	a	1962	52	18,22,23	0.33	0	26,32,35	0.65	0
52	PSU	a	746	52,60	18,21,22	1.00	1 (5%)	22,30,33	1.26	2 (9%)
52	PSU	a	2605	52	18,21,22	0.98	1 (5%)	22,30,33	0.90	0
14	D2T	L	89	14	7,9,10	0.93	0	6,11,13	1.91	3 (50%)
52	PSU	a	2457	52	18,21,22	0.98	1 (5%)	22,30,33	0.64	0
52	PSU	a	2504	52,59	18,21,22	0.93	1 (5%)	22,30,33	0.86	1 (4%)

Mal	Turne	Chain	Dec	Link	Bo	ond leng	ths	B	ond ang	les
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
53	MA6	А	1518	53	18,26,27	0.83	2 (11%)	19,38,41	0.64	0
52	2MA	a	2503	52,60,59	19,25,26	1.03	1 (5%)	21,37,40	1.99	5 (23%)
28	MEQ	d	150	28	8,9,10	0.44	0	5,10,12	1.35	1 (20%)
52	PSU	a	1917	52	18,21,22	0.96	1 (5%)	22,30,33	0.61	0
52	OMC	a	2498	52,60	19,22,23	0.27	0	26,31,34	0.65	0
52	G7M	a	2069	52	20,26,27	1.10	3 (15%)	17,39,42	0.58	0
57	IAS	K	119	57	6,7,8	0.96	0	6,8,10	0.92	0
52	2MG	a	2445	52	18,26,27	1.01	1 (5%)	16,38,41	0.86	0
52	PSU	a	1911	52	18,21,22	0.93	1 (5%)	22,30,33	0.62	0
52	6MZ	a	1618	52	18,25,26	0.69	0	16,36,39	0.89	1 (6%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
52	PSU	a	2604	52	-	0/7/25/26	0/2/2/2
52	5MU	a	1939	52,59	-	0/7/25/26	0/2/2/2
52	PSU	a	2580	52,59	-	0/7/25/26	0/2/2/2
52	1MG	a	745	52	-	0/3/25/26	0/3/3/3
52	3TD	a	1915	52	-	0/7/25/26	0/2/2/2
53	MA6	А	1519	53	-	2/7/29/30	0/3/3/3
53	G7M	А	527	53	-	2/3/25/26	0/3/3/3
56	4D4	1	81	56	-	1/11/12/14	-
52	OMG	a	2251	25,52,59	-	0/5/27/28	0/3/3/3
52	OMU	a	2552	52,60	-	0/9/27/28	0/2/2/2
52	H2U	a	2449	52	-	0/7/38/39	0/2/2/2
52	6MZ	a	2030	52	-	2/5/27/28	0/3/3/3
52	PSU	a	955	52	-	0/7/25/26	0/2/2/2
52	5MU	a	747	52	-	0/7/25/26	0/2/2/2
52	2MG	a	1835	52	-	0/5/27/28	0/3/3/3
52	5MC	a	1962	52	-	0/7/25/26	0/2/2/2
52	PSU	a	746	52,60	-	1/7/25/26	0/2/2/2
52	PSU	a	2605	52	-	0/7/25/26	0/2/2/2
14	D2T	L	89	14	-	4/7/12/14	-
52	PSU	a	2457	52	-	0/7/25/26	0/2/2/2
52	PSU	a	2504	52,59	-	0/7/25/26	0/2/2/2
53	MA6	A	1518	53	-	0/7/29/30	0/3/3/3
52	2MA	a	2503	52,60,59	-	1/3/25/26	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
28	MEQ	d	150	28	-	2/8/9/11	-
52	PSU	a	1917	52	-	0/7/25/26	0/2/2/2
52	OMC	a	2498	52,60	-	0/9/27/28	0/2/2/2
52	G7M	a	2069	52	-	2/3/25/26	0/3/3/3
57	IAS	Κ	119	57	-	0/7/7/8	-
52	2MG	a	2445	52	-	0/5/27/28	0/3/3/3
52	PSU	a	1911	52	-	0/7/25/26	0/2/2/2
52	6MZ	a	1618	52	_	0/5/27/28	0/3/3/3

Continued from previous page...

The worst 5 of 26 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
52	a	2580	PSU	C6-C5	4.01	1.40	1.35
52	а	1915	3TD	C6-C5	3.86	1.39	1.35
52	а	1917	PSU	C6-C5	3.86	1.39	1.35
52	a	2457	PSU	C6-C5	3.84	1.39	1.35
52	a	746	PSU	C6-C5	3.83	1.39	1.35

The worst 5 of 18 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
52	a	2503	2MA	C5-C6-N1	-5.74	117.24	121.01
52	a	2503	2MA	CM2-C2-N1	3.95	123.32	117.15
52	a	2503	2MA	C5-C6-N6	3.86	126.21	120.35
52	a	746	PSU	C3'-C2'-C1'	3.41	105.61	101.64
52	a	746	PSU	O3'-C3'-C4'	2.91	119.45	111.05

There are no chirality outliers.

5 of 17 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
14	L	89	D2T	CA-CB-CG-OD1
14	L	89	D2T	CA-CB-CG-OD2
53	А	527	G7M	O4'-C4'-C5'-O5'
53	А	527	G7M	C3'-C4'-C5'-O5'
53	А	1519	MA6	O4'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 423 ligands modelled in this entry, 422 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol 7	Tuno	Chain	Res	Link	Bond lengths			Bond angles		
	туре				Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
61	PRO	Y	101	50	5,7,8	0.60	0	7,8,10	0.80	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
61	PRO	Y	101	50	-	0/0/9/11	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

