

Mar 25, 2024 - 03:59 pm GMT

PDB ID	:	8QBT
EMDB ID	:	EMD-18320
Title	:	E. coli ApdP-stalled ribosomal complex
Authors	:	Morici, M.; Wilson, D.N.
Deposited on	:	2023-08-25
Resolution	:	2.20 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	2903	77%	18%	•••
2	В	120	13%	15%	••
3	С	273	95%		• ••
4	D	209	9%		5%
5	Е	201	30%		•
6	F	179	53%		
7	G	177	<u>60%</u> 93%		•••

Mol	Chain	Length	Quality of chain	
0	тт	140	19%	
8	П	149	30% •• 68%	
9	J	142	94%	6%
10	TZ	109	7%	
10	ĸ	123	92%	7% •
11	L	144	90%	8% ••
10	ЪЛ	190	<u>-</u>	
12	M	130	96%	• •
13	Ν	127	91%	• 7%
1.4	0	117	27%	
14	0	117	93%	• • •
15	Р	115	90%	6% • •
10	0	110		
10	Q	118	93%	5% •
17	R	103	89%	10% •
10	C	110	9%	
18	5	110	88%	12%
19	Т	100	91%	• 8%
20	тт	104	39%	
20	U	104	94%	• •
21	V	94	95%	5%
00	117	05		
	VV	80	92%	6% ••
23	Х	78	92%	6% •
	V	c o	44%	
24	Y	03	95% 	5%
25	Ζ	59	92%	• 5%
າເ	2	57	11%	
20	a	57	96%	••
27	b	55	80%	7% 13%
00	_	46	–	
28	С	40	100%	
29	d	65	95%	• •
20	:	1540	35%	
<u>ა</u> ს	1	1040	78% 64%	20% •
31	j	241	87%	• 11%
20		167	19%	
- 32	m	107	88%	• 10%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
			50%	
33	n	135	72%	• 26%
			58%	
34	0	179	83%	• 16%
			33%	
35	р	130	98%	••
			58%	
36	q	130	86%	10% •
			31%	
37	S	129	88%	•• 9%
			64%	
38	${ m t}$	124	89%	6% • •
			61%	
39	u	118	92%	•• 5%
10		101	45%	
40	V	101	89%	6% 5%
			38%	
41	W	89	97%	•
10		0.4	71%	
42	У	84	94%	• 5%
49		75	23%	
43	Z	61	72%	• 27%
4.4	1	0.2	57%	
44	1	92	78%	• 20%
45	2	87	7570	
40		01	30%	• 10%
46	2	71	5070	410/
40		11	20%	41%
17	1	10	000/	1.00/
-11	т	10	32%	10%
48	5	77	750/	210/
40	0		21%	21% •
48	6	77	020/	100/ 60/
-10	0		97%	10 % 0 %
49	7	76	62%	370/
10	•		11%	• 0/12
50	e	38	97%	_
			17%	•
51	f	6	100%	

2 Entry composition (i)

There are 56 unique types of molecules in this entry. The entry contains 141132 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 23S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	2841	Total 60998	C 27210	N 11227	O 19720	Р 2841	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference	
А	2209	С	G	conflict	GB 991970073	
А	2215	G	С	conflict	GB 991970073	

• Molecule 2 is a RNA chain called 5S rRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	В	118	Total 2529	C 1126	N 464	0 821	Р 118	0	0

• Molecule 3 is a protein called Large ribosomal subunit protein uL2.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	271	Total 2082	C 1288	N 423	0 364	${ m S} 7$	0	0

• Molecule 4 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues	Atoms				AltConf	Trace	
4	D	209	Total 1565	C 979	N 288	0 294	S 4	0	0

• Molecule 5 is a protein called Large ribosomal subunit protein uL4.

Mol	Chain	Residues	Atoms				AltConf	Trace	
5	Ε	201	Total 1552	C 974	N 283	O 290	${ m S}{ m 5}$	0	0

• Molecule 6 is a protein called Large ribosomal subunit protein uL5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	F	177	Total	С	N 0.40	0	S	0	0
			1410	899	249	250	0		

• Molecule 7 is a protein called Large ribosomal subunit protein uL6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	G	171	Total 1285	C 811	N 235	0 237	${ m S} { m 2}$	0	0

• Molecule 8 is a protein called Large ribosomal subunit protein bL9.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
8	Н	47	Total 359	C 233	N 62	O 63	S 1	0	0

• Molecule 9 is a protein called Large ribosomal subunit protein uL13.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
9	J	142	Total 1129	С 714	N 212	O 199	${S \atop 4}$	0	0

• Molecule 10 is a protein called Large ribosomal subunit protein uL14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	K	122	Total 938	C 587	N 180	0 165	S 6	0	0

• Molecule 11 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	L	143	Total 1045	C 649	N 206	0 189	S 1	0	0

• Molecule 12 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	AltConf	Trace			
12	М	136	Total 1074	C 686	N 205	0 177	S 6	0	0

• Molecule 13 is a protein called Large ribosomal subunit protein bL17.

Mol	Chain	Residues		At	AltConf	Trace			
13	Ν	118	Total 945	$\begin{array}{c} \mathrm{C} \\ 585 \end{array}$	N 194	O 161	${ m S}{ m 5}$	0	0

• Molecule 14 is a protein called Large ribosomal subunit protein uL18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
14	О	114	Total 875	C 542	N 175	O 158	0	0

• Molecule 15 is a protein called Large ribosomal subunit protein bL19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	Р	112	Total 900	C 564	N 176	0 159	S 1	0	0

• Molecule 16 is a protein called Large ribosomal subunit protein bL20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
16	Q	116	Total 941	C 601	N 191	O 149	0	0

• Molecule 17 is a protein called Large ribosomal subunit protein bL21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	R	103	Total 816	C 516	N 153	0 145	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 18 is a protein called Large ribosomal subunit protein uL22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	S	110	Total 857	C 532	N 166	0 156	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called Large ribosomal subunit protein uL23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	Т	92	Total 730	C 461	N 138	0 130	S 1	0	0

• Molecule 20 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
20	U	102	Total 779	C 492	N 146	0 141	0	0

• Molecule 21 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	V	94	Total 753	C 479	N 137	0 134	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called Large ribosomal subunit protein bL27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	W	84	Total 628	C 388	N 126	0 113	S 1	0	0

• Molecule 23 is a protein called Large ribosomal subunit protein bL28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	Х	77	Total 625	C 388	N 129	O 106	${S \over 2}$	0	0

• Molecule 24 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
24	Y	63	Total 509	C 313	N 99	O 95	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 25 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
25	7	56	Total	С	Ν	Ο	S	0	0
20	Δ	- 50	435	272	84	77	2	0	0

• Molecule 26 is a protein called Large ribosomal subunit protein bL32.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
26	a	56	Total 444	C 269	N 94	O 80	${ m S}$ 1	0	0

• Molecule 27 is a protein called Large ribosomal subunit protein bL33.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
27	b	48	Total 395	C 254	N 72	O 69	0	0

• Molecule 28 is a protein called Large ribosomal subunit protein bL34.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
28	с	46	Total 377	C 228	N 90	O 57	${S \over 2}$	0	0

• Molecule 29 is a protein called Large ribosomal subunit protein bL35.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	d	64	Total 504	C 323	N 105	0 74	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 30 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
30	i	1539	Total 33015	C 14725	N 6052	O 10699	Р 1539	0	0

• Molecule 31 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
31	j	215	Total 1679	C 1067	N 299	O 307	S 6	0	0

• Molecule 32 is a protein called Small ribosomal subunit protein uS5.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	m	150	Total 1105	C 687	N 211	O 201	S 6	0	0

• Molecule 33 is a protein called 30S ribosomal protein S6, fully modified isoform.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	n	100	Total 817	C 515	N 148	0 148	S 6	0	0

• Molecule 34 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	0	151	Total 1181	C 735	N 227	O 215	$\frac{S}{4}$	0	0

• Molecule 35 is a protein called Small ribosomal subunit protein uS8.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	р	129	Total 979	C 616	N 173	0 184	S 6	0	0

• Molecule 36 is a protein called Small ribosomal subunit protein uS9.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	q	125	Total 1001	C 622	N 200	0 176	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
37	S	117	Total 877	C 540	N 174	O 160	${ m S} { m 3}$	0	0

• Molecule 38 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	t	119	Total 922	C 570	N 188	0 160	S 4	0	0

• Molecule 39 is a protein called Small ribosomal subunit protein uS13.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	u	112	Total 867	C 535	N 175	0 154	${ m S} { m 3}$	0	0

• Molecule 40 is a protein called Small ribosomal subunit protein uS14.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	v	96	Total 774	C 483	N 160	0 128	${ m S} { m 3}$	0	0

• Molecule 41 is a protein called Small ribosomal subunit protein uS15.

Mol	Chain	Residues		At	AltConf	Trace			
41	W	86	Total 687	$\begin{array}{c} \mathrm{C} \\ 425 \end{array}$	N 135	O 126	S 1	0	0

• Molecule 42 is a protein called Small ribosomal subunit protein uS17.

Mol	Chain	Residues	Atoms				AltConf	Trace	
42	У	80	Total 648	C 411	N 121	0 113	${ m S} { m 3}$	0	0

• Molecule 43 is a protein called Small ribosomal subunit protein bS18.

Mol	Chain	Residues	Atoms			AltConf	Trace	
43	Z	55	Total 455	C 288	N 86	O 81	0	0

• Molecule 44 is a protein called Small ribosomal subunit protein uS19.

Mol	Chain	Residues	Atoms				AltConf	Trace	
44	1	74	Total 594	C 381	N 110	0 101	${ m S} { m 2}$	0	0

• Molecule 45 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues	Atoms				AltConf	Trace	
45	2	78	Total 612	C 376	N 126	0 107	${ m S} { m 3}$	0	0

• Molecule 46 is a protein called Small ribosomal subunit protein bS21.

Mol	Chain	Residues	Atoms				AltConf	Trace	
46	3	42	Total	С	Ν	0	\mathbf{S}	0	0
10	5	12	346	214	72	59	1		0

• Molecule 47 is a RNA chain called mRNA.

Mol	Chain	Residues	Atoms			AltConf	Trace		
47	4	10	Total 214	C 95	N 40	O 69	Р 10	0	0

• Molecule 48 is a RNA chain called Pro-tRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace	
18	5	77	Total	С	Ν	0	Р	0	0
48	5	11	1644	733	295	540	76	0	0
18	6	77	Total	С	Ν	0	Р	0	0
40	U		1648	733	295	543	77		

• Molecule 49 is a RNA chain called Ala-tRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
49	7	76	Total 1618	C 722	N 289	O 532	Р 75	0	0

• Molecule 50 is a protein called Large ribosomal subunit protein bL36A.

Mol	Chain	Residues	Atoms				AltConf	Trace	
50	е	38	Total 302	C 185	N 65	0 48	S 4	0	0

• Molecule 51 is a protein called ApdP nascent chain.

Mol	Chain	Residues	Atoms					AltConf	Trace
51	f	6	Total	С	Ν	0	\mathbf{S}	0	0
01	1	0	46	29	10	6	1	0	0

• Molecule 52 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
52	А	178	Total Mg 178 178	0
52	В	5	Total Mg 5 5	0
52	С	1	Total Mg 1 1	0
52	D	1	Total Mg 1 1	0
52	a	1	Total Mg 1 1	0
52	i	61	Total Mg 61 61	0
52	6	1	Total Mg 1 1	0

• Molecule 53 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
53	А	83	Total K 83 83	0
53	С	3	Total K 3 3	0
53	Е	1	Total K 1 1	0
53	U	1	Total K 1 1	0
53	i	37	Total K 37 37	0
53	n	1	Total K 1 1	0
53	u	1	Total K 1 1	0

Mol	Chain	Residues	Atoms			AltConf	
54	5	1	Total	С	Ν	0	0
04	5		7	5	1	1	

• Molecule 55 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
55	е	1	Total Zn 1 1	0

• Molecule 56 is water.

Mol	Chain	Residues	Atoms	AltConf
56	А	1006	Total O 1006 1006	0
56	В	10	Total O 10 10	0
56	С	14	Total O 14 14	0
56	D	2	Total O 2 2	0
56	Е	3	Total O 3 3	0
56	L	4	Total O 4 4	0
56	Ν	3	Total O 3 3	0
56	Т	1	Total O 1 1	0
56	a	4	Total O 4 4	0
56	d	4	Total O 4 4	0
56	i	176	Total O 176 176	0
56	S	1	Total O 1 1	0
56	4	3	Total O 3 3	0
56	5	3	Total O 3 3	0
56	6	2	Total O 2 2	0
56	f	3	Total O 3 3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 23S rRNA

61187 61210 61211 61238 61238 61258 61255 61255 61255	CI 261 CI 261 A1265 CI 266 CI 266 CI 226 CI 226 CI 2296 CI 2296 CI 2297 A1301 A1301 CI 220	G1324 G1331 G1331 G1333 G1344 A1342 G1355 A1342 A1355 A1355 A1355 A1373	11375 11378 11378 11387 11383 11383 11394
A1395 U1396 U1409 C1410 U1412 A1413 C1414 C1415	C1416 C1417 A1420 C1428 C1428 A1435 C1435 A1435 A1453 A1460 C1483 A1460 C1482 C1482 C1482 C1482 C1483	U1485 U1486 U1486 C1488 C1488 C1488 C1489 C1489 A1502 A1502 A1502 A1505 C1507	A1508 A1509 A1509 A1515 C1518 C1529 C1531 A1532 C1531 C1533
A1535 C1536 G1537 G1537 G1538 G1540 C1541 U1542 C1541 G1546	11 555 11 555 11 555 11 555 11 578 11 578 1	C1 587 C1 588 C1 589 A1 590 A1 590 A1 503 A1 608 A1 608 A1 608 A1 608 A1 614 A1 608 A1 608 A1 608 C1 638 C1 638 C1 638	01 643 01 644 01 647 01 647 01 647 01 647 01 648 01 664 01 674 01 702
CI 706 UI 714 01715 01715 01721 01722 01723 01725 01725	C1726 C1727 C1728 C1729 C1739 C1730 C1733 C1733 C1733 C1735 C1735 C1735 C1736 A1739 A1739 A1739	C1 764 U1 765 U1 765 G1 765 G1 766 G1 767 A1 773 A1 773 A1 773 A1 773 C1 790 C1 790 A1 801 A1 802 A1 801 A1 802 A1 807	A1806 41811 C1816 C1824 A1829 A1829 A1829 A1847 A1848
A1853 A1863 C1867 C1868 C1868 C1870 A1871 A1871 A1872 C1873	C1874 A1876 A1876 A1890 C1905 C1905 C1905 C1905 C1914 C1914 C1914 C1925	61929 (1930 (1930 (1932 (1933 (1933 (1933 (1938 (1938 (1938 (1948 (1956 (1956 (1956 (1956 (1956 (1956 (1956	C1962 41968 C1964 C1966 C1966 C1966 A1959 A1959 A1970 U1977 C1972
(1975 (1980) (1980) (1982) (1982) (1982) (1984) (1984) (1981) (1991) (1993) (1993)	C1997 C1997 A2003 C2006 U2011 U2019 U2025 C2023 U2026 U2026 A2030 C2033 C2035 C2055	A2083 (2208 (2208 (2208 (2208 (2208 (2208 (2208 (2208 (2208 (2208 (2206 (2206 (2206 (2206 (2206) (2206) (2206) (2206) (2206) (2206) (2206) (2206) (2206) (2206) (2206) (2206) (2207) (2208) (2206) (2208) (20	A2070 A2071 C2073 U2074 U2076 U2076 C2087 U2076 C2087
C2096 A2097 U2098 C2009 G2100 A2101 C2102 C2103 C2103	C2105 U2105 G2107 G2107 C2110 U2110 C2110 C2110 C2112 C2115 C215 C2	C2119 C2120 C2121 C2122 C2122 C2125 C2126 C2126 C2126 C2126 C2126 C2126 C2126 C2126 C2126 C2126 C2130 U2131	A2135 C2136 C2136 C2136 C2140 C2140 C2143 C2144 C2143 C2145 C2145 C2146 C2145 C2146 C2146 C2146 C2152 C2155 C2155 C2155 C2155 C2155 C2155 C2155
U2155 02156 02157 02157 02157 02157 02157 02157 02157 02157 02157 02158 02159 02150 02153 02153	C2164 C2165 C2165 U2167 U2167 C2168 A2171 A2170 A2172 A2177 A2173 A2175 A2176 C2173 C2175 C2176 C2176	C2179 U2180 U2180 U2182 D2182 A2183 A2184 U2185 C2186 C2186 C2190 A2191 U2182 C2190	A2194 A2198 A219 A2211 A2213 A2213 C2233 C2233 C2233 C2233 C2233 C2256 C256 C
C2271 U2272 A2273 A2274 A2278 C2285 C2285 A2285 C2285 C2285	2286 A2287 A2287 C2296 V22966 A2297 C2306 C2306 A2301 A2311 A2312 A2312 A2312 A2312 A2323	1230.4 (2325 A2333 A2333 L2335 (23353 (23353 (23355 (23355 (23355 (23355 (23355 (23355 (23355 (23355 (23355 (23355 (23355 (23355) (23355 (23355) (2335	(23363 (123865 (233856 (233896 (23399) (23399) (23399) (23391)
C2355 C2356 C2356 C2356 C2356 C2356 C2356 C2369 C2408 C2408 C2408 C2408 C2408 C2408	A.2420 4.2439 4.2431 4.2431 4.2431 0.2441 0.2445 6.2445 6.2445 6.2445 6.2445 6.2445 6.2445 A.2450 A.25500 A.25500 A.25500 A.25500 A.25500 A.25500 A.25500 A.25500 A		C2502 A2503 C2506 C2506 A2519 U2519 C2524 C2524
92529 92552 92545 92545 92546 82546 82546 92556 92556	A2566 42566 7267 7267 7267 7267 7260 7260 7260 72	U2609 C2610 U2613 U2613 U2629 Q2641 A2657 A2650 Q2663 U2689 U2689	G2719 G2714 G2715 A225 A225 A2726
C2732 C2744 C2747 A2748 A2748 C2747 A2757 A2757	A2778 U2790 U2790 C2791 A2792 C2795 U2795 U2795 U2795 U2795 C2705 C2705	C2803 C2803 U2804 C2805 A2820 A2820 A2820 C2824 C2824 C2824 A2820 A2820 A2820 A2820 A2820 A2820 A280 A2800 A280 A2800	(2867 (2811 (2811 (2816 (2816 (2816 (2816 (2888 (2888 (2888 (2888 (2888))))))))))
A2900 C2901 C2902 U2903			

• Molecule 2: 5S rRNA			
Chain B:	82%	15% ••	
U C3 C3 C3 C3 C3 C3 C1 6 C8 C1 6 C8 C1 C1 6 C8 C26 C3 C26 C4 C26 C4 C26 C4 C2 C3 C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C5 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	A34 C35 C35 C35 C35 C42 C42 C42 C42 C42 C42 C42 C42 C55 C55 C67 C75 C75 C75 C75 C75 C75 C75 C75 C75 C7	41 0 187 188 188 188 41 0 11 8 41 19 41 19 11 8 41 19	
• Molecule 3: Large riboson	aal subunit protein uL2		
Chain C:	95%		
MET A2 P11 P11 P29 P107 L34 T74 F104 C109 C1109 C1109 D121	R156 R167 D168 0169 C169 R21 T252 T252 R271 S272		
• Molecule 4: 50S ribosoma	l protein L3		
Chain D:	95%	5%	
M1 L4 V5 L4 F17 E17 M32 N32 N33 R33 R33 R33 R33 R33 R33 R33 R33 R34 A44	K56 K56 A57 N58 R59 K159 K173 E74 A85 G87 E86 G87 E88 G87 E88 B128	T133 1134 1133 1134 1134 1133 1134	
• Molecule 5: Large ribosom	aal subunit protein uL4		
Chain E:	96%	· ·	
MI E2 L3 V4 L5 K6 K6 K6 M8 M8 M1 M11 L12 C12 C12 C12 C12 S10 S10 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	T17 T17 R21 R21 R21 R88 R114 R115 R115 R115 R115 R121 R121 F122 F123 F124 F124 S125	V126	1149 1149 1150 1151 1153 1154 1155 1155
L159	A195 V196 E197 E198 M199 L200 A201		
• Molecule 6: Large ribosom	aal subunit protein uL5		
Chain F:	6 97%		
MET A2 K3 K3 L14 H5 Y7 Y8 K19 K114 K113 K114 K115 K114 K115 K115 K115 K115 K115	T18 E19 F20 N21 Y22 N23 V25 F30 F30 F43 A43 A43 F44	445 K47 K47 K48 K48 L49 D51 A53 A53 A53 A55 A55 A55 A55 A55 A55 A55	G76 F77 K78 K78 R80 V83 F80 E84
L103 L104 T105 T105 A105 A106 A106 A106 A110 R110 R112 R115 R115 C116 C116 C116 C116 C116 C116 C116 C116 C116 C116 C106 C116 C106 C116 C116 C116 C116 C116 C116 C116 C117 C116 C117 C	8110 A119 K120 S121 C124 A125 A125 A125 A125 A125 A125 A125 A125	1141 1142 1143 1144 1144 1147 1146 1147 1148 1149 1149 1149 1149 1153	S162 D163 E164 E165 E165 C166 A167 A167 A170 A171 A171 A172 A172 A172 A172

• Molecule 7: Large ribosomal subunit protein uL6

D174 F175 P176 F177 F177 R178 R178 LYS

• Molecule 12: 50S ribosomal protein L16

• Molecule 19: Large ribosomal subunit protein uL23

• Molecule 25: Large ribosomal subunit protein uL30

Chain Z:	5% 92% • 5%	
MET ALA LYS T4 L24 L24	D4 0 N5 4 E59 ● ● ●	
• Molecul	e 26: Large ribosomal subunit protein bL32	
Chain a:	11% 96% • ·	-
MET A2 T26 R40	R52 R52 A56 K57	
• Molecul	e 27: Large ribosomal subunit protein bL33	
Chain b:	16% 80% 7% 13%	
NET ALA LYS G4 T5 R6	K10 K27 K27 K27 K27 K28 K27 K27 K27 K27 K27 K27 K27 K27	
• Molecul	e 28: Large ribosomal subunit protein bL34	
Chain c:	100%	•
M1 K46		
• Molecul	e 29: Large ribosomal subunit protein $bL35$	
Chain d:	95% •	
MET P2 R13 H31	e Berline Berl	
• Molecul	e 30: 16S rRNA	
Chain i:	35% 78% 20% •	
A A2 U4 U5 G6	A7 A8 A8 A3 A32 A32 A32 A33 A33 A33 A33	Ar2 Cr3 Ar4 Ar4 Ar7 Ar7 Ar8 Ar8 Ar8 Ar8 Ar8 Cr3 Ar7 Ar8 Cr3 Ar7 Cr3 Ar7 Cr3 Ar7 Ar7 Cr3 Ar7 Ar7 Ar7 Ar7 Ar7 Ar7 Ar7 Ar7
U85 G86 U88 U89	0.90 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.95 0.95 0.96 0.94 0.97 0.95 0.96 0.97 0.96 0.97 0.97 0.98 0.96 0.97 0.98 0.98 0.99 0.99 0.103 0.103 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.133 0.126 0.136 0.126 0.136 0.136 0.137 0.138 0.136 0.136 0.136 0.136 0.137 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.137 0.136 0.138 0.136	c141 c141 c142 c142 c145 c146 c146 d147 c146 d147 d147 c146 d147 d147 c148 d147 d147 d147 d147 d147 c146 d147 d147 c145 c
A155 C156 U157 G159 G159	A161 A162 A162 C163 C165 C165 C165 A167 A171 A171 A172 C166 A172 C166 A172 C166 A172 C175 C175 C175 C175 C175 C175 C175 C175	A197 A197 A199 G200 G201 G201 G203 G204 A205 C207 U208 U208 U208 U208 C207 C207 C207 C210 G211 G211 C214 C214

 \bullet Molecule 39: Small ribosomal subunit protein uS13

• Molecule 49: Ala-tRNA

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	205838	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	75.6	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	1800	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.418	Depositor
Minimum map value	-0.187	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.015	Depositor
Recommended contour level	0.04	Depositor
Map size (Å)	295.2, 295.2, 295.2	wwPDB
Map dimensions	360, 360, 360	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.82000005, 0.82000005, 0.82000005	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG, 2MA, PSU, K

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.61	1/68247~(0.0%)	1.29	302/106469~(0.3%)	
2	В	0.51	0/2828	1.17	7/4410~(0.2%)	
3	С	0.42	0/2121	0.87	4/2852~(0.1%)	
4	D	0.41	0/1586	0.72	0/2134	
5	Е	0.38	0/1571	0.68	0/2113	
6	F	0.29	0/1434	0.64	0/1926	
7	G	0.31	0/1303	0.65	0/1759	
8	Н	0.31	0/364	0.66	0/490	
9	J	0.35	0/1152	0.67	0/1551	
10	Κ	0.36	0/947	0.81	0/1268	
11	L	0.40	0/1054	0.76	0/1403	
12	М	0.37	0/1093	0.76	1/1460~(0.1%)	
13	Ν	0.38	0/958	0.77	0/1281	
14	0	0.32	0/885	0.70	1/1187~(0.1%)	
15	Р	0.37	0/912	0.77	0/1220	
16	Q	0.41	0/954	0.75	1/1271~(0.1%)	
17	R	0.40	0/829	0.80	1/1107~(0.1%)	
18	S	0.38	0/864	0.71	0/1156	
19	Т	0.32	0/736	0.67	0/984	
20	U	0.30	0/787	0.71	0/1051	
21	V	0.31	0/766	0.67	0/1025	
22	W	0.41	0/636	0.76	0/841	
23	Х	0.38	0/635	0.79	1/848~(0.1%)	
24	Y	0.29	0/510	0.63	0/677	
25	Ζ	0.33	0/439	0.68	0/587	
26	a	0.41	0/450	0.81	0/599	
27	b	0.37	0/402	0.73	0/536	
28	с	0.44	0/380	0.90	0/498	
29	d	0.41	0/513	0.77	0/676	
30	i	0.55	0/36966	1.20	85/57666~(0.1%)	
31	j	0.30	0/1710	0.69	0/2306	
32	m	0.33	$0/1\overline{118}$	0.69	0/1504	

Mal	Chain	Bo	ond lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	n	0.29	0/835	0.67	0/1128	
34	0	0.30	0/1195	0.70	1/1602~(0.1%)	
35	р	0.29	0/989	0.65	0/1326	
36	q	0.38	0/1013	0.76	0/1350	
37	s	0.34	0/893	0.79	2/1205~(0.2%)	
38	t	0.32	0/935	0.80	0/1256	
39	u	0.31	0/875	0.74	0/1170	
40	V	0.33	0/785	0.68	0/1043	
41	W	0.31	0/695	0.58	0/931	
42	у	0.28	0/657	0.71	0/881	
43	Z	0.30	0/462	0.65	0/621	
44	1	0.32	0/609	0.67	0/822	
45	2	0.30	0/616	0.69	0/814	
46	3	0.40	0/349	0.86	0/461	
47	4	0.61	0/238	1.16	0/369	
48	5	0.56	0/1837	1.20	3/2864~(0.1%)	
48	6	0.60	1/1841~(0.1%)	1.20	4/2868~(0.1%)	
49	7	0.61	0/1807	1.10	1/2816~(0.0%)	
50	е	0.36	0/303	0.91	0/397	
51	f	0.39	0/46	0.81	0/60	
All	All	0.54	2/152130~(0.0%)	1.15	414/228839~(0.2%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	6
3	С	0	6
4	D	0	2
5	Е	0	1
9	J	0	1
11	L	0	1
12	М	0	2
13	N	0	1
14	0	0	1
15	Р	0	1
16	Q	0	1
17	R	0	2
22	W	0	4
23	Х	0	2

Mol	Chain	#Chirality outliers	#Planarity outliers
26	а	0	1
27	b	0	2
29	d	0	1
32	m	0	2
33	n	0	2
36	q	0	5
38	t	0	4
39	u	0	3
All	All	0	51

Continued from previous page...

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
48	6	1	С	OP3-P	-7.30	1.52	1.61
1	А	2069	G	C8-N7	5.36	1.34	1.30

All (414) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2061	G	O5'-P-OP2	-28.61	76.37	110.70
1	А	575	А	O5'-P-OP1	-20.21	86.45	110.70
1	А	1139	G	O5'-P-OP2	-18.09	88.99	110.70
1	А	1395	А	O5'-P-OP1	-17.95	89.16	110.70
1	А	2250	G	O5'-P-OP2	-17.42	89.80	110.70
1	А	2430	А	O5'-P-OP2	-17.30	89.93	110.70
1	А	2554	U	O5'-P-OP1	-17.17	90.10	110.70
1	А	819	А	O5'-P-OP1	-15.46	91.79	105.70
1	А	1253	А	O5'-P-OP1	-15.29	91.94	105.70
1	А	255	А	O5'-P-OP1	-14.51	92.64	105.70
1	А	2296	U	O3'-P-O5'	-14.45	76.55	104.00
1	А	685	А	O3'-P-O5'	-13.42	78.50	104.00
30	i	1519	А	O5'-P-OP2	-13.05	93.96	105.70
30	i	1494	G	O5'-P-OP2	-12.39	94.55	105.70
1	А	2602	А	O5'-P-OP2	-11.67	95.20	105.70
1	А	2061	G	O5'-P-OP1	11.60	124.62	110.70
1	А	961	С	O5'-P-OP2	-10.99	95.81	105.70
1	А	995	С	O5'-P-OP1	10.97	123.87	110.70
1	А	512	G	O4'-C1'-N9	10.75	116.80	108.20
1	А	1266	G	O5'-P-OP1	-10.73	96.04	105.70
1	А	686	U	O5'-P-OP1	10.68	123.52	110.70
1	А	574	А	O5'-P-OP1	-10.65	96.12	105.70
30	i	110	С	O5'-P-OP2	10.48	123.27	110.70

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	i	115	G	P-O3'-C3'	10.37	132.15	119.70
1	А	2022	U	O5'-P-OP1	-10.31	96.42	105.70
1	А	994	С	O3'-P-O5'	-10.12	84.77	104.00
1	А	2505	G	O5'-P-OP2	-10.03	96.67	105.70
3	С	221	ARG	NE-CZ-NH2	-9.99	115.30	120.30
1	А	2361	G	O5'-P-OP2	-9.98	96.72	105.70
30	i	500	G	O3'-P-O5'	-9.97	85.05	104.00
1	А	1352	U	O5'-P-OP2	-9.97	96.73	105.70
30	i	501	C	O3'-P-O5'	-9.97	85.06	104.00
2	В	99	A	O5'-P-OP1	-9.89	96.80	105.70
1	А	1811	G	O5'-P-OP2	-9.78	96.90	105.70
1	А	574	A	O5'-P-OP2	9.77	122.42	110.70
1	А	2430	A	O5'-P-OP1	9.58	122.19	110.70
30	i	889	A	O3'-P-O5'	-9.56	85.84	104.00
1	А	2033	A	O5'-P-OP2	-9.52	97.13	105.70
1	А	83	A	O3'-P-O5'	-9.43	86.08	104.00
1	А	2022	U	O5'-P-OP2	9.29	121.85	110.70
1	А	2065	C	O5'-P-OP2	-9.29	97.34	105.70
1	А	1939	U	P-O3'-C3'	-9.24	108.61	119.70
1	А	470	А	O5'-P-OP1	9.22	121.77	110.70
1	А	941	A	O5'-P-OP1	-9.07	97.54	105.70
1	А	2431	U	O5'-P-OP1	-9.06	97.55	105.70
1	А	1395	A	O5'-P-OP2	9.01	121.51	110.70
1	А	743	A	O5'-P-OP2	-8.97	97.63	105.70
1	А	996	A	O5'-P-OP1	-8.96	97.64	105.70
1	А	1790	С	O5'-P-OP2	-8.87	97.71	105.70
1	А	1940	U	O5'-P-OP2	-8.83	97.75	105.70
1	А	2848	G	O4'-C1'-N9	8.66	115.13	108.20
1	А	1394	U	OP1-P-O3'	8.59	124.09	105.20
1	А	1375	U	C5-C4-O4	8.58	131.05	125.90
1	А	1905	С	O5'-P-OP2	-8.56	98.00	105.70
1	А	2546	U	O3'-P-O5'	-8.52	87.81	104.00
30	i	1487	G	O5'-P-OP2	-8.48	98.07	105.70
1	А	1565	С	O3'-P-O5'	-8.44	87.96	104.00
1	А	1807	G	O5'-P-OP2	-8.43	98.11	105.70
1	A	746	PSU	P-O3'-C3'	8.41	129.80	119.70
1	А	329	G	O5'-P-OP2	-8.28	98.25	105.70
30	i	972	C	O5'-P-OP2	-8.25	98.28	105.70
17	R	80	ARG	NE-CZ-NH2	-8.18	116.21	120.30
1	А	1373	A	O3'-P-O5'	-8.17	88.47	104.00
30	i	22	G	O5'-P-OP2	-8.17	98.35	105.70
30	i	1529	G	O3'-P-O5'	-8.12	88.57	104.00

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	J	1	1

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	423	А	O3'-P-O5'	-8.12	88.58	104.00
1	А	1237	А	O3'-P-O5'	-8.09	88.64	104.00
1	А	940	G	O3'-P-O5'	8.05	119.29	104.00
1	А	575	А	O5'-P-OP2	8.04	120.35	110.70
1	А	2465	С	O5'-P-OP2	-7.98	98.51	105.70
30	i	1491	G	O3'-P-O5'	-7.98	88.83	104.00
1	А	329	G	O3'-P-O5'	-7.97	88.86	104.00
1	А	2268	А	O5'-P-OP2	-7.95	98.55	105.70
1	А	1238	G	O5'-P-OP1	7.86	120.13	110.70
1	А	2071	А	O5'-P-OP2	-7.77	98.71	105.70
1	А	1985	С	O5'-P-OP2	-7.75	98.73	105.70
1	А	2724	U	O5'-P-OP2	-7.72	98.75	105.70
1	А	1639	С	O5'-P-OP1	-7.68	98.79	105.70
30	i	773	G	O5'-P-OP2	-7.65	98.81	105.70
1	А	2452	С	O5'-P-OP2	-7.65	98.81	105.70
3	С	258	ARG	NE-CZ-NH2	-7.65	116.48	120.30
1	А	1025	G	O3'-P-O5'	7.61	118.45	104.00
1	А	1643	G	O3'-P-O5'	-7.57	89.61	104.00
1	А	2463	С	O5'-P-OP2	-7.48	98.97	105.70
1	А	2445	G	C2-N3-C4	7.48	115.64	111.90
1	А	959	А	O5'-P-OP1	-7.47	98.98	105.70
1	А	395	U	O4'-C1'-N1	7.42	114.14	108.20
1	А	1518	С	O3'-P-O5'	-7.42	89.90	104.00
1	А	370	G	O3'-P-O5'	-7.39	89.95	104.00
1	А	205	G	O5'-P-OP1	7.38	119.56	110.70
1	А	2608	G	O5'-P-OP2	-7.37	99.07	105.70
1	А	424	G	O5'-P-OP1	7.32	119.48	110.70
1	А	1905	С	O3'-P-O5'	-7.30	90.12	104.00
1	А	476	G	O5'-P-OP2	-7.30	99.13	105.70
30	i	1517	G	O5'-P-OP2	-7.30	99.13	105.70
30	i	1406	U	O5'-P-OP2	-7.29	99.14	105.70
1	А	2442	С	O5'-P-OP2	-7.25	99.17	105.70
1	А	1847	А	O3'-P-O5'	-7.24	90.25	104.00
1	А	2602	А	O5'-P-OP1	7.23	119.37	110.70
1	А	196	A	05'-P-OP1	-7.21	99.21	105.70
1	А	2048	G	O5'-P-OP2	-7.17	99.24	105.70
_ 1	А	1702	G	O3'-P-O5'	-7.09	90.53	104.00
1	А	1936	А	O4'-C1'-N9	7.03	113.83	108.20
30	i	561	U	O3'-P-O5'	-7.02	90.65	104.00
1	А	204	А	O3'-P-O5'	-6.99	90.72	104.00
1	А	747	U	O3'-P-O5'	-6.99	90.73	104.00
1	А	2353	G	O3'-P-O5'	-6.96	90.77	104.00

Continued from previous page...

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
1	А	958	U	OP1-P-O3'	6.93	120.44	105.20
1	А	2278	А	O3'-P-O5'	-6.90	90.90	104.00
48	5	57	С	C2'-C3'-O3'	6.89	124.72	113.70
2	В	29	А	O5'-P-OP2	-6.89	99.50	105.70
1	А	198	С	O5'-P-OP1	-6.88	99.51	105.70
1	А	704	G	O4'-C1'-N9	6.85	113.68	108.20
1	А	1828	G	C5-C6-O6	-6.83	124.50	128.60
1	А	2006	С	O5'-P-OP2	-6.81	99.57	105.70
30	i	1201	А	P-O3'-C3'	6.79	127.85	119.70
30	i	251	G	O4'-C1'-N9	-6.73	102.82	108.20
1	А	2249	U	OP2-P-O3'	6.72	119.98	105.20
1	А	2578	G	O5'-P-OP1	-6.70	99.67	105.70
2	В	15	А	O4'-C1'-N9	6.70	113.56	108.20
1	А	2824	С	O5'-P-OP2	-6.70	99.67	105.70
1	А	1355	G	C4-C5-N7	-6.68	108.13	110.80
30	i	326	G	C5-C6-O6	-6.67	124.60	128.60
1	А	2524	G	O3'-P-O5'	-6.66	91.36	104.00
1	А	2545	G	O5'-P-OP2	-6.65	99.71	105.70
1	А	745	G	C5-C6-O6	-6.64	124.61	128.60
30	i	292	G	O5'-P-OP2	-6.61	99.75	105.70
1	А	2076	U	O4'-C1'-N1	6.61	113.48	108.20
1	А	1355	G	C5-C6-O6	6.55	132.53	128.60
30	i	352	С	O3'-P-O5'	-6.53	91.60	104.00
30	i	1279	G	O3'-P-O5'	-6.49	91.66	104.00
1	А	974	G	C5-C6-O6	-6.49	124.71	128.60
30	i	586	С	O5'-P-OP2	-6.46	99.88	105.70
1	А	2556	С	O5'-P-OP2	-6.46	99.89	105.70
1	А	1971	U	O3'-P-O5'	-6.45	91.75	104.00
48	6	47	U	P-O3'-C3'	6.44	127.43	119.70
48	6	56	C	C2'-C3'-O3'	6.44	124.00	113.70
1	А	372	G	O5'-P-OP1	-6.43	99.91	105.70
1	А	781	A	O3'-P-O5'	-6.43	91.78	104.00
1	А	831	G	O5'-P-OP1	-6.40	99.94	105.70
1	А	760	G	O5'-P-OP2	-6.38	99.96	105.70
1	А	1252	G	O3'-P-O5'	6.37	116.11	104.00
1	А	2354	C	O3'-P-O5'	-6.36	91.91	104.00
1	А	2391	G	O4'-C1'-N9	6.36	113.29	108.20
1	А	974	G	N1-C6-O6	6.36	123.72	119.90
1	A	2850	A	O5'-P-OP1	6.36	118.33	110.70
1	А	984	A	O4'-C1'-N9	6.35	113.28	108.20
1	A	1913	A	C2'-C3'-O3'	6.32	123.82	113.70
30	i	1494	G	O5'-P-OP1	6.31	118.27	110.70

1

30

1

А

i

А

1452

115

995

 \mathbf{G}

G

С

O3'-P-O5'

C4'-C3'-O3'

O5'-P-OP2

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
48	5	48	U	O3'-P-O5'	-6.28	92.07	104.00
1	А	1355	G	N9-C4-C5	6.28	107.91	105.40
30	i	828	U	O5'-P-OP2	-6.28	100.05	105.70
1	А	2606	С	O5'-P-OP2	-6.27	100.05	105.70
30	i	1497	G	O5'-P-OP2	-6.27	100.06	105.70
30	i	1199	U	O3'-P-O5'	-6.26	92.10	104.00
30	i	1500	А	O5'-P-OP2	-6.25	100.08	105.70
1	А	46	G	O5'-P-OP2	-6.23	100.09	105.70
1	А	2064	С	OP2-P-O3'	6.22	118.89	105.20
1	А	528	А	O5'-P-OP1	6.21	118.16	110.70
1	А	1185	G	O5'-P-OP2	-6.21	100.11	105.70
1	А	667	U	O3'-P-O5'	-6.21	92.20	104.00
1	А	455	С	O5'-P-OP2	-6.20	100.12	105.70
1	А	2715	С	O5'-P-OP2	-6.19	100.13	105.70
1	А	464	U	O5'-P-OP2	-6.18	100.14	105.70
1	А	742	А	OP2-P-O3'	6.18	118.80	105.20
1	А	1969	А	O3'-P-O5'	-6.17	92.28	104.00
1	А	2074	U	O5'-P-OP2	-6.15	100.16	105.70
30	i	1190	G	O3'-P-O5'	-6.14	92.33	104.00
1	А	1913	А	P-O3'-C3'	6.13	127.06	119.70
30	i	986	U	O3'-P-O5'	-6.13	92.36	104.00
1	А	759	G	O5'-P-OP2	-6.13	100.19	105.70
1	А	1355	G	C5-C6-N1	-6.12	108.44	111.50
30	i	297	G	O3'-P-O5'	-6.08	92.45	104.00
1	А	404	А	P-O3'-C3'	6.07	126.99	119.70
1	А	1802	А	O5'-P-OP1	-6.07	100.23	105.70
30	i	124	С	O5'-P-OP2	-6.07	100.23	105.70
1	А	1663	G	O5'-P-OP2	-6.07	100.24	105.70
30	i	809	G	O5'-P-OP2	-6.07	100.24	105.70
1	А	2267	А	O4'-C1'-N9	-6.07	103.35	108.20
1	А	1378	А	O4'-C1'-N9	6.05	113.04	108.20
1	А	2496	С	P-O5'-C5'	-6.05	111.22	120.90
1	А	1975	G	O5'-P-OP2	-6.04	100.26	105.70
1	А	1131	G	O3'-P-O5'	-6.04	92.52	104.00
1	А	1906	G	O3'-P-O5'	-6.03	92.54	104.00
30	i	1530	G	O4'-C1'-N9	6.02	113.01	108.20
1	А	2747	G	O3'-P-O5'	-6.01	92.58	104.00
1	А	310	А	O3'-P-O5'	-6.01	92.58	104.00
1	А	748	G	C1'-O4'-C4'	-6.01	105.09	109.90

Continued from previous page...

Continued on next page...

104.00

113.00

105.70

92.60

125.00

100.32

-6.00

6.00

-5.98

α \cdots 1	e		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	1324	G	O4'-C1'-N9	5.98	112.98	108.20
1	А	857	G	OP2-P-O3'	5.97	118.33	105.20
30	i	115	G	O3'-P-O5'	5.96	115.33	104.00
1	А	1925	С	O3'-P-O5'	-5.93	92.74	104.00
1	А	2389	G	O5'-P-OP2	-5.92	100.37	105.70
1	А	1210	G	C5-N7-C8	-5.91	101.35	104.30
1	А	31	С	O5'-P-OP2	-5.91	100.38	105.70
1	А	1800	С	O5'-P-OP2	-5.90	100.39	105.70
30	i	1405	G	OP2-P-O3'	5.90	118.17	105.20
1	А	370	G	O4'-C1'-N9	-5.89	103.49	108.20
1	А	479	А	C3'-C2'-C1'	-5.88	96.79	101.50
1	А	1358	G	O3'-P-O5'	-5.88	92.83	104.00
2	В	8	С	O3'-P-O5'	-5.88	92.83	104.00
1	А	2033	А	O5'-P-OP1	5.86	117.73	110.70
1	А	1936	А	C1'-O4'-C4'	-5.85	105.22	109.90
1	А	923	G	O5'-P-OP2	-5.84	100.44	105.70
1	А	1948	G	O5'-P-OP2	-5.80	100.48	105.70
1	А	2689	U	C5-C6-N1	-5.80	119.80	122.70
1	А	2026	U	O3'-P-O5'	-5.80	92.98	104.00
1	А	1706	С	O4'-C1'-N1	5.80	112.84	108.20
1	А	2069	G	C5-N7-C8	-5.79	101.41	104.30
1	А	2060	А	O3'-P-O5'	5.78	114.99	104.00
1	А	2445	G	N1-C2-N2	5.78	121.40	116.20
1	А	2873	А	C1'-O4'-C4'	-5.77	105.28	109.90
1	А	784	G	P-O3'-C3'	5.76	126.61	119.70
1	А	1261	С	O5'-P-OP2	-5.76	100.52	105.70
1	А	1265	А	O3'-P-O5'	5.76	114.94	104.00
1	А	2011	U	O5'-P-OP2	-5.75	100.52	105.70
1	А	2409	G	O3'-P-O5'	-5.75	93.07	104.00
1	А	792	А	O5'-P-OP2	-5.74	100.54	105.70
30	i	52	С	OP2-P-O3'	5.73	117.81	105.20
1	А	1138	G	O3'-P-O5'	5.73	114.88	104.00
12	М	16	ARG	NE-CZ-NH2	-5.73	117.44	120.30
1	А	745	G	N3-C2-N2	-5.72	115.89	119.90
1	А	967	U	O3'-P-O5'	-5.72	93.12	104.00
30	i	1228	С	O5'-P-OP2	-5.72	100.55	105.70
_ 1	А	242	G	C3'-C2'-C1'	-5.70	96.94	101.50
37	s	122	ARG	NE-CZ-NH1	5.70	123.15	120.30
1	А	1971	U	O4'-C1'-N1	5.68	112.75	108.20
30	i	816	А	O3'-P-O5'	-5.68	93.22	104.00
1	А	2641	G	C4'-C3'-C2'	-5.67	96.92	102.60
30	i	1362	А	OP2-P-O3'	5.67	117.67	105.20

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	В	15	A	C3'-C2'-C1'	-5.67	96.97	101.50
30	i	1367	С	O3'-P-O5'	-5.66	93.24	104.00
1	А	1896	G	O3'-P-O5'	-5.66	93.25	104.00
1	А	1929	G	O5'-P-OP1	5.65	117.48	110.70
1	А	1025	G	O4'-C1'-N9	-5.65	103.68	108.20
1	А	1983	G	OP2-P-O3'	5.64	117.61	105.20
1	А	2448	А	O5'-P-OP1	-5.64	100.62	105.70
3	С	221	ARG	NE-CZ-NH1	5.59	123.10	120.30
1	А	2249	U	O5'-P-OP2	-5.59	100.67	105.70
1	А	1133	А	C1'-O4'-C4'	-5.59	105.43	109.90
30	i	727	G	O5'-P-OP2	-5.58	100.67	105.70
1	А	72	U	C3'-C2'-C1'	-5.58	97.04	101.50
23	Х	28	ARG	NE-CZ-NH2	-5.57	117.51	120.30
1	А	62	U	O3'-P-O5'	-5.56	93.43	104.00
14	0	102	ARG	NE-CZ-NH2	5.56	123.08	120.30
1	А	371	А	O5'-P-OP2	5.56	117.37	110.70
1	А	595	С	O5'-P-OP2	-5.55	100.70	105.70
1	А	2529	G	O4'-C1'-N9	-5.55	103.76	108.20
30	i	835	U	O3'-P-O5'	-5.55	93.45	104.00
37	s	127	ARG	NE-CZ-NH1	5.55	123.07	120.30
1	А	376	G	O3'-P-O5'	-5.54	93.47	104.00
1	А	2595	G	O5'-P-OP2	-5.54	100.71	105.70
1	А	1939	U	O4'-C1'-N1	5.54	112.63	108.20
1	А	538	А	O5'-P-OP2	-5.53	100.72	105.70
30	i	827	U	O3'-P-O5'	5.53	114.50	104.00
1	А	729	G	C1'-O4'-C4'	-5.52	105.48	109.90
16	Q	58	ARG	NE-CZ-NH1	5.52	123.06	120.30
1	А	2830	С	O5'-P-OP2	-5.51	100.75	105.70
1	А	2296	U	OP1-P-O3'	5.49	117.29	105.20
1	А	1890	А	O5'-P-OP2	-5.49	100.76	105.70
1	А	1142	А	O4'-C1'-N9	5.49	112.59	108.20
1	А	1154	G	O3'-P-O5'	-5.48	93.58	104.00
1	А	1638	С	OP2-P-O3'	5.48	117.25	105.20
30	i	356	А	OP1-P-O3'	5.48	117.25	105.20
1	А	1737	G	O3'-P-O5'	-5.48	93.59	104.00
30	i	536	С	05'-P-OP2	-5.47	100.78	105.70
30	i	116	A	C5-N7-C8	-5.46	101.17	103.90
1	A	529	A	O3'-P-O5'	-5.45	93.64	104.00
1	A	1339	G	05'-P-OP2	-5.45	100.79	105.70
1	A	2073	С	O4'-C1'-N1	5.45	112.56	108.20
1	A	1808	A	04'-C1'-N9	-5.45	103.84	108.20
30	i	652	U	O3'-P-O5'	-5.44	93.67	104.00

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
• • • • • • • • • • • • •	J	<i>r</i> · · · · · · · · · · · · · · · · · · ·	r ~g ~ · · ·

Mol	Chain	Res	Type	Atoms Z		$Observed(^{o})$	$Ideal(^{o})$
1	А	469	G	O3'-P-O5'	-5.43	93.67	104.00
30	i	879	С	OP2-P-O3'	5.43	117.16	105.20
30	i	1092	А	O3'-P-O5'	-5.43	93.67	104.00
1	А	1767	G	OP2-P-O3'	5.43	117.15	105.20
30	i	820	U	O5'-P-OP2	-5.43	100.82	105.70
1	А	2447	G	O5'-P-OP1	-5.42	100.82	105.70
1	А	2030	А	C5-C6-N6	5.41	128.03	123.70
1	А	2879	А	O3'-P-O5'	-5.41	93.72	104.00
1	А	18	U	O5'-P-OP2	-5.40	100.84	105.70
1	А	2356	U	O3'-P-O5'	-5.40	93.73	104.00
1	А	2484	G	C4'-C3'-C2'	-5.40	97.20	102.60
30	i	126	G	O3'-P-O5'	-5.40	93.74	104.00
1	А	513	А	O5'-P-OP2	-5.40	100.84	105.70
1	А	1546	G	OP1-P-O3'	5.39	117.06	105.20
30	i	7	А	C1'-O4'-C4'	-5.39	105.59	109.90
1	А	1024	G	C5-C6-O6	-5.37	125.38	128.60
30	i	263	А	O3'-P-O5'	-5.37	93.81	104.00
1	А	2493	U	O3'-P-O5'	-5.36	93.81	104.00
1	А	2279	G	O3'-P-O5'	-5.36	93.82	104.00
1	А	745	G	C6-N1-C2	-5.36	121.89	125.10
1	А	1502	А	O3'-P-O5'	-5.36	93.83	104.00
1	А	2003	А	O3'-P-O5'	-5.35	93.83	104.00
30	i	1239	А	O3'-P-O5'	-5.35	93.83	104.00
30	i	1237	С	OP1-P-O3'	5.35	116.97	105.20
30	i	354	G	OP2-P-O3'	5.35	116.96	105.20
1	А	2282	G	O4'-C1'-N9	5.33	112.47	108.20
1	А	1135	С	OP1-P-O3'	5.32	116.91	105.20
30	i	352	С	OP2-P-O3'	5.32	116.90	105.20
34	0	2	PRO	CA-N-CD	-5.32	104.05	111.50
1	А	242	G	O3'-P-O5'	-5.32	93.90	104.00
30	i	1331	G	O4'-C1'-N9	5.32	112.45	108.20
1	А	2876	G	O5'-P-OP2	-5.32	100.92	105.70
30	i	691	G	O5'-P-OP2	-5.31	100.92	105.70
30	i	671	G	O5'-P-OP2	-5.31	100.92	105.70
1	А	2519	U	O3'-P-O5'	-5.30	93.93	104.00
2	В	16	G	O3'-P-O5'	-5.30	93.94	104.00
1	А	1130	U	O4'-C1'-N1	5.29	112.43	108.20
30	i	916	U	O5'-P-OP2	-5.28	100.94	105.70
1	А	2285	С	O4'-C1'-N1	5.28	112.43	108.20
30	i	872	А	C1'-O4'-C4'	-5.28	105.68	109.90
1	А	512	G	C1'-O4'-C4'	-5.28	105.68	109.90
1	А	1957	С	OP2-P-O3'	5.27	116.80	105.20

α $\cdot \cdot$ \cdot	e		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	i	355	С	O3'-P-O5'	-5.27	93.98	104.00
30	i	901	А	O3'-P-O5'	-5.27	93.98	104.00
1	А	542	С	O3'-P-O5'	-5.27	93.99	104.00
1	А	2464	G	C2-N3-C4	-5.26	109.27	111.90
1	А	1765	U	OP2-P-O3'	5.26	116.78	105.20
1	А	2871	U	O3'-P-O5'	-5.25	94.02	104.00
1	А	1962	С	N3-C4-N4	-5.25	114.33	118.00
1	А	737	С	O3'-P-O5'	-5.25	94.03	104.00
1	А	2604	U	O4'-C1'-N1	5.24	112.39	108.20
30	i	243	А	OP1-P-O3'	5.24	116.74	105.20
1	А	2286	G	C5-N7-C8	-5.24	101.68	104.30
1	А	1253	А	O4'-C1'-N9	-5.24	104.01	108.20
30	i	362	G	O3'-P-O5'	-5.24	94.05	104.00
1	А	2601	С	O3'-P-O5'	-5.23	94.06	104.00
1	А	690	G	O5'-P-OP2	-5.23	100.99	105.70
1	А	994	С	OP2-P-O3'	5.22	116.70	105.20
1	А	2619	С	OP2-P-O3'	5.22	116.69	105.20
1	А	2453	А	O4'-C1'-N9	5.22	112.38	108.20
48	6	43	U	O4'-C1'-N1	5.21	112.37	108.20
1	А	2146	С	P-O3'-C3'	5.21	125.95	119.70
30	i	522	С	O5'-P-OP1	-5.21	101.01	105.70
3	С	11	PRO	N-CA-C	-5.21	98.56	112.10
1	А	1359	А	O3'-P-O5'	-5.21	94.11	104.00
1	А	1926	U	P-O5'-C5'	-5.21	112.57	120.90
1	А	1962	С	C2-N1-C1'	-5.20	113.08	118.80
1	А	2860	А	O3'-P-O5'	-5.20	94.12	104.00
1	А	942	G	O5'-P-OP2	-5.20	101.02	105.70
1	А	1674	G	C3'-C2'-C1'	5.19	105.65	101.50
1	А	2365	G	O5'-P-OP2	-5.18	101.03	105.70
30	i	690	G	O5'-P-OP2	-5.18	101.03	105.70
49	7	15	G	P-O3'-C3'	5.18	125.92	119.70
1	А	2267	А	OP1-P-O3'	5.18	116.59	105.20
1	А	2732	G	O4'-C1'-N9	5.17	112.34	108.20
1	А	784	G	OP1-P-O3'	5.17	116.58	105.20
1	А	2464	G	N9-C4-C5	-5.17	103.33	105.40
1	А	2495	G	OP2-P-O3'	5.17	116.58	105.20
1	A	199	A	C1'-O4'-C4'	-5.16	105.77	109.90
1	A	1939	U	<u>C1'-O4'-C4'</u>	-5.16	105.77	109.90
1	A	1394	U	O4'-C1'-N1	-5.16	104.07	108.20
1	А	323	С	O4'-C1'-N1	5.16	112.32	108.20
1	А	1827	U	O5'-P-OP2	-5.15	101.06	105.70
1	А	205	G	$\overline{\text{C3'-C2'-C1'}}$	-5.15	97.38	101.50

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	i	977	А	O3'-P-O5'	-5.15	94.22	104.00
1	А	2430	А	C1'-O4'-C4'	-5.15	105.78	109.90
30	i	264	С	OP1-P-O3'	5.14	116.52	105.20
1	А	419	U	O3'-P-O5'	-5.14	94.23	104.00
1	А	1966	А	P-O3'-C3'	-5.14	113.53	119.70
1	А	2610	С	OP1-P-O3'	5.13	116.50	105.20
1	А	2566	А	O4'-C1'-N9	5.13	112.31	108.20
1	А	454	А	O4'-C1'-N9	-5.13	104.10	108.20
1	А	1808	А	O5'-P-OP2	-5.13	101.08	105.70
1	А	329	G	O5'-P-OP1	5.12	116.85	110.70
1	А	800	А	O4'-C1'-N9	-5.12	104.11	108.20
1	А	1947	С	OP2-P-O3'	5.11	116.44	105.20
48	5	3	G	C2'-C3'-O3'	5.11	121.87	113.70
30	i	786	G	O3'-P-O5'	-5.11	94.30	104.00
1	А	824	U	O5'-P-OP2	-5.10	101.11	105.70
1	А	2387	U	O5'-P-OP2	-5.10	101.11	105.70
1	А	84	А	C3'-C2'-C1'	-5.10	97.42	101.50
1	А	1962	С	C5-C4-N4	5.10	123.77	120.20
30	i	110	С	P-O5'-C5'	-5.10	112.74	120.90
30	i	408	А	C3'-C2'-C1'	5.09	105.58	101.50
1	А	202	U	O4'-C1'-N1	5.09	112.27	108.20
1	А	1645	G	OP1-P-O3'	5.09	116.39	105.20
30	i	1359	С	OP2-P-O3'	5.09	116.39	105.20
1	А	555	G	O3'-P-O5'	-5.08	94.34	104.00
30	i	12	U	O3'-P-O5'	-5.08	94.34	104.00
30	i	262	А	O3'-P-O5'	-5.08	94.34	104.00
1	А	84	А	O5'-P-OP2	5.07	116.79	110.70
1	А	1128	G	C1'-O4'-C4'	-5.07	105.84	109.90
1	А	1773	А	O4'-C1'-N9	5.06	112.25	108.20
1	А	2324	U	O3'-P-O5'	5.05	113.60	104.00
1	А	2286	G	C3'-C2'-C1'	5.05	105.54	101.50
1	А	1396	U	OP1-P-O3'	5.05	116.31	105.20
1	А	680	С	C6-N1-C2	-5.04	118.28	120.30
30	i	1429	А	O3'-P-O5'	-5.04	94.42	104.00
1	А	1902	С	O5'-P-OP2	-5.04	101.16	105.70
30	i	1352	С	O3'-P-O5'	-5.04	94.42	104.00
30	i	194	С	O3'-P-O5'	-5.04	94.42	104.00
48	6	46	G	C3'-C2'-C1'	5.04	105.53	101.50
1	А	2497	A	OP1-P-O3'	5.03	116.27	105.20
1	A	198	С	N3-C4-C5	-5.02	119.89	121.90
2	В	43	С	03'-P-O5'	5.02	113.54	104.00
1	А	726	G	O3'-P-O5'	-5.02	94.47	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	i	331	G	OP1-P-O3'	5.02	116.24	105.20
1	А	907	G	O3'-P-O5'	-5.02	94.47	104.00
1	А	125	А	O5'-P-OP2	-5.01	101.19	105.70
30	i	1286	U	O3'-P-O5'	-5.01	94.47	104.00
30	i	322	С	O3'-P-O5'	-5.01	94.47	104.00
30	i	643	C	O3'-P-O5'	-5.01	94.48	104.00
1	А	855	G	O3'-P-O5'	-5.01	94.48	104.00
1	А	1342	А	O5'-P-OP2	-5.01	101.19	105.70
1	А	2366	A	O5'-P-OP2	-5.01	101.19	105.70
1	А	255	А	O4'-C1'-N9	5.01	112.21	108.20
1	А	1297	C	OP2-P-O3'	5.01	116.21	105.20
1	A	254	G	O3'-P-O5'	5.00	113.51	104.00
1	А	2447	G	C3'-C2'-C1'	-5.00	97.50	101.50

There are no chirality outliers.

Mol	Chain	Res	Type	Group
1	А	1025	G	Sidechain
1	А	250	G	Sidechain
1	А	2595	G	Sidechain
1	А	395	U	Sidechain
1	А	463	G	Sidechain
1	А	512	G	Sidechain
3	С	109	GLY	Peptide
3	С	156	ARG	Sidechain
3	С	177	ARG	Sidechain
3	С	221	ARG	Sidechain
3	С	258	ARG	Sidechain
3	С	271	ARG	Sidechain
4	D	128	ARG	Sidechain
4	D	33	ARG	Sidechain
5	Е	88	ARG	Sidechain
9	J	120	ARG	Sidechain
11	L	59	ARG	Sidechain
12	М	16	ARG	Sidechain
12	М	55	ARG	Sidechain
13	N	63	ARG	Sidechain
14	0	9	ARG	Sidechain
15	Р	109	ARG	Sidechain
16	Q	51	ARG	Sidechain
17	R	79	ARG	Sidechain

	J	1	1.5	
Mol	Chain	Res	Type	Group
17	R	80	ARG	Sidechain
22	W	20	ARG	Sidechain
22	W	39	ARG	Sidechain
22	W	55	ARG	Sidechain
22	W	77	ARG	Sidechain
23	Х	16	ASN	Peptide
23	Х	3	ARG	Sidechain
26	a	40	ARG	Sidechain
27	b	50	LYS	Peptide
27	b	6	ARG	Sidechain
29	d	13	ARG	Sidechain
32	m	138	ARG	Sidechain
32	m	93	ARG	Sidechain
33	n	38	ARG	Sidechain
33	n	79	ARG	Sidechain
36	q	123	ARG	Sidechain
36	q	124	ARG	Sidechain
36	q	33	ARG	Sidechain
36	q	45	ARG	Sidechain
36	q	99	ARG	Sidechain
38	t	114	ARG	Sidechain
38	t	36	ARG	Sidechain
38	t	83	ARG	Sidechain
38	t	99	ARG	Sidechain
39	u	101	ARG	Sidechain
39	u	107	ARG	Sidechain
39	u	90	ARG	Sidechain

Continued from previous page...

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	60998	0	30646	50	0
2	В	2529	0	1281	1	0
3	С	2082	0	2153	3	0
4	D	1565	0	1616	9	0
5	Е	1552	0	1619	4	0
6	F	1410	0	1444	2	0

	nueu jion	i previous	puye			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
7	G	1285	0	1341	3	0
8	Н	359	0	381	1	0
9	J	1129	0	1162	4	0
10	K	938	0	1012	5	0
11	L	1045	0	1117	13	0
12	М	1074	0	1157	2	0
13	Ν	945	0	989	1	0
14	0	875	0	906	2	0
15	Р	900	0	945	5	0
16	Q	941	0	1014	3	0
17	R	816	0	839	5	0
18	S	857	0	922	8	0
19	Т	730	0	795	1	0
20	U	779	0	830	2	0
21	V	753	0	780	3	0
22	W	628	0	642	3	0
23	Х	625	0	652	1	0
24	Y	509	0	543	2	0
25	Ζ	435	0	470	1	0
26	a	444	0	458	0	0
27	b	395	0	422	0	0
28	с	377	0	418	0	0
29	d	504	0	572	0	0
30	i	33015	0	16604	0	0
31	j	1679	0	1705	0	0
32	m	1105	0	1148	0	0
33	n	817	0	808	0	0
34	0	1181	0	1238	0	0
35	р	979	0	1031	0	0
36	q	1001	0	1044	0	0
37	S	877	0	887	0	0
38	t	922	0	978	0	0
39	u	867	0	921	0	0
40	V	774	0	824	0	0
41	W	687	0	702	0	0
42	у	648	0	691	0	0
43	Z	455	0	478	0	0
44	1	594	0	610	1	0
45	2	612	0	650	0	0
46	3	346	0	369	3	0
47	4	214	0	111	1	0
48	5	1644	0	832	4	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
48	6	1648	0	831	2	0
49	7	1618	0	823	0	0
50	е	302	0	340	0	0
51	f	46	0	53	0	0
52	6	1	0	0	0	0
52	А	178	0	0	0	0
52	В	5	0	0	0	0
52	С	1	0	0	0	0
52	D	1	0	0	0	0
52	a	1	0	0	0	0
52	i	61	0	0	0	0
53	А	83	0	0	0	0
53	С	3	0	0	0	0
53	Ε	1	0	0	0	0
53	U	1	0	0	0	0
53	i	37	0	0	0	0
53	n	1	0	0	0	0
53	u	1	0	0	0	0
54	5	7	0	7	1	0
55	е	1	0	0	0	0
56	4	3	0	0	0	0
56	5	3	0	0	0	0
56	6	2	0	0	0	0
56	А	1006	0	0	0	0
56	В	10	0	0	0	0
56	С	14	0	0	0	0
56	D	2	0	0	0	0
56	E	3	0	0	0	0
56	L	4	0	0	0	0
56	N	3	0	0	0	0
56	Т	1	0	0	0	0
56	a	4	0	0	0	0
56	d	4	0	0	0	0
56	f	3	0	0	0	0
56	i	176	0	0	0	0
56	s	1	0	0	0	0
All	All	141132	0	90811	119	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All (119) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash	
		distance $(Å)$	overlap (Å)	
46:3:37:PHE:O	46:3:41:PRO:HD2	1.76	0.84	
48:5:8:U:H5	48:5:14:A:N7	1.86	0.73	
18:S:59:GLU:HB3	18:S:66:ILE:HD11	1.78	0.65	
1:A:1824:G:O2'	3:C:252:THR:HG21	1.97	0.64	
54:5:101:PRO:N	48:6:76:A:HO2'	1.97	0.62	
20:U:72:ILE:HD12	20:U:96:PHE:CE1	2.37	0.60	
48:5:8:U:O5'	48:5:8:U:O2	2.20	0.59	
11:L:77:ILE:HD13	11:L:108:ALA:HB1	1.85	0.58	
5:E:4:VAL:HA	5:E:11:ALA:HA	1.86	0.58	
16:Q:88:VAL:HG13	17:R:48:LYS:HE2	1.86	0.57	
1:A:636:G:C6	11:L:111:ILE:HD11	2.40	0.56	
1:A:2324:U:H3'	1:A:2325:G:H5"	1.86	0.56	
1:A:1266:G:H5"	18:S:15:GLN:HE22	1.71	0.56	
1:A:1993:U:H4'	4:D:133:THR:HG22	1.88	0.55	
1:A:2032:G:O2'	4:D:150:GLN:NE2	2.39	0.55	
21:V:6:ALA:HB1	21:V:40:ILE:HG23	1.88	0.54	
18:S:72:THR:HG21	18:S:108:SER:HB3	1.89	0.54	
3:C:29:PRO:HG2	3:C:34:LEU:HD11	1.89	0.54	
20:U:7:ARG:O	20:U:25:VAL:O	2.26	0.54	
44:1:31:LEU:HB2	44:1:49:ILE:HG22	1.89	0.53	
8:H:5:LEU:HD11	8:H:12:LEU:HD23	1.90	0.53	
1:A:811:U:H2'	11:L:21:ARG:HA	1.92	0.51	
3:C:107:PRO:HD2	3:C:110:LEU:HD22	1.92	0.51	
4:D:156:PHE:CE1	9:J:81:ILE:HD13	2.45	0.51	
46:3:37:PHE:O	46:3:41:PRO:CD	2.52	0.51	
1:A:1932:A:H2'	1:A:1933:G:O4'	2.11	0.51	
17:R:51:VAL:HB	17:R:52:PRO:HD2	1.92	0.50	
6:F:25:VAL:O	6:F:28:VAL:HG12	2.12	0.50	
11:L:85:VAL:HB	11:L:94:THR:HG22	1.93	0.50	
18:S:59:GLU:HA	18:S:64:ALA:HA	1.94	0.50	
9:J:110:PRO:O	9:J:115:GLY:HA3	2.12	0.49	
5:E:149:ILE:HG22	5:E:192:ALA:HB1	1.94	0.48	
15:P:43:PHE:CE1	15:P:63:LYS:HE2	2.47	0.48	
1:A:2273:A:H2'	1:A:2274:A:C8	2.46	0.48	
11:L:77:ILE:CD1	11:L:108:ALA:HB1	2.42	0.48	
11:L:95:LEU:HD11	11:L:125:LEU:HD21	1.95	0.48	
1:A:954:G:OP2	12:M:16:ARG:NH2	2.38	0.48	
17:R:48:LYS:HE3	17:R:49:ILE:O	2.14	0.47	
18:S:55:ILE:HG23	18:S:66:ILE:HD12	1.96	0.47	
5:E:5:LEU:HD23	5:E:120:VAL:HG12	1.96	0.47	
4:D:4:LEU:HD22	4:D:32:ASN:HB2	1.97	0.47	
11:L:110:VAL:O	11:L:111:ILE:O	2.33	0.47	

		Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
9:J:125:TYR:OH	9:J:132:HIS:NE2	2.44	0.47	
1:A:1296:G:OP1	1:A:2709:G:O2'	2.26	0.47	
11:L:77:ILE:HD11	11:L:101:ILE:HG21	1.97	0.47	
4:D:35:THR:HG22	4:D:73:VAL:HG21	1.96	0.46	
7:G:164:TYR:HB2	7:G:167:GLU:HG3	1.97	0.46	
48:5:8:U:C5	48:5:14:A:N7	2.75	0.46	
11:L:70:LYS:O	11:L:74:THR:HG23	2.15	0.46	
1:A:1853:A:N1	1:A:2087:G:H1'	2.30	0.46	
1:A:2395:C:H2'	1:A:2396:G:O4'	2.16	0.46	
11:L:77:ILE:N	11:L:77:ILE:HD12	2.30	0.46	
1:A:494:G:H4'	18:S:6:LYS:HB2	1.98	0.46	
1:A:1980:G:O2'	1:A:1982:U:OP2	2.33	0.46	
13:N:79:LEU:O	13:N:80:PHE:HB2	2.16	0.46	
1:A:493:G:H2'	1:A:494:G:O4'	2.16	0.46	
21:V:4:ILE:CG2	21:V:42:LEU:HD22	2.46	0.46	
1:A:1434:A:H2'	1:A:1435:G:C8	2.50	0.45	
1:A:2532:G:O2'	1:A:2657:A:N1	2.49	0.45	
7:G:24:ILE:HD11	7:G:43:VAL:HG11	1.97	0.45	
10:K:91:SER:O	10:K:93:GLN:N	2.49	0.45	
1:A:1378:A:O2'	1:A:1380:G:N7	2.50	0.45	
5:E:189:THR:O	5:E:192:ALA:HB3	2.16	0.44	
1:A:1434:A:H2'	1:A:1435:G:H8	1.81	0.44	
1:A:118:A:N3	1:A:178:G:H1'	2.33	0.44	
1:A:788:A:OP1	1:A:790:U:H5	2.01	0.44	
1:A:1007:C:OP1	9:J:39:LYS:HD2	2.18	0.44	
19:T:8:LEU:HD11	24:Y:22:LEU:HB2	2.00	0.44	
1:A:476:G:H4'	1:A:502:A:N1	2.33	0.44	
11:L:74:THR:HG22	11:L:107:PHE:HB2	1.99	0.44	
1:A:636:G:C5	11:L:111:ILE:HD11	2.53	0.43	
14:O:34:HIS:HA	14:O:53:THR:OG1	2.17	0.43	
10:K:76:VAL:HG12	15:P:73:VAL:HB	2.00	0.43	
1:A:1182:G:H2'	1:A:1183:U:O4'	2.19	0.43	
1:A:2356:U:H4'	22:W:20:ARG:HG3	2.01	0.43	
1:A:1721:G:N2	1:A:1738:G:O2'	2.52	0.43	
25:Z:24:LEU:HD11	25:Z:54:MET:CE	2.49	0.43	
16:Q:76:TYR:CZ	16:Q:80:ILE:HG13	2.54	0.43	
1:A:411:G:P	1:A:2407:A:OP2	2.77	0.42	
1:A:207:A:H2'	1:A:208:C:O4'	2.19	0.42	
24:Y:7:ARG:O	24:Y:8:GLU:C	2.58	0.42	
4:D:12:THR:CG2	15:P:5:ILE:HG23	2.49	0.42	
1:A:644:A:H2'	1:A:645:C:O4'	2.19	0.42	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:1664:A:N3	10:K:67:LYS:NZ	2.68	0.42
1:A:1340:U:C5	1:A:1603:A:C8	3.07	0.42
18:S:20:VAL:HG11	18:S:44:ALA:HA	2.01	0.42
1:A:639:U:H2'	1:A:640:C:C6	2.55	0.42
1:A:2019:A:H4'	16:Q:34:VAL:HG21	2.02	0.42
1:A:2038:G:H2'	1:A:2039:U:O4'	2.20	0.42
1:A:1141:U:H4'	1:A:1142:A:O4'	2.20	0.41
6:F:57:LEU:HD23	6:F:57:LEU:HA	1.94	0.41
10:K:63:VAL:HG12	10:K:107:LEU:HD11	2.01	0.41
46:3:16:LEU:H	46:3:16:LEU:HG	1.51	0.41
1:A:2063:C:O2	1:A:2450:A:N1	2.53	0.41
1:A:1020:A:N1	1:A:1141:U:O2'	2.43	0.41
1:A:1614:A:C2	18:S:93:ALA:HB2	2.55	0.41
7:G:121:ILE:HD12	7:G:141:ILE:CG2	2.50	0.41
10:K:41:ILE:HD11	10:K:86:LEU:HD22	2.02	0.41
1:A:861:A:H2'	1:A:862:G:O4'	2.20	0.41
17:R:5:PHE:HB3	17:R:59:ILE:HD12	2.01	0.41
1:A:1320:C:N3	1:A:1331:G:O6	2.54	0.41
1:A:1993:U:H4'	4:D:133:THR:CG2	2.50	0.41
15:P:106:LYS:O	15:P:109:ARG:HG2	2.21	0.41
23:X:7:VAL:HG23	23:X:51:VAL:HG12	2.02	0.41
1:A:1913:A:C6	48:5:39:A:H5'	2.56	0.41
4:D:5:VAL:HB	4:D:32:ASN:HD21	1.85	0.41
22:W:37:ILE:HG21	22:W:80:ILE:HG21	2.02	0.41
1:A:12:U:O2	1:A:12:U:H2'	2.21	0.41
4:D:5:VAL:H	4:D:32:ASN:ND2	2.18	0.41
17:R:14:VAL:HG21	17:R:20:VAL:HG21	2.03	0.41
47:4:18:G:H1	48:6:34:U:H3	1.69	0.41
1:A:2295:C:OP2	14:O:9:ARG:NH2	2.55	0.40
11:L:59:ARG:HG2	11:L:59:ARG:HH11	1.87	0.40
1:A:1794:A:H2'	1:A:1795:C:C6	2.57	0.40
1:A:1754:A:C8	15:P:94:LYS:CE	3.04	0.40
2:B:76:G:OP1	21:V:9:ARG:NH1	2.47	0.40
12:M:66:ARG:NH1	12:M:104:GLU:OE2	2.52	0.40
1:A:2271:G:H5'	22:W:20:ARG:HD2	2.03	0.40
1:A:2469:A:H2'	1:A:2470:G:O4'	2.21	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	С	269/273~(98%)	256~(95%)	13~(5%)	0	100	100
4	D	207/209~(99%)	200 (97%)	7 (3%)	0	100	100
5	Е	199/201~(99%)	188 (94%)	10 (5%)	1 (0%)	29	31
6	F	175/179~(98%)	165 (94%)	10 (6%)	0	100	100
7	G	167/177~(94%)	158 (95%)	9(5%)	0	100	100
8	Н	45/149~(30%)	42 (93%)	2 (4%)	1 (2%)	6	4
9	J	140/142~(99%)	138 (99%)	2 (1%)	0	100	100
10	K	120/123~(98%)	115 (96%)	5 (4%)	0	100	100
11	L	141/144 (98%)	133 (94%)	7 (5%)	1 (1%)	22	22
12	М	134/136~(98%)	128 (96%)	6 (4%)	0	100	100
13	N	116/127~(91%)	109 (94%)	7 (6%)	0	100	100
14	Ο	112/117~(96%)	107 (96%)	5 (4%)	0	100	100
15	Р	110/115~(96%)	107 (97%)	3 (3%)	0	100	100
16	Q	114/118~(97%)	112 (98%)	2 (2%)	0	100	100
17	R	101/103~(98%)	93 (92%)	8 (8%)	0	100	100
18	S	108/110 (98%)	104 (96%)	4 (4%)	0	100	100
19	Т	90/100 (90%)	88 (98%)	2 (2%)	0	100	100
20	U	100/104~(96%)	94 (94%)	6 (6%)	0	100	100
21	V	92/94~(98%)	91 (99%)	1 (1%)	0	100	100
22	W	82/85~(96%)	80 (98%)	2 (2%)	0	100	100
23	Х	75/78~(96%)	74 (99%)	1 (1%)	0	100	100
24	Y	61/63~(97%)	55 (90%)	6 (10%)	0	100	100
25	Z	54/59~(92%)	52 (96%)	2(4%)	0	100	100
26	a	54/57~(95%)	51 (94%)	3 (6%)	0	100	100
27	b	46/55~(84%)	46 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
28	с	44/46~(96%)	43 (98%)	1 (2%)	0	100	100
29	d	62/65~(95%)	60 (97%)	2(3%)	0	100	100
31	j	213/241 (88%)	187 (88%)	25 (12%)	1 (0%)	29	31
32	m	148/167~(89%)	139 (94%)	9 (6%)	0	100	100
33	n	98/135~(73%)	88 (90%)	10 (10%)	0	100	100
34	О	149/179~(83%)	136 (91%)	13 (9%)	0	100	100
35	р	127/130~(98%)	121 (95%)	6 (5%)	0	100	100
36	q	123/130~(95%)	105 (85%)	16 (13%)	2 (2%)	9	7
37	s	115/129 (89%)	106 (92%)	8 (7%)	1 (1%)	17	16
38	t	117/124 (94%)	103 (88%)	13 (11%)	1 (1%)	17	16
39	u	110/118 (93%)	100 (91%)	10 (9%)	0	100	100
40	v	92/101~(91%)	87 (95%)	3 (3%)	2 (2%)	6	4
41	w	84/89~(94%)	82 (98%)	2 (2%)	0	100	100
42	У	78/84~(93%)	68 (87%)	10 (13%)	0	100	100
43	Z	53/75~(71%)	52 (98%)	1 (2%)	0	100	100
44	1	72/92~(78%)	71 (99%)	1 (1%)	0	100	100
45	2	74/87~(85%)	71 (96%)	3 (4%)	0	100	100
46	3	40/71~(56%)	39~(98%)	1 (2%)	0	100	100
50	е	36/38~(95%)	33 (92%)	2 (6%)	1 (3%)	5	2
51	f	4/6~(67%)	3 (75%)	1 (25%)	0	100	100
All	All	4751/5225 (91%)	4480 (94%)	260 (6%)	11 (0%)	50	55

All (11) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
5	Ε	190	ALA
11	L	111	ILE
37	s	119	ASN
40	V	23	LYS
36	q	51	PRO
36	q	91	ASP
50	е	37	GLN
8	Н	15	LEU
31	j	123	ASP
38	t	17	ALA

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
40	V	32	SER

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
3	С	216/218~(99%)	215 (100%)	1 (0%)	88	94
4	D	164/164~(100%)	164 (100%)	0	100	100
5	Е	165/165~(100%)	164 (99%)	1 (1%)	86	93
6	F	148/150 (99%)	147 (99%)	1 (1%)	84	91
7	G	133/138~(96%)	132 (99%)	1 (1%)	81	90
8	Н	38/114~(33%)	37~(97%)	1 (3%)	46	58
9	J	116/116~(100%)	115 (99%)	1 (1%)	78	88
10	K	103/104 (99%)	102 (99%)	1 (1%)	76	86
11	L	102/103~(99%)	102 (100%)	0	100	100
12	М	109/109~(100%)	107 (98%)	2(2%)	59	72
13	Ν	98/103~(95%)	98 (100%)	0	100	100
14	Ο	84/87~(97%)	83 (99%)	1 (1%)	71	83
15	Р	97/100~(97%)	96 (99%)	1 (1%)	76	86
16	Q	89/90~(99%)	89 (100%)	0	100	100
17	R	84/84 (100%)	83 (99%)	1 (1%)	71	83
18	S	93/93~(100%)	91~(98%)	2(2%)	52	65
19	Т	79/84~(94%)	79 (100%)	0	100	100
20	U	83/85~(98%)	83 (100%)	0	100	100
21	V	78/78~(100%)	78 (100%)	0	100	100
22	W	61/63~(97%)	61 (100%)	0	100	100
23	X	$\overline{67/68}\ (98\%)$	67 (100%)	0	100	100
24	Y	55/55~(100%)	55 (100%)	0	100	100
25	Z	47/49~(96%)	47 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
26	a	47/48~(98%)	47 (100%)	0	100	100
27	b	44/49~(90%)	42 (96%)	2(4%)	27	34
28	с	38/38~(100%)	38 (100%)	0	100	100
29	d	51/52~(98%)	50~(98%)	1 (2%)	55	69
31	j	177/199~(89%)	172~(97%)	5(3%)	43	56
32	m	113/126~(90%)	112 (99%)	1 (1%)	78	88
33	n	87/116~(75%)	86~(99%)	1 (1%)	73	85
34	О	124/147~(84%)	122 (98%)	2(2%)	62	76
35	р	104/105~(99%)	102~(98%)	2(2%)	57	71
36	q	103/107~(96%)	97~(94%)	6 (6%)	20	23
37	S	90/99~(91%)	88 (98%)	2 (2%)	52	65
38	t	100/104 (96%)	95~(95%)	5 (5%)	24	30
39	u	90/96~(94%)	88 (98%)	2 (2%)	52	65
40	V	79/84~(94%)	75~(95%)	4 (5%)	24	29
41	W	73/77~(95%)	73 (100%)	0	100	100
42	У	74/78~(95%)	73~(99%)	1 (1%)	67	80
43	Z	48/65~(74%)	47 (98%)	1 (2%)	53	67
44	1	65/79~(82%)	65 (100%)	0	100	100
45	2	60/66~(91%)	59~(98%)	1 (2%)	60	74
46	3	35/61~(57%)	31~(89%)	4 (11%)	5	5
50	е	$\overline{34/34}~(100\%)$	34 (100%)	0	100	100
51	f	5/5~(100%)	5 (100%)	0	100	100
All	All	3950/4255~(93%)	3896 (99%)	54 (1%)	68	80

All (54) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
3	С	43	ARG
5	Е	5	LEU
6	F	83	TYR
7	G	168	VAL
8	Н	5	LEU
9	J	96	ARG
10	Κ	98	ARG

Mol	Chain	Res	Type
12	М	59	ARG
12	М	84	LYS
14	0	25	ARG
15	Р	53	ARG
17	R	71	LYS
18	S	29	VAL
18	S	69	LEU
27	b	10	LYS
27	b	28	ARG
29	d	31	HIS
31	j	23	TRP
31	j	40	ILE
31	j	43	LEU
31	j	50	PHE
31	j	151	ILE
32	m	52	LYS
33	n	1	MET
34	0	5	ARG
34	0	131	LYS
35	р	51	VAL
35	р	67	GLN
36	q	30	ILE
36	q	46	MET
36	q	48	VAL
36	q	52	LEU
36	q	98	LEU
36	q	106	ARG
37	S	119	ASN
37	S	126	LYS
38	t	16	VAL
38	t	18	LYS
38	t	36	ARG
38	t	75	GLN
38	t	80	ILE
39	u	63	PHE
39	u	107	ARG
40	v	10	GLU
40	v	24	ARG
40	v	33	ASP
40	v	42	TRP
42	У	4	LYS
43	Z	66	SER

Continued from previous page...

Mol	Chain	Res	Type
45	2	54	MET
46	3	16	LEU
46	3	17	ARG
46	3	25	LYS
46	3	47	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (33) such sidechains are listed below:

Mol	Chain	Res	Type
3	С	226	ASN
4	D	32	ASN
4	D	150	GLN
5	Е	94	GLN
5	Е	163	ASN
7	G	143	GLN
10	K	3	GLN
13	N	62	ASN
14	0	38	GLN
18	S	15	GLN
19	Т	15	HIS
20	U	66	GLN
21	V	49	ASN
23	Х	16	ASN
23	Х	17	ASN
24	Y	15	ASN
26	a	5	GLN
28	с	13	ASN
31	j	19	GLN
31	j	89	GLN
31	j	103	ASN
31	j	146	ASN
32	m	12	GLN
32	m	89	HIS
34	0	28	ASN
34	0	148	ASN
38	t	5	ASN
38	t	75	GLN
40	V	43	ASN
41	W	37	ASN
45	2	48	GLN
45	2	52	ASN
50	е	35	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	2837/2903~(97%)	345~(12%)	55~(1%)
2	В	117/120~(97%)	13~(11%)	1 (0%)
30	i	1538/1540~(99%)	280~(18%)	0
47	4	9/10~(90%)	0	0
48	5	76/77~(98%)	15~(19%)	4(5%)
48	6	76/77~(98%)	11 (14%)	4(5%)
49	7	75/76~(98%)	28~(37%)	3(4%)
All	All	4728/4803~(98%)	692~(14%)	67 (1%)

All (692) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	А	10	А
1	А	12	U
1	А	34	U
1	А	46	G
1	А	61	С
1	А	71	А
1	А	74	А
1	А	75	G
1	А	84	А
1	А	96	С
1	А	101	А
1	А	103	А
1	А	118	А
1	А	119	А
1	А	120	U
1	А	138	U
1	А	139	U
1	А	163	С
1	А	165	А
1	А	181	А
1	А	196	А
1	А	199	А
1	А	200	U
1	А	215	G
1	А	216	А
1	А	221	А
1	А	222	А
1	А	233	А
1	А	248	G

1 A 255 A 1 A 266 G 1 A 271 G 1 A 276 U 1 A 281 C 1 A 285 G 1 A 311 A 1 A 329 G 1 A 330 A 1 A 361 G 1 A 367 G 1 A 367 G 1 A 367 G 1 A 372 G 1 A 386 G 1 A 403 U 1 A 403 U 1 A 403 U 1 A 403 U 1 A 405 U 1 A 405 U 1 A 410 G 1 A 424 G </th <th>Mol</th> <th>Chain</th> <th>Res</th> <th>Type</th>	Mol	Chain	Res	Type
1 A 266 G 1 A 271 G 1 A 276 U 1 A 281 C 1 A 285 G 1 A 311 A 1 A 329 G 1 A 329 G 1 A 330 A 1 A 361 G 1 A 367 G 1 A 367 G 1 A 372 G 1 A 372 G 1 A 403 U 1 A 405 U 1 A 411 G 1 A 420 C 1 A 503 A </td <td>1</td> <td>А</td> <td>255</td> <td>А</td>	1	А	255	А
1 A 271 G 1 A 281 C 1 A 285 G 1 A 311 A 1 A 329 G 1 A 329 G 1 A 330 A 1 A 353 C 1 A 361 G 1 A 367 G 1 A 372 G 1 A 372 G 1 A 386 G 1 A 403 U 1 A 405 U 1 A 420 C 1 A 456 C 1 A 503 A </td <td>1</td> <td>А</td> <td>266</td> <td>G</td>	1	А	266	G
1 A 276 U 1 A 281 C 1 A 285 G 1 A 311 A 1 A 329 G 1 A 329 G 1 A 353 C 1 A 361 G 1 A 367 G 1 A 367 G 1 A 371 A 1 A 372 G 1 A 386 G 1 A 403 U 1 A 403 U 1 A 405 U 1 A 403 U 1 A 403 U 1 A 403 U 1 A 405 U 1 A 405 U 1 A 420 C 1 A 503 A </td <td>1</td> <td>А</td> <td>271</td> <td>G</td>	1	А	271	G
1 A 281 C 1 A 285 G 1 A 311 A 1 A 329 G 1 A 330 A 1 A 353 C 1 A 361 G 1 A 367 G 1 A 372 G 1 A 372 G 1 A 372 G 1 A 386 G 1 A 403 U 1 A 403 U 1 A 405 U 1 A 405 U 1 A 405 U 1 A 411 G 1 A 420 C 1 A 424 G 1 A 456 C 1 A 503 A 1 A 503 A </td <td>1</td> <td>А</td> <td>276</td> <td>U</td>	1	А	276	U
1 A 285 G 1 A 311 A 1 A 329 G 1 A 330 A 1 A 353 C 1 A 361 G 1 A 367 G 1 A 371 A 1 A 372 G 1 A 372 G 1 A 372 G 1 A 403 U 1 A 403 U 1 A 405 U 1 A 405 U 1 A 412 A 1 A 420 C 1 A 424 G 1 A 451 U 1 A 456 C 1 A 503 A 1 A 504 A 1 A 505 A </td <td>1</td> <td>А</td> <td>281</td> <td>С</td>	1	А	281	С
1 A 311 A 1 A 329 G 1 A 330 A 1 A 353 C 1 A 361 G 1 A 367 G 1 A 371 A 1 A 372 G 1 A 372 G 1 A 372 G 1 A 386 G 1 A 403 U 1 A 405 U 1 A 405 U 1 A 412 A 1 A 420 C 1 A 421 G 1 A 456 C 1 A 456 C 1 A 503 A 1 A 504 A 1 A 505 A 1 A 530 G </td <td>1</td> <td>А</td> <td>285</td> <td>G</td>	1	А	285	G
1A 329 G1A 330 A1A 353 C1A 361 G1A 367 G1A 371 A1A 372 G1A 372 G1A 386 G1A 403 U1A 403 U1A 403 U1A 405 U1A 412 A1A 412 A1A 420 C1A 424 G1A 456 C1A 456 C1A 456 C1A 503 A1A 503 A1A 503 A1A 504 A1A 505 A1A 509 C1A 533 G1A 533 G1A 533 G1A 546 U1A 548 G1A 549 G1A 549 G1A 575 A	1	А	311	А
1A330A1A353C1A361G1A367G1A371A1A372G1A386G1A403U1A405U1A405U1A411G1A420C1A424G1A456C1A456C1A491G1A503A1A504A1A505A1A509C1A530G1A533G1A533G1A544C1A547A1A548G1A549G1A550C1A563A1A563A1A575A	1	А	329	G
1A 353 C1A 361 G1A 367 G1A 371 A1A 372 G1A 386 G1A 403 U1A 403 U1A 405 U1A 411 G1A 412 A1A 420 C1A 424 G1A 456 C1A 456 C1A 456 C1A 503 A1A 503 A1A 505 A1A 509 C1A 530 G1A 533 G1A 533 G1A 546 U1A 546 U1A 547 A1A 548 G1A 549 G1A 549 G1A 563 A1A 563 A1A 575 A	1	А	330	А
1A 361 G1A 371 A1A 371 A1A 372 G1A 386 G1A 403 U1A 405 U1A 405 U1A 411 G1A 412 A1A 420 C1A 420 C1A 424 G1A 456 C1A 456 C1A 456 C1A 503 A1A 503 A1A 503 A1A 509 C1A 530 G1A 533 G1A 533 G1A 546 U1A 546 U1A 548 G1A 549 G1A 549 G1A 563 A1A 563 A1A 575 A	1	А	353	C
1A 367 G1A 371 A1A 372 G1A 386 G1A 403 U1A 403 U1A 405 U1A 411 G1A 412 A1A 420 C1A 424 G1A 456 C1A 456 C1A 456 C1A 491 G1A 503 A1A 504 A1A 505 A1A 509 C1A 530 G1A 533 G1A 533 G1A 546 U1A 546 U1A 547 A1A 549 G1A 563 A1A 563 A1A 575 A	1	А	361	G
1 A 371 A 1 A 372 G 1 A 386 G 1 A 403 U 1 A 403 U 1 A 405 U 1 A 411 G 1 A 412 A 1 A 420 C 1 A 424 G 1 A 451 U 1 A 456 C 1 A 456 C 1 A 456 C 1 A 503 A 1 A 503 A 1 A 509 C 1 A 530 G 1 A 533 G 1 A 533 G 1 A 546 U 1 A 547 A 1	1	А	367	G
1 A 372 G 1 A 386 G 1 A 403 U 1 A 405 U 1 A 411 G 1 A 412 A 1 A 412 A 1 A 420 C 1 A 424 G 1 A 456 C 1 A 456 C 1 A 456 C 1 A 456 C 1 A 503 A 1 A 503 A 1 A 503 A 1 A 505 A 1 A 509 C 1 A 530 G 1 A 533 G 1 A 533 G 1 A 546 U 1	1	A	371	A
1A386G1A403U1A405U1A411G1A412A1A420C1A424G1A451U1A456C1A481G1A491G1A503A1A504A1A505A1A509C1A530G1A533G1A533G1A544C1A547A1A548G1A549G1A550C1A563A1A575A	1	A	372	G
1A403U1A405U1A411G1A412A1A420C1A424G1A451U1A456C1A481G1A491G1A503A1A504A1A505A1A509C1A530G1A533G1A533G1A544C1A547A1A549G1A549G1A550C1A563A1A573U1A575A	1	А	386	G
1 A 405 U 1 A 411 G 1 A 412 A 1 A 420 C 1 A 424 G 1 A 424 G 1 A 456 C 1 A 503 A 1 A 503 A 1 A 504 A 1 A 505 A 1 A 509 C 1 A 530 G 1 A 533 G 1 A 533 G 1 A 546 U 1 A 547 A 1 A 548 G 1 A 549 G </td <td>1</td> <td>A</td> <td>403</td> <td>U</td>	1	A	403	U
1A411G1A412A1A420C1A424G1A451U1A456C1A481G1A491G1A503A1A505A1A509C1A530G1A533G1A533G1A533G1A544C1A547A1A548G1A549G1A550C1A563A1A573U1A575A	1	А	405	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	411	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	412	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	420	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	424	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	451	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	456	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	481	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	491	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	503	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	504	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	505	A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	А	509	С
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	А	530	G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	A	531	С
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	А	532	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	533	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	544	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	546	U
1 A 548 G 1 A 549 G 1 A 550 C 1 A 563 A 1 A 573 U 1 A 575 A	1	A	547	A
1 A 549 G 1 A 550 C 1 A 563 A 1 A 573 U 1 A 575 A	1	А	548	G
1 A 550 C 1 A 563 A 1 A 573 U 1 A 575 A	1	A	549	G
1 A 563 A 1 A 573 U 1 A 575 A	1	A	550	С
1 A 573 U 1 A 575 A	1	A	563	A
1 A 575 A	1	А	573	U
	1	А	575	A

Mol	Chain	Res	Type
1	А	586	А
1	А	603	А
1	А	614	А
1	А	627	А
1	А	637	А
1	А	645	С
1	А	647	G
1	А	654	А
1	А	655	А
1	А	686	U
1	А	717	С
1	А	730	А
1	А	747	U
1	A	764	A
1	А	765	С
1	A	775	G
1	А	776	G
1	А	782	А
1	А	784	G
1	А	785	G
1	А	792	А
1	А	805	G
1	А	812	С
1	А	819	А
1	А	827	U
1	А	828	U
1	А	845	А
1	А	846	U
1	А	858	G
1	А	877	А
1	A	878	A
1	А	882	G
1	A	884	U
1	А	885	С
1	A	896	A
1	A	897	С
1	A	910	A
1	A	914	G
1	A	915	С
1	A	931	U
1	А	934	U
1	A	941	А

Mol	Chain	Res	Type
1	А	946	С
1	А	961	С
1	А	968	С
1	А	974	G
1	А	983	А
1	А	984	А
1	А	985	С
1	А	995	С
1	А	996	А
1	А	1012	U
1	А	1013	С
1	А	1022	G
1	А	1026	G
1	A	1033	U
1	A	1040	A
1	A	1046	A
1	А	1047	G
1	А	1109	С
1	А	1110	G
1	A	1112	G
1	А	1128	G
1	А	1129	A
1	A	1132	U
1	A	1133	A
1	A	1135	С
1	A	1136	G
1	A	1139	G
1	A	1142	A
1	А	1173	U
1	A	1174	U
1	А	1175	A
1	A	1176	U
1	A	1177	G
1	A	1178	C
1	A	1187	G
1	A	1238	G
1	A	1253	A
1	A	1256	G
1	A	1266	G
1	A	1271	G
1	А	1272	A
1	A	1273	U

Mol	Chain	Res	Type
1	А	1301	А
1	А	1352	U
1	А	1365	А
1	А	1379	U
1	А	1383	А
1	А	1395	А
1	А	1416	G
1	А	1428	С
1	А	1452	G
1	А	1453	А
1	А	1460	U
1	А	1482	G
1	А	1493	C
1	А	1504	A
1	A	1508	A
1	А	1509	А
1	А	1510	G
1	А	1515	А
1	А	1531	С
1	А	1533	С
1	А	1534	U
1	А	1535	А
1	А	1536	С
1	А	1537	G
1	А	1538	G
1	А	1569	А
1	А	1578	U
1	А	1583	А
1	А	1584	U
1	А	1585	С
1	А	1608	А
1	A	1609	A
1	А	1647	U
1	A	1648	U
1	А	1649	G
1	A	1674	G
1	А	1715	G
1	А	1729	U
1	A	1730	С
1	А	1732	С
1	A	1738	G
1	А	1739	А

Mol	Chain	Res	Type
1	А	1764	С
1	А	1773	А
1	А	1782	U
1	А	1800	С
1	А	1801	A
1	А	1807	G
1	А	1808	A
1	А	1811	G
1	А	1816	С
1	А	1829	A
1	А	1848	А
1	А	1870	С
1	А	1871	А
1	А	1873	G
1	A	1906	G
1	А	1914	С
1	А	1926	U
1	А	1929	G
1	А	1930	G
1	А	1937	A
1	А	1938	А
1	А	1955	U
1	А	1965	С
1	А	1967	С
1	А	1970	А
1	А	1971	U
1	А	1972	G
1	А	1982	U
1	А	1991	U
1	А	1993	U
1	A	1997	С
1	A	2022	U
1	А	2023	С
1	A	2031	A
1	А	2033	А
1	A	2043	С
1	A	2055	С
1	А	2056	G
1	A	2060	A
1	А	2061	G
1	A	2069	G
1	А	2098	U

Mol	Chain	Res	Type
1	А	2102	G
1	А	2109	U
1	А	2110	G
1	А	2111	U
1	А	2112	G
1	А	2113	U
1	А	2115	G
1	А	2118	U
1	А	2119	А
1	А	2120	G
1	А	2125	G
1	А	2126	А
1	А	2127	G
1	A	2128	G
1	А	2130	U
1	A	2131	U
1	А	2132	U
1	А	2133	G
1	А	2136	G
1	А	2137	U
1	А	2143	С
1	А	2146	С
1	А	2147	А
1	А	2148	G
1	А	2152	G
1	А	2157	G
1	А	2158	А
1	А	2159	G
1	А	2160	С
1	А	2163	А
1	A	2164	C
1	A	2165	С
1	A	2168	G
1	A	2170	A
1	A	2171	A
1	A	2172	U
1	A	2173	A
1	A	$217\overline{4}$	C
1	A	2178	С
1	A	$2\overline{198}$	A
1	A	2204	G
1	А	2211	А

Mol	Chain	Res	Type
1	А	2225	А
1	А	2238	G
1	А	2239	G
1	А	2268	А
1	А	2283	С
1	А	2287	А
1	А	2297	А
1	А	2305	U
1	А	2308	G
1	А	2312	U
1	А	2322	А
1	А	2325	G
1	А	2333	А
1	А	2335	А
1	А	2347	С
1	А	2355	G
1	А	2372	U
1	А	2383	G
1	А	2385	С
1	А	2396	G
1	А	2402	U
1	А	2406	А
1	А	2407	А
1	А	2425	А
1	А	2429	G
1	А	2430	А
1	А	2431	U
1	А	2435	А
1	А	2441	U
1	А	2448	А
1	A	2478	A
1	А	2502	G
1	A	2505	G
1	А	2518	А
1	А	2529	G
1	А	2547	А
1	А	2554	U
1	А	2566	А
1	А	2567	G
1	A	2573	С
1	А	2574	G
1	А	2602	А

Mol	Chain	Res	Type
1	А	2608	G
1	А	2609	U
1	А	2613	U
1	А	2629	U
1	А	2663	G
1	А	2689	U
1	А	2690	U
1	А	2714	G
1	А	2724	U
1	А	2726	А
1	А	2744	G
1	А	2748	А
1	А	2757	А
1	A	2778	A
1	А	2791	G
1	А	2798	U
1	А	2799	А
1	А	2820	А
1	А	2821	А
1	А	2867	G
1	А	2884	U
1	А	2903	U
2	В	25	U
2	В	34	А
2	В	35	С
2	В	44	G
2	В	45	А
2	В	53	А
2	В	56	G
2	В	57	А
2	В	67	G
2	В	89	U
2	В	90	С
2	В	99	A
2	В	109	A
30	i	3	A
30	i	4	U
30	i	5	U
30	i	6	G
30	i	7	A
30	i	8	A
30	i	9	G

Mol	Chain	Res	Type
30	i	22	G
30	i	32	A
30	i	37	U
30	i	39	G
30	i	47	С
30	i	48	С
30	i	51	А
30	i	52	C
30	i	64	G
30	i	65	А
30	i	66	А
30	i	72	А
30	i	81	A
30	i	83	С
30	i	84	U
30	i	85	U
30	i	86	G
30	i	87	С
30	i	88	U
30	i	89	U
30	i	92	U
30	i	94	G
30	i	95	С
30	i	98	А
30	i	115	G
30	i	116	A
30	i	120	A
30	i	121	U
30	i	126	G
30	i	127	G
30	i	131	A
30	i	146	G
30	i	154	U
30	i	164	G
30	i	181	A
30	i	182	A
30	i	197	A
30	i	202	G
30	i	208	U
30	i	209	U
30	i	210	C
30	i	212	G

Mol	Chain	Res	Type
30	i	214	С
30	i	226	G
30	i	245	U
30	i	247	G
30	i	251	G
30	i	266	G
30	i	267	С
30	i	289	G
30	i	306	А
30	i	321	А
30	i	328	С
30	i	329	А
30	i	330	С
30	i	332	G
30	i	348	G
30	i	352	С
30	i	354	G
30	i	355	С
30	i	360	G
30	i	366	А
30	i	367	U
30	i	368	U
30	i	369	G
30	i	372	С
30	i	383	А
30	i	389	А
30	i	392	С
30	i	393	А
30	i	395	С
30	i	397	А
30	i	398	U
30	i	399	G
30	i	406	G
30	i	408	A
30	i	409	U
30	i	411	А
30	i	412	A
30	i	413	G
30	i	414	А
30	i	415	A
30	i	417	G
30	i	421	U

Mol	Chain	Res	Type
30	i	422	С
30	i	423	G
30	i	424	G
30	i	425	G
30	i	427	U
30	i	429	U
30	i	433	G
30	i	437	U
30	i	438	U
30	i	443	С
30	i	446	G
30	i	447	G
30	i	448	А
30	i	449	G
30	i	451	А
30	i	452	А
30	i	453	G
30	i	459	А
30	i	467	U
30	i	468	А
30	i	478	А
30	i	479	U
30	i	480	U
30	i	481	G
30	i	482	А
30	i	484	G
30	i	486	U
30	i	493	А
30	i	494	G
30	i	496	А
30	i	501	С
30	i	502	А
30	i	511	С
30	i	518	С
30	i	521	G
30	i	527	G
30	i	530	G
30	i	531	U
30	i	533	A
30	i	536	С
30	i	547	A
30	i	548	G

Mol	Chain	Res	Type
30	i	559	А
30	i	562	U
30	i	572	A
30	i	573	А
30	i	576	С
30	i	577	G
30	i	588	G
30	i	596	А
30	i	620	С
30	i	633	G
30	i	639	G
30	i	650	G
30	i	653	U
30	i	654	G
30	i	665	А
30	i	718	A
30	i	721	G
30	i	723	U
30	i	724	G
30	i	734	G
30	i	747	А
30	i	755	G
30	i	777	А
30	i	793	U
30	i	794	A
30	i	815	А
30	i	817	С
30	i	821	G
30	i	828	U
30	i	841	C
30	i	842	U
30	i	843	U
30	i	844	G
30	i	845	A
30	i	846	G
30	i	851	G
30	i	887	G
30	i	914	A
30	i	922	G
30	i	926	G
30	i	934	С
30	i	935	А

Mol	Chain	Res	Type
30	i	960	U
30	i	961	U
30	i	966	G
30	i	969	А
30	i	971	G
30	i	975	А
30	i	976	G
30	i	977	А
30	i	983	А
30	i	993	G
30	i	1003	G
30	i	1004	А
30	i	1005	А
30	i	1008	U
30	i	1009	U
30	i	1014	А
30	i	1018	G
30	i	1020	G
30	i	1022	А
30	i	1023	U
30	i	1026	G
30	i	1027	С
30	i	1028	С
30	i	1030	U
30	i	1032	G
30	i	1033	G
30	i	1039	G
30	i	1043	G
30	i	1045	С
30	i	1046	А
30	i	1053	G
30	i	1065	U
30	i	1085	U
30	i	1094	G
30	i	1095	U
30	i	1101	А
30	i	1124	G
30	i	1130	A
30	i	1132	С
30	i	1134	G
30	i	1137	С
30	i	1139	G

Mol	Chain	Res	Type
30	i	1140	С
30	i	1141	С
30	i	1143	G
30	i	1145	А
30	i	1159	U
30	i	1167	А
30	i	1168	U
30	i	1171	А
30	i	1184	G
30	i	1196	А
30	i	1197	А
30	i	1200	С
30	i	1202	U
30	i	1212	U
30	i	1213	А
30	i	1225	А
30	i	1226	С
30	i	1227	А
30	i	1228	С
30	i	1238	А
30	i	1256	А
30	i	1257	А
30	i	1258	G
30	i	1260	G
30	i	1275	А
30	i	1280	А
30	i	1286	U
30	i	1287	А
30	i	1299	А
30	i	1300	G
30	i	1302	С
30	i	1305	G
30	i	1317	С
30	i	1320	С
30	i	1335	U
30	i	1336	С
30	i	1337	G
30	i	1338	G
30	i	1346	А
30	i	1353	G
30	i	1362	А
30	i	1363	А

Mol	Chain	Res	Type
30	i	1370	G
30	i	1379	G
30	i	1381	U
30	i	1419	G
30	i	1446	А
30	i	1487	G
30	i	1492	А
30	i	1494	G
30	i	1497	G
30	i	1503	А
30	i	1505	G
30	i	1506	U
30	i	1517	G
30	i	1529	G
30	i	1530	G
30	i	1533	С
30	i	1534	А
30	i	1535	С
30	i	1537	U
30	i	1538	С
30	i	1539	С
48	5	4	С
48	5	9	А
48	5	20	G
48	5	21	U
48	5	22	А
48	5	44	U
48	5	47	G
48	5	48	U
48	5	49	С
48	5	50	G
48	5	57	С
48	5	58	G
48	5	73	G
48	5	74	A
48	5	75	С
48	6	19	G
48	6	20	U
48	6	21	A
48	6	43	U
48	6	46	G
48	6	47	U

Mol	Chain	Res	Type
48	6	48	С
48	6	49	G
48	6	56	С
48	6	57	G
48	6	76	А
49	7	6	U
49	7	8	U
49	7	11	С
49	7	12	U
49	7	13	С
49	7	14	A
49	7	16	С
49	7	17	U
49	7	18	G
49	7	19	G
49	7	20	G
49	7	21	А
49	7	34	U
49	7	35	G
49	7	37	А
49	7	46	G
49	7	47	U
49	7	48	С
49	7	51	С
49	7	55	U
49	7	56	С
49	7	58	А
49	7	59	U
49	7	67	А
49	7	72	С
49	7	74	С
49	7	75	С
49	7	76	А

All (67) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	А	125	А
1	А	140	С
1	А	199	А
1	А	221	А
1	А	271	G

Mol	Chain	Res	Type
1	А	310	А
1	А	345	А
1	А	369	U
1	А	404	А
1	А	503	А
1	А	548	G
1	А	549	G
1	А	614	А
1	А	746	PSU
1	А	764	А
1	А	776	G
1	А	784	G
1	А	805	G
1	A	827	U
1	А	984	А
1	А	995	С
1	А	1025	G
1	А	1128	G
1	А	1133	А
1	А	1135	С
1	А	1141	U
1	А	1175	А
1	А	1252	G
1	А	1266	G
1	А	1286	А
1	А	1497	U
1	А	1583	А
1	А	1608	А
1	A	1618	A
1	А	1647	U
1	A	1738	G
1	А	1808	А
1	A	1872	A
1	А	1913	A
1	А	2022	U
1	А	2109	U
1	А	2146	С
1	A	2158	A
1	А	2170	А
1	А	2225	А
1	А	2282	G
1	А	2287	А

Mol	Chain	Res	Type
1	А	2324	U
1	А	2335	А
1	А	2518	А
1	А	2602	А
1	А	2756	U
1	А	2798	U
1	А	2849	U
1	А	2873	А
2	В	34	А
48	5	3	G
48	5	20	G
48	5	47	G
48	5	57	С
48	6	19	G
48	6	46	G
48	6	47	U
48	6	56	С
49	7	15	G
49	7	74	С
49	7	75	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

3 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Res	Link	Bond lengths			Bond angles		
					Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	PSU	А	2504	1,53	18,21,22	1.04	1 (5%)	22,30,33	1.00	1 (4%)
1	2MA	А	2503	1,52,53	17,25,26	1.00	1 (5%)	17,37,40	0.87	1 (5%)
1	PSU	А	746	1,52	18,21,22	0.96	1 (5%)	22,30,33	1.59	4 (18%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	PSU	А	2504	1,53	-	0/7/25/26	0/2/2/2
1	2MA	А	2503	1,52,53	-	1/3/25/26	0/3/3/3
1	PSU	А	746	1,52	-	1/7/25/26	0/2/2/2

'-' means no outliers of that kind were identified.

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	А	2504	PSU	C6-C5	3.55	1.39	1.35
1	А	746	PSU	C6-C5	3.35	1.39	1.35
1	А	2503	2MA	C5-C4	-2.63	1.36	1.43

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	А	746	PSU	O3'-C3'-C4'	4.47	123.98	111.05
1	А	746	PSU	C3'-C2'-C1'	3.42	105.62	101.64
1	А	2503	2MA	CM2-C2-N1	2.58	121.97	116.23
1	А	746	PSU	C6-C5-C4	-2.42	116.50	118.20
1	А	2504	PSU	C5-C6-N1	-2.06	119.02	122.11
1	А	746	PSU	O2'-C2'-C3'	2.02	118.35	111.82

There are no chirality outliers.

All (2) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	А	746	PSU	O4'-C1'-C5-C6
1	А	2503	2MA	O4'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 377 ligands modelled in this entry, 376 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type		Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Dog	Tink	B	ond leng	gths	E	ond ang	gles
	Type	nes		LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2								
54	PRO	5	101	48	5,7,8	0.54	0	7,8,10	0.99	0								

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
54	PRO	5	101	48	-	0/0/9/11	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
54	5	101	PRO	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-18320. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 180

Z Index: 180

6.2.2 Raw map

X Index: 180

Y Index: 180

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

Y Index: 203

6.3.2 Raw map

X Index: 186

Y Index: 203

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.04. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 598 $\rm nm^3;$ this corresponds to an approximate mass of 540 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.455 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.455 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)				
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	2.20	-	-		
Author-provided FSC curve	-	-	-		
Unmasked-calculated*	2.37	2.82	2.44		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-18320 and PDB model 8QBT. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.04 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.04).

9.4 Atom inclusion (i)

At the recommended contour level, 66% of all backbone atoms, 69% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.04) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6900	0.6110
1	0.3210	0.4400
2	0.2410	0.3730
3	0.4100	0.4420
4	0.7430	0.6350
5	0.5490	0.5330
6	0.5790	0.5210
7	0.0730	0.1520
А	0.8270	0.6810
В	0.6890	0.6090
С	0.8880	0.7330
D	0.8340	0.7140
Ε	0.6360	0.6240
F	0.3950	0.4820
G	0.3430	0.4640
Н	0.3930	0.5070
J	0.8660	0.7160
К	0.8260	0.7020
L	0.7680	0.6730
М	0.8630	0.7190
Ν	0.9080	0.7440
О	0.5780	0.5850
Р	0.7850	0.6680
Q	0.9020	0.7520
R	0.6860	0.6300
S	0.8230	0.7030
Т	0.6790	0.5940
U	0.4820	0.5260
V	0.6170	0.6020
W	0.8780	0.7130
Х	0.7820	0.6830
Y	0.4750	0.5090
Z	0.8270	0.6930
a	0.7920	0.6930
b	0.7360	0.6220

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
С	0.9240	0.7480
d	0.9310	0.7560
е	0.7950	0.6670
f	0.8410	0.7340
i	0.5730	0.5310
j	0.2810	0.4470
m	0.6180	0.5950
n	0.3330	0.4650
0	0.3080	0.4380
р	0.5320	0.5740
q	0.3500	0.4600
s	0.5600	0.5680
t	0.3390	0.4610
u	0.3740	0.4670
V	0.4290	0.5130
W	0.5440	0.5520
У	0.2560	0.3830
Z	0.6170	0.5680

