

Full wwPDB X-ray Structure Validation Report (i)

Aug 8, 2023 - 08:22 PM EDT

PDB ID : 1PWB

Title : High resolution crystal structure of an active recombinant fragment of human

lung surfactant protein D with maltose

Authors: Shrive, A.K.; Tharia, H.A.; Strong, P.; Kishore, U.; Burns, I.; Rizkallah, P.J.;

Reid, K.B.; Greenhough, T.J.

Deposited on : 2003-07-01

Resolution : 1.40 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

 $Mol Probity \quad : \quad 4.02b\text{--}467$

Mogul: 1.8.5 (274361), CSD as541be (2020)

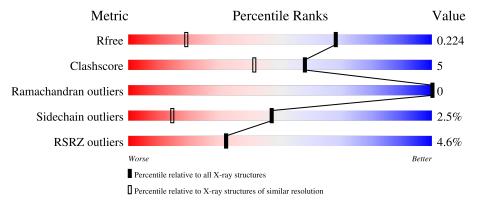
Xtriage (Phenix) : 1.13 EDS : 2.35

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

 $Refmac \quad : \quad 5.8.0158$

CCP4 : 7.0.044 (Gargrove)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 1.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
Metric	$(\# \mathrm{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
R_{free}	130704	1714 (1.40-1.40)
Clashscore	141614	1812 (1.40-1.40)
Ramachandran outliers	138981	1763 (1.40-1.40)
Sidechain outliers	138945	1762 (1.40-1.40)
RSRZ outliers	127900	1674 (1.40-1.40)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	A	177	76%	8% • 15%
1	В	177	76%	10% 15%
1	С	177	74%	8% • 15%
2	D	2	50%	50%

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 4038 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Pulmonary surfactant-associated protein D.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	Λ	151	Total	С	N	О	S	0	2	0
1	Λ	191	1168	731	200	232	5		J	
1	D	151	Total	С	N	О	S	0	0	0
1	Б	191	1154	723	197	229	5	0	U	
1	С	150	Total	С	N	О	S	0	1	0
1		150	1154	723	196	230	5	U	1	0

There are 3 discrepancies between the modelled and reference sequences:

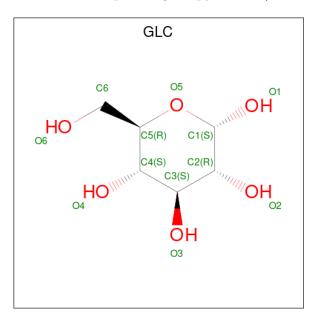
Chain	Residue	Modelled	Actual	Comment	Reference
Α	180	SER	PRO	engineered mutation	UNP P35247
В	180	SER	PRO	engineered mutation	UNP P35247
С	180	SER	PRO	engineered mutation	UNP P35247

• Molecule 2 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace	
2	D	2	Total 23	C 12	O 11	0	0	0

• Molecule 3 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	3	Total Ca 3 3	0	0
3	В	3	Total Ca 3 3	0	0


Continued on next page...

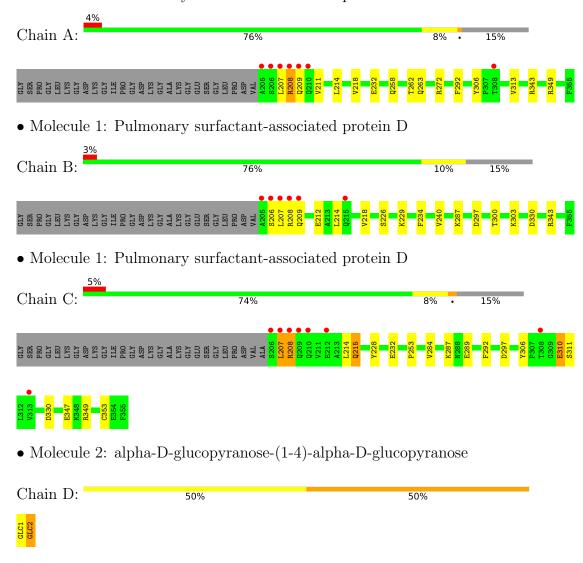
 $Continued\ from\ previous\ page...$

\mathbf{Mol}	Chain	Residues	Atoms	ZeroOcc	AltConf
3	С	3	Total Ca 3 3	0	0

 \bullet Molecule 4 is alpha-D-glucopyranose (three-letter code: GLC) (formula: $\mathrm{C_6H_{12}O_6}).$

\mathbf{Mol}	Chain	Residues	${f Atoms}$	ZeroOcc	AltConf
4	В	1	Total C O 12 6 6	0	0
4	С	1	Total C O 12 6 6	0	0

• Molecule 5 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	A	185	Total O 185 185	0	0
5	В	177	Total O 177 177	0	0
5	С	144	Total O 144 144	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Pulmonary surfactant-associated protein D

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	55.48Å 108.30Å 55.78Å	Donositon
a, b, c, α , β , γ	90.00° 91.43° 90.00°	Depositor
Resolution (Å)	32.10 - 1.40	Depositor
rtesolution (A)	32.08 - 1.40	EDS
% Data completeness	94.9 (32.10-1.40)	Depositor
(in resolution range)	94.8 (32.08-1.40)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	0.04	Depositor
$< I/\sigma(I) > 1$	2.35 (at 1.40Å)	Xtriage
Refinement program	X-PLOR 3.851	Depositor
R, R_{free}	0.205 , 0.228	Depositor
, and the second	0.204 , 0.224	DCC
R_{free} test set	6162 reflections (5.03%)	wwPDB-VP
Wilson B-factor (Å ²)	16.8	Xtriage
Anisotropy	0.132	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	$0.35\;,50.8$	EDS
L-test for twinning ²	$< L > = 0.48, < L^2> = 0.31$	Xtriage
	0.013 for l,k,-h	
Estimated twinning fraction	0.033 for h,-k,-l	Xtriage
	0.035 for l,-k,h	
F_o, F_c correlation	0.96	EDS
Total number of atoms	4038	wwPDB-VP
Average B, all atoms (\mathring{A}^2)	18.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.62% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GLC, CA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.36	0/1202	0.55	0/1622	
1	В	0.38	0/1176	0.53	0/1588	
1	С	0.36	0/1180	0.53	0/1593	
All	All	0.37	0/3558	0.54	0/4803	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	1168	0	1122	15	0
1	В	1154	0	1110	12	0
1	С	1154	0	1107	14	0
2	D	23	0	19	1	0
3	A	3	0	0	0	0
3	В	3	0	0	0	0
3	С	3	0	0	0	0
4	В	12	0	10	1	0
4	С	12	0	11	0	0
5	A	185	0	0	3	0

Continued on next page...

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	В	177	0	0	1	0
5	С	144	0	0	0	0
All	All	4038	0	3379	33	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (33) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

1:B:287:LYS:HE2	Atom-1	Atom-2	Interatomic	Clash
1:B:207:LEU:HD21 1:C:208:ARG:HG2 1.77 0.67 1:A:208:ARG:HA 1:C:207:LEU:HD11 1.80 0.62 1:A:207:LEU:HB3 1:C:207:LEU:HD21 1.84 0.60 1:A:208:ARG:HD3 1:A:209:GLN:HE21 1.69 0.58 1:A:218:VAL:HG21 1:C:214:LEU:HD11 1.85 0.57 1:B:208:ARG:O 1:B:212:GLU:HG3 2.05 0.57 1:A:207:LEU:O 1:A:211:VAL:HG23 2.05 0.57 1:A:208:ARG:CA 1:C:207:LEU:HD11 2.36 0.56 1:C:306:TYR:HD2 1:C:310:GLU:HG2 1.76 0.50 1:A:258:GLN:O 1:A:262:THR:HG23 2.12 0.49 1:A:343[B]:ARG:NH1 5:A:549:HOH:O 2.42 0.47 1:A:232:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:214:LEU:HD11 1:B:218:VAL:HG21 1.98 0.45 1:B:240:VAL:HG13 1:B:240:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00			$\operatorname{distance} (\text{\AA})$	overlap (Å)
1:A:208:ARG:HA 1:C:207:LEU:HD11 1.80 0.62 1:A:207:LEU:HB3 1:C:207:LEU:HD21 1.84 0.60 1:A:208:ARG:HD3 1:A:209:GLN:HE21 1.69 0.58 1:A:218:VAL:HG21 1:C:214:LEU:HD11 1.85 0.57 1:B:208:ARG:O 1:B:212:GLU:HG3 2.05 0.57 1:A:207:LEU:O 1:A:211:VAL:HG23 2.05 0.57 1:A:208:ARG:CA 1:C:207:LEU:HD11 2.36 0.56 1:C:306:TYR:HD2 1:C:310:GLU:HG2 1.76 0.50 1:A:258:GLN:O 1:A:262:THR:HG23 2.12 0.49 1:A:343[B]:ARG:NH1 5:A:549:HOH:O 2.42 0.47 1:A:232:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:214:LEU:HD11 1:B:248:VAL:HG21 1.98 0.45 1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99		5:B:535:HOH:O		
1:A:207:LEU:HB3 1:C:207:LEU:HD21 1.84 0.60 1:A:208:ARG:HD3 1:A:209:GLN:HE21 1.69 0.58 1:A:218:VAL:HG21 1:C:214:LEU:HD11 1.85 0.57 1:B:208:ARG:O 1:B:212:GLU:HG3 2.05 0.57 1:A:207:LEU:O 1:A:211:VAL:HG23 2.05 0.57 1:A:208:ARG:CA 1:C:207:LEU:HD11 2.36 0.56 1:C:306:TYR:HD2 1:C:310:GLU:HG2 1.76 0.50 1:A:258:GLN:O 1:A:262:THR:HG23 2.12 0.49 1:A:343[B]:ARG:NH1 5:A:549:HOH:O 2.42 0.47 1:A:323:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:214:LEU:HD11 1:B:218:VAL:HG21 1.98 0.45 1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32	1:B:207:LEU:HD21	1:C:208:ARG:HG2	1.77	0.67
1:A:208:ARG:HD3 1:A:209:GLN:HE21 1.69 0.58 1:A:218:VAL:HG21 1:C:214:LEU:HD11 1.85 0.57 1:B:208:ARG:O 1:B:212:GLU:HG3 2.05 0.57 1:A:207:LEU:O 1:A:211:VAL:HG23 2.05 0.57 1:A:208:ARG:CA 1:C:207:LEU:HD11 2.36 0.56 1:C:306:TYR:HD2 1:C:310:GLU:HG2 1.76 0.50 1:A:258:GLN:O 1:A:262:THR:HG23 2.12 0.49 1:A:343[B]:ARG:NH1 5:A:549:HOH:O 2.42 0.47 1:A:232:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:214:LEU:HD11 1:B:218:VAL:HG21 1.98 0.45 1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0	1:A:208:ARG:HA	1:C:207:LEU:HD11	1.80	0.62
1:A:218:VAL:HG21 1:C:214:LEU:HD11 1.85 0.57 1:B:208:ARG:O 1:B:212:GLU:HG3 2.05 0.57 1:A:207:LEU:O 1:A:211:VAL:HG23 2.05 0.57 1:A:208:ARG:CA 1:C:207:LEU:HD11 2.36 0.56 1:C:306:TYR:HD2 1:C:310:GLU:HG2 1.76 0.50 1:A:258:GLN:O 1:A:262:THR:HG23 2.12 0.49 1:A:343[B]:ARG:NH1 5:A:549:HOH:O 2.42 0.47 1:A:232:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:214:LEU:HD11 1:B:218:VAL:HG21 1.98 0.45 1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:C:297:ASP:OD1 1:C:349:ARG:HB2 2.53 0.	1:A:207:LEU:HB3	1:C:207:LEU:HD21	1.84	0.60
1:B:208:ARG:O 1:B:212:GLU:HG3 2.05 0.57 1:A:207:LEU:O 1:A:211:VAL:HG23 2.05 0.57 1:A:208:ARG:CA 1:C:207:LEU:HD11 2.36 0.56 1:C:306:TYR:HD2 1:C:310:GLU:HG2 1.76 0.50 1:A:258:GLN:O 1:A:262:THR:HG23 2.12 0.49 1:A:343[B]:ARG:NH1 5:A:549:HOH:O 2.42 0.47 1:A:232:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:214:LEU:HD11 1:B:218:VAL:HG21 1.98 0.45 1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:A:263:GLN:NE2 5:A:510:HOH:O 2.51 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:298:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:C:297:ASP:OD1 1:C:349:ARG:HB2 2.54 0.42 </td <td>1:A:208:ARG:HD3</td> <td>1:A:209:GLN:HE21</td> <td>1.69</td> <td>0.58</td>	1:A:208:ARG:HD3	1:A:209:GLN:HE21	1.69	0.58
1:A:207:LEU:O 1:A:211:VAL:HG23 2.05 0.57 1:A:208:ARG:CA 1:C:207:LEU:HD11 2.36 0.56 1:C:306:TYR:HD2 1:C:310:GLU:HG2 1.76 0.50 1:A:258:GLN:O 1:A:262:THR:HG23 2.12 0.49 1:A:343[B]:ARG:NH1 5:A:549:HOH:O 2.42 0.47 1:A:232:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:232:GLU:OE1 1:C:233 0.46 1:A:214:LEU:HD11 1:B:218:VAL:HG21 1.98 0.45 1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D1:GLC:H61 2:D2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:298:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:347:GLU:O 2.19 0.42	1:A:218:VAL:HG21	1:C:214:LEU:HD11	1.85	0.57
1:A:208:ARG:CA 1:C:207:LEU:HD11 2.36 0.56 1:C:306:TYR:HD2 1:C:310:GLU:HG2 1.76 0.50 1:A:258:GLN:O 1:A:262:THR:HG23 2.12 0.49 1:A:343[B]:ARG:NH1 5:A:549:HOH:O 2.42 0.47 1:A:232:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:232:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:214:LEU:HD11 1:B:218:VAL:HG21 1.98 0.45 1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:A:263:GLN:NE2 5:A:510:HOH:O 2.51 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:298:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:C:297:ASP:OD1 1:C:3349:ARG:HB2 2.53 0.43 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42<	1:B:208:ARG:O	1:B:212:GLU:HG3	2.05	0.57
1:C:306:TYR:HD2 1:C:310:GLU:HG2 1.76 0.50 1:A:258:GLN:O 1:A:262:THR:HG23 2.12 0.49 1:A:343[B]:ARG:NH1 5:A:549:HOH:O 2.42 0.47 1:A:232:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:214:LEU:HD11 1:B:218:VAL:HG21 1.98 0.45 1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:A:263:GLN:NE2 5:A:510:HOH:O 2.51 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:C:297:ASP:OD1 1:C:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:349:ARG:HB2 2.54 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 <td>1:A:207:LEU:O</td> <td>1:A:211:VAL:HG23</td> <td>2.05</td> <td>0.57</td>	1:A:207:LEU:O	1:A:211:VAL:HG23	2.05	0.57
1:A:258:GLN:O 1:A:262:THR:HG23 2.12 0.49 1:A:343[B]:ARG:NH1 5:A:549:HOH:O 2.42 0.47 1:A:232:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:214:LEU:HD11 1:B:218:VAL:HG21 1.98 0.45 1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:A:263:GLN:NE2 5:A:510:HOH:O 2.51 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41	1:A:208:ARG:CA	1:C:207:LEU:HD11	2.36	0.56
1:A:343[B]:ARG:NH1 5:A:549:HOH:O 2.42 0.47 1:A:232:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:214:LEU:HD11 1:B:218:VAL:HG21 1.98 0.45 1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:A:263:GLN:NE2 5:A:510:HOH:O 2.51 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.43 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:C:306:TYR:HD2	1:C:310:GLU:HG2	1.76	0.50
1:A:232:GLU:OE1 1:C:232:GLU:OE1 2.33 0.46 1:A:214:LEU:HD11 1:B:218:VAL:HG21 1.98 0.45 1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:A:263:GLN:NE2 5:A:510:HOH:O 2.51 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:A:258:GLN:O	1:A:262:THR:HG23	2.12	0.49
1:A:214:LEU:HD11 1:B:218:VAL:HG21 1.98 0.45 1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:A:263:GLN:NE2 5:A:510:HOH:O 2.51 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:A:343[B]:ARG:NH1	5:A:549:HOH:O	2.42	0.47
1:A:306:TYR:OH 1:A:313:VAL:HG22 2.17 0.45 1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:A:263:GLN:NE2 5:A:510:HOH:O 2.51 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.43 1:C:292:PHE:CD2 1:C:349:ARG:HB2 2.54 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:A:232:GLU:OE1	1:C:232:GLU:OE1	2.33	0.46
1:B:240:VAL:HG13 1:B:240:VAL:O 2.16 0.45 2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:A:263:GLN:NE2 5:A:510:HOH:O 2.51 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.43 1:C:292:PHE:CD2 1:C:349:ARG:HB2 2.54 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:A:214:LEU:HD11	1:B:218:VAL:HG21	1.98	0.45
2:D:1:GLC:H61 2:D:2:GLC:H5 2.00 0.44 1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:A:263:GLN:NE2 5:A:510:HOH:O 2.51 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.43 1:C:292:PHE:CD2 1:C:349:ARG:HB2 2.54 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:A:306:TYR:OH	1:A:313:VAL:HG22	2.17	0.45
1:C:287:LYS:HA 1:C:287:LYS:HD3 1.85 0.44 1:A:263:GLN:NE2 5:A:510:HOH:O 2.51 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.43 1:C:292:PHE:CD2 1:C:349:ARG:HB2 2.54 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:B:240:VAL:HG13	1:B:240:VAL:O	2.16	0.45
1:A:263:GLN:NE2 5:A:510:HOH:O 2.51 0.44 1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.43 1:C:292:PHE:CD2 1:C:349:ARG:HB2 2.54 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	2:D:1:GLC:H61	2:D:2:GLC:H5	2.00	0.44
1:B:300:THR:HG21 1:B:303:LYS:HD2 1.99 0.43 1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.43 1:C:292:PHE:CD2 1:C:349:ARG:HB2 2.54 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:C:287:LYS:HA	1:C:287:LYS:HD3	1.85	0.44
1:A:208:ARG:HD3 1:A:209:GLN:NE2 2.32 0.43 1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.43 1:C:292:PHE:CD2 1:C:349:ARG:HB2 2.54 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:A:263:GLN:NE2	5:A:510:HOH:O	2.51	0.44
1:B:207:LEU:HD23 1:B:207:LEU:HA 1.87 0.43 1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.43 1:C:292:PHE:CD2 1:C:349:ARG:HB2 2.54 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:B:300:THR:HG21	1:B:303:LYS:HD2	1.99	0.43
1:A:292:PHE:CD2 1:A:349:ARG:HB2 2.53 0.43 1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.43 1:C:292:PHE:CD2 1:C:349:ARG:HB2 2.54 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:A:208:ARG:HD3	1:A:209:GLN:NE2	2.32	0.43
1:C:297:ASP:OD1 1:C:330:ASP:HA 2.19 0.43 1:C:292:PHE:CD2 1:C:349:ARG:HB2 2.54 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:B:207:LEU:HD23	1:B:207:LEU:HA	1.87	0.43
1:C:292:PHE:CD2 1:C:349:ARG:HB2 2.54 0.42 1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:A:292:PHE:CD2	1:A:349:ARG:HB2	2.53	0.43
1:C:253:PRO:HA 1:C:347:GLU:O 2.19 0.42 1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:C:297:ASP:OD1	1:C:330:ASP:HA	2.19	0.43
1:B:234:PHE:CZ 1:C:353:CYS:SG 3.13 0.42 1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:C:292:PHE:CD2	1:C:349:ARG:HB2	2.54	0.42
1:A:272:ARG:HD2 5:A:553:HOH:O 2.20 0.41 1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:C:253:PRO:HA	1:C:347:GLU:O	2.19	0.42
1:B:297:ASP:OD1 1:B:330:ASP:HA 2.20 0.41 1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:B:234:PHE:CZ	1:C:353:CYS:SG	3.13	0.42
1:B:343:ARG:NE 4:B:405:GLC:H62 2.35 0.41	1:A:272:ARG:HD2	5:A:553:HOH:O	2.20	0.41
	1:B:297:ASP:OD1	1:B:330:ASP:HA	2.20	0.41
1:C:284:VAL:HG13 1:C:289:GLU:O 2.20 0.41	1:B:343:ARG:NE	4:B:405:GLC:H62	2.35	0.41
	1:C:284:VAL:HG13	1:C:289:GLU:O	2.20	0.41

Continued on next page...

Continued from previous page...

Atom-1	Atom-2	$\begin{array}{c} \text{Interatomic} \\ \text{distance (Å)} \end{array}$	$egin{aligned} \operatorname{Clash} \ \operatorname{overlap}\ (ext{Å}) \end{aligned}$	
1:B:214:LEU:HD21	1:C:215:GLN:HA	2.02	0.40	
1:B:226:SER:HA	1:B:229:LYS:HE3	2.02	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Favoured Allowed		Percentiles		
1	A	152/177 (86%)	149 (98%)	3 (2%)	0	100	100	
1	В	149/177 (84%)	146 (98%)	3 (2%)	0	100	100	
1	С	149/177 (84%)	144 (97%)	5 (3%)	0	100	100	
All	All	450/531 (85%)	439 (98%)	11 (2%)	0	100	100	

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outliers		Percentiles		
1	A	124/138 (90%)	123 (99%)	1 (1%)	81 62		
1	В	121/138 (88%)	119 (98%)	2 (2%)	60 31		
1	С	122/138 (88%)	116 (95%)	6 (5%)	25 3		
All	All	367/414 (89%)	358 (98%)	9 (2%)	47 14		

All (9) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	208	ARG
1	В	206	SER
1	В	209	GLN
1	С	207	LEU
1	С	208	ARG
1	С	215	GLN
1	С	228	TYR
1	С	310	GLU
1	С	311	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (7) such sidechains are listed below:

Mol	Chain	Res	Type
1	A	209	GLN
1	A	210	GLN
1	A	263	GLN
1	A	282	GLN
1	В	210	GLN
1	С	215	GLN
1	С	282	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

2 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Res	Link	Bond lengths			Bond angles		
					Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	GLC	D	1	2	12,12,12	0.34	0	17,17,17	0.39	0
2	GLC	D	2	3,2	11,11,12	0.51	0	15,15,17	0.69	1 (6%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

\mathbf{Mol}	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GLC	D	1	2	-	0/2/22/22	0/1/1/1
2	GLC	D	2	3,2	-	0/2/19/22	0/1/1/1

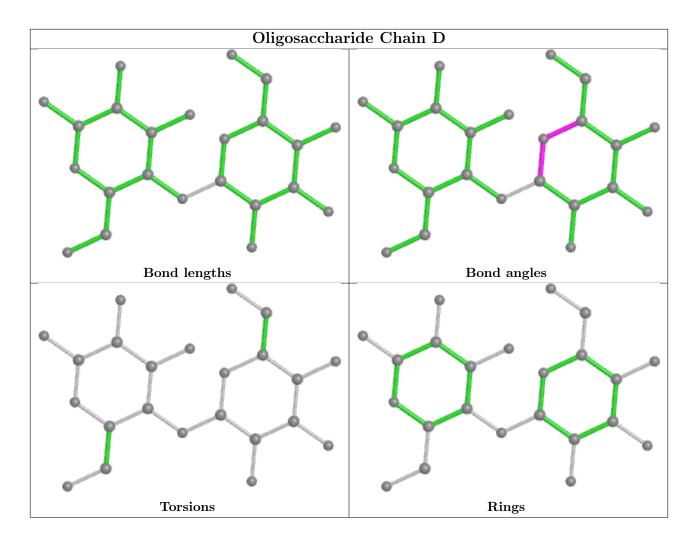
There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^o)$	$\operatorname{Ideal}({}^{o})$
2	D	2	GLC	C1-O5-C5	2.00	114.91	112.19

There are no chirality outliers.

There are no torsion outliers.


There are no ring outliers.

2 monomers are involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	D	1	GLC	1	0
2	D	2	GLC	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 11 ligands modelled in this entry, 9 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Res	Link	Bo	Bond lengths			Bond angles		
MOI	туре				Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
4	GLC	С	405	3	12,12,12	0.30	0	17,17,17	0.32	0	
4	GLC	В	405	3	12,12,12	0.37	0	17,17,17	0.37	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns.

'-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	GLC	С	405	3	-	2/2/22/22	0/1/1/1
4	GLC	В	405	3	-	2/2/22/22	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	В	405	GLC	O5-C5-C6-O6
4	С	405	GLC	O5-C5-C6-O6
4	В	405	GLC	C4-C5-C6-O6
4	С	405	GLC	C4-C5-C6-O6

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	В	405	GLC	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

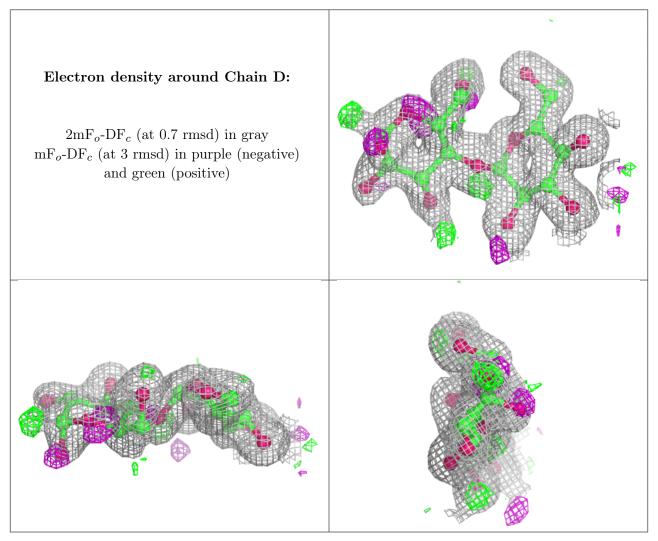
In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ > 2	$OWAB(Å^2)$	Q<0.9
1	A	151/177~(85%)	0.25	7 (4%) 32 32	10, 15, 31, 51	0
1	В	151/177 (85%)	0.16	6 (3%) 38 39	10, 15, 34, 50	0
1	С	150/177 (84%)	0.22	8 (5%) 26 25	10, 16, 34, 50	0
All	All	452/531 (85%)	0.21	21 (4%) 32 32	10, 15, 35, 51	0

All (21) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	A	205	ALA	7.4
1	В	207	LEU	7.1
1	В	205	ALA	6.6
1	A	207	LEU	5.5
1	A	206	SER	5.2
1	С	208	ARG	4.9
1	С	313	VAL	4.3
1	В	208	ARG	4.0
1	С	206	SER	3.9
1	В	206	SER	3.8
1	A	209	GLN	3.7
1	A	208	ARG	3.7
1	С	210	GLN	2.9
1	В	209	GLN	2.9
1	С	209	GLN	2.9
1	A	308	THR	2.7
1	С	308	THR	2.6
1	В	215	GLN	2.6
1	С	212	GLU	2.5
1	С	207	LEU	2.4
1	A	210	GLN	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)


There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q<0.9
2	GLC	D	1	12/12	0.77	0.21	22,30,33,34	0
2	GLC	D	2	11/12	0.95	0.08	12,17,19,20	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q<0.9
4	GLC	В	405	12/12	0.91	0.10	11,19,28,28	0
4	GLC	С	405	12/12	0.92	0.12	12,21,28,32	0
3	CA	С	403	1/1	0.97	0.07	17,17,17,17	0
3	CA	В	403	1/1	0.98	0.06	18,18,18,18	0
3	CA	В	402	1/1	0.99	0.07	12,12,12,12	0
3	CA	A	401	1/1	0.99	0.10	13,13,13,13	0
3	CA	С	402	1/1	0.99	0.09	15,15,15,15	0
3	CA	A	402	1/1	0.99	0.10	13,13,13,13	0
3	CA	A	403	1/1	0.99	0.07	15,15,15,15	0
3	CA	В	401	1/1	0.99	0.08	10,10,10,10	0
3	CA	С	401	1/1	1.00	0.10	13,13,13,13	0

6.5 Other polymers (i)

There are no such residues in this entry.

