

wwPDB X-ray Structure Validation Summary Report (i)

May 30, 2023 – 04:30 pm BST

PDB ID	:	8P3M
Title	:	The structure of thiocyanate dehydrogenase mutant form with Lys 281 re-
		placed by Ala from Thioalkalivibrio paradoxus
Authors	:	Varfolomeeva, L.A.; Polyakov, K.M.; Komolov, A.S.; Rakitina, T.V.; Der-
		gousova, N.I.; Dorovatovskii, P.V.; Boyko, K.M.; Tikhonova, T.V.; Popov,
		V.O.
Deposited on	:	2023-05-18
Resolution	:	2.07 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.33
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.33

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.07 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	2684 (2.08-2.04)
Clashscore	141614	2801 (2.08-2.04)
Ramachandran outliers	138981	2768 (2.08-2.04)
Sidechain outliers	138945	2768 (2.08-2.04)
RSRZ outliers	127900	2646 (2.08-2.04)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	2	494	70%	22%	• 5%
1	5	494	72%	19%	• 5%
1	8	494	73%	19%	• 5%
1	А	494	76%	15%	• 5%
1	D	494	76%	16%	• 5%

Mol	Chain	Length	Quality of chain		
1	G	494	75%	16%	• 5%
1	J	494	78%	13%	•• 5%
1	М	494	76%	16%	• 5%
1	Р	494	73%	18%	• 5%
1	S	494	73%	19%	• 5%
1	V	494	69%	23%	•• 5%
1	Y	494	76%	16%	•• 5%
1	е	494	86%		% • 5%
1	h	494	86%		% • 5%
1	k	494	84%	10	% 5%
1	x	494	83%	10%	6 • 5%

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 60462 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace						
1		467	Total	С	Ν	0	S	0	1	0						
	A	407	3636	2319	607	692	18	0	1	0						
1	а	467	Total	С	Ν	0	S	0	0	0						
	D	407	3628	2316	606	688	18	0	0	0						
1	G	467	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	2	0						
	ŭ	101	3636	2320	607	690	19	0		0						
1	J	467	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0						
-		101	3620	2312	602	688	18		· · · · · · · · · · · · · · · · · · ·							
1	М	467	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0						
-		101	3627	2315	606	688	18	Ŭ		Ŭ						
1	Р	467	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0						
	-	101	3626	2313	603	692	18		0							
1	S	467	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0						
	2	101	3614	2309	605	682	18		· · · · · · · · · · · · · · · · · · ·	0						
1	V	467	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0						
	•	101	3621	2309	604	690	18									
1	Y	467	Total	С	Ν	0	S	0	1	0						
	-		3617	2310	604	685	18		-							
1	2	2 467	Total	С	Ν	Ο	S	0	0	0						
	_		3627	2315	604	690	18	Ŭ								
1	5	5	5	5	5	5	5	467	Total	С	Ν	0	S	0	1	0
	Ŭ		3617	2309	606	684	18	Ŭ	-	0						
1	1 8	1 8	8	. 8	1 8	467	Total	С	Ν	0	S	0	0	0		
									3617	2308	603	688	18	-		V
1	x	467	Total	С	Ν	0	S	0	0	0						
			3608	2304	600	686	18	-								
1	1 e	467	Total	С	Ν	0	S	0	1	0						
			3608	2304	598	688	18		_							
1	1 h	467	Total	С	Ν	0	S	0	0	0						
			3602	2302	596	686	18									
1	k	467	Total	С	Ν	0	S	0	1	0						
-			3611	2304	603	686	18	Ĭ	-	Ĭ						

• Molecule 1 is a protein called Twin-arginine translocation signal domain-containing protein.

Chain	Residue	Modelled	Actual	Comment	Reference
А	55	MET	-	initiating methionine	UNP W0DP94
А	56	SER	-	expression tag	UNP W0DP94
А	57	TYR	-	expression tag	UNP W0DP94
А	58	TYR	-	expression tag	UNP W0DP94
А	59	HIS	-	expression tag	UNP W0DP94
А	60	HIS	-	expression tag	UNP W0DP94
А	61	HIS	-	expression tag	UNP W0DP94
А	62	HIS	-	expression tag	UNP W0DP94
А	63	HIS	-	expression tag	UNP W0DP94
А	64	HIS	-	expression tag	UNP W0DP94
А	65	ASP	-	expression tag	UNP W0DP94
А	66	TYR	-	expression tag	UNP W0DP94
А	67	ASP	-	expression tag	UNP W0DP94
А	68	ILE	-	expression tag	UNP W0DP94
А	69	PRO	-	expression tag	UNP W0DP94
А	70	THR	-	expression tag	UNP W0DP94
А	71	THR	-	expression tag	UNP W0DP94
А	72	GLU	-	expression tag	UNP W0DP94
А	73	ASN	-	expression tag	UNP W0DP94
А	74	LEU	-	expression tag	UNP W0DP94
А	75	TYR	-	expression tag	UNP W0DP94
А	76	PHE	-	expression tag	UNP W0DP94
А	77	GLN	-	expression tag	UNP W0DP94
А	78	GLY	-	expression tag	UNP W0DP94
А	79	ALA	-	expression tag	UNP W0DP94
А	80	MET	-	expression tag	UNP W0DP94
А	81	GLY	-	expression tag	UNP W0DP94
А	281	ALA	LYS	engineered mutation	UNP W0DP94
D	55	MET	-	initiating methionine	UNP W0DP94
D	56	SER	-	expression tag	UNP W0DP94
D	57	TYR	-	expression tag	UNP W0DP94
D	58	TYR	-	expression tag	UNP W0DP94
D	59	HIS	-	expression tag	UNP W0DP94
D	60	HIS	-	expression tag	UNP W0DP94
D	61	HIS	-	expression tag	UNP W0DP94
D	62	HIS	_	expression tag	UNP W0DP94
D	63	HIS	-	expression tag	UNP W0DP94
D	64	HIS	-	expression tag	UNP W0DP94
D	65	ASP	-	expression tag	UNP W0DP94
D	66	TYR	-	expression tag	UNP W0DP94
D	67	ASP	-	expression tag	UNP W0DP94
D	68	ILE	-	expression tag	UNP W0DP94

There are 448 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	69	PRO	-	expression tag	UNP W0DP94
D	70	THR	-	expression tag	UNP W0DP94
D	71	THR	-	expression tag	UNP W0DP94
D	72	GLU	-	expression tag	UNP W0DP94
D	73	ASN	_	expression tag	UNP W0DP94
D	74	LEU	_	expression tag	UNP W0DP94
D	75	TYR	_	expression tag	UNP W0DP94
D	76	PHE	-	expression tag	UNP W0DP94
D	77	GLN	-	expression tag	UNP W0DP94
D	78	GLY	-	expression tag	UNP W0DP94
D	79	ALA	-	expression tag	UNP W0DP94
D	80	MET	-	expression tag	UNP W0DP94
D	81	GLY	-	expression tag	UNP W0DP94
D	281	ALA	LYS	engineered mutation	UNP W0DP94
G	55	MET	-	initiating methionine	UNP W0DP94
G	56	SER	-	expression tag	UNP W0DP94
G	57	TYR	-	expression tag	UNP W0DP94
G	58	TYR	-	expression tag	UNP W0DP94
G	59	HIS	-	expression tag	UNP W0DP94
G	60	HIS	-	expression tag	UNP W0DP94
G	61	HIS	-	expression tag	UNP W0DP94
G	62	HIS	-	expression tag	UNP W0DP94
G	63	HIS	-	expression tag	UNP W0DP94
G	64	HIS	-	expression tag	UNP W0DP94
G	65	ASP	-	expression tag	UNP W0DP94
G	66	TYR	-	expression tag	UNP W0DP94
G	67	ASP	-	expression tag	UNP W0DP94
G	68	ILE	-	expression tag	UNP W0DP94
G	69	PRO	-	expression tag	UNP W0DP94
G	70	THR	-	expression tag	UNP W0DP94
G	71	THR	-	expression tag	UNP W0DP94
G	72	GLU	-	expression tag	UNP W0DP94
G	73	ASN	-	expression tag	UNP W0DP94
G	74	LEU	-	expression tag	UNP W0DP94
G	75	TYR	-	expression tag	UNP W0DP94
G	76	PHE	-	expression tag	UNP W0DP94
G	77	GLN	-	expression tag	UNP W0DP94
G	78	GLY	-	expression tag	UNP W0DP94
G	79	ALA	-	expression tag	UNP W0DP94
G	80	MET	-	expression tag	UNP W0DP94
G	81	GLY	-	expression tag	UNP W0DP94
G	281	ALA	LYS	engineered mutation	UNP W0DP94

81	P3M

Chain	Residue	Modelled	Actual	Comment	Reference
J	55	MET	-	initiating methionine	UNP W0DP94
J	56	SER	-	expression tag	UNP W0DP94
J	57	TYR	-	expression tag	UNP W0DP94
J	58	TYR	-	expression tag	UNP W0DP94
J	59	HIS	-	expression tag	UNP W0DP94
J	60	HIS	-	expression tag	UNP W0DP94
J	61	HIS	_	expression tag	UNP W0DP94
J	62	HIS	_	expression tag	UNP W0DP94
J	63	HIS	-	expression tag	UNP W0DP94
J	64	HIS	_	expression tag	UNP W0DP94
J	65	ASP	_	expression tag	UNP W0DP94
J	66	TYR	-	expression tag	UNP W0DP94
J	67	ASP	-	expression tag	UNP W0DP94
J	68	ILE	-	expression tag	UNP W0DP94
J	69	PRO	-	expression tag	UNP W0DP94
J	70	THR	-	expression tag	UNP W0DP94
J	71	THR	-	expression tag	UNP W0DP94
J	72	GLU	-	expression tag	UNP W0DP94
J	73	ASN	-	expression tag	UNP W0DP94
J	74	LEU	-	expression tag	UNP W0DP94
J	75	TYR	-	expression tag	UNP W0DP94
J	76	PHE	-	expression tag	UNP W0DP94
J	77	GLN	-	expression tag	UNP W0DP94
J	78	GLY	-	expression tag	UNP W0DP94
J	79	ALA	-	expression tag	UNP W0DP94
J	80	MET	-	expression tag	UNP W0DP94
J	81	GLY	-	expression tag	UNP W0DP94
J	281	ALA	LYS	engineered mutation	UNP W0DP94
М	55	MET	-	initiating methionine	UNP W0DP94
M	56	SER	-	expression tag	UNP W0DP94
М	57	TYR	-	expression tag	UNP W0DP94
М	58	TYR	-	expression tag	UNP W0DP94
М	59	HIS	-	expression tag	UNP W0DP94
М	60	HIS	-	expression tag	UNP W0DP94
М	61	HIS	-	expression tag	UNP W0DP94
М	62	HIS	-	expression tag	UNP W0DP94
М	63	HIS	-	expression tag	UNP W0DP94
М	64	HIS	-	expression tag	UNP W0DP94
М	65	ASP	-	expression tag	UNP W0DP94
М	66	TYR	-	expression tag	UNP W0DP94
М	67	ASP	-	expression tag	UNP W0DP94
М	68	ILE	_	expression tag	UNP W0DP94

Chain	Residue	Modelled	Actual	Comment	Reference
М	69	PRO	-	expression tag	UNP W0DP94
М	70	THR	-	expression tag	UNP W0DP94
М	71	THR	-	expression tag	UNP W0DP94
М	72	GLU	-	expression tag	UNP W0DP94
М	73	ASN	_	expression tag	UNP W0DP94
М	74	LEU	_	expression tag	UNP W0DP94
М	75	TYR	_	expression tag	UNP W0DP94
М	76	PHE	-	expression tag	UNP W0DP94
М	77	GLN	-	expression tag	UNP W0DP94
М	78	GLY	-	expression tag	UNP W0DP94
М	79	ALA	-	expression tag	UNP W0DP94
М	80	MET	-	expression tag	UNP W0DP94
М	81	GLY	-	expression tag	UNP W0DP94
М	281	ALA	LYS	engineered mutation	UNP W0DP94
Р	55	MET	-	initiating methionine	UNP W0DP94
Р	56	SER	-	expression tag	UNP W0DP94
Р	57	TYR	_	expression tag	UNP W0DP94
Р	58	TYR	-	expression tag	UNP W0DP94
Р	59	HIS	_	expression tag	UNP W0DP94
Р	60	HIS	-	expression tag	UNP W0DP94
Р	61	HIS	-	expression tag	UNP W0DP94
Р	62	HIS	-	expression tag	UNP W0DP94
Р	63	HIS	-	expression tag	UNP W0DP94
Р	64	HIS	-	expression tag	UNP W0DP94
Р	65	ASP	-	expression tag	UNP W0DP94
Р	66	TYR	-	expression tag	UNP W0DP94
Р	67	ASP	-	expression tag	UNP W0DP94
Р	68	ILE	-	expression tag	UNP W0DP94
Р	69	PRO	-	expression tag	UNP W0DP94
Р	70	THR	-	expression tag	UNP W0DP94
Р	71	THR	-	expression tag	UNP W0DP94
Р	72	GLU	-	expression tag	UNP W0DP94
Р	73	ASN	-	expression tag	UNP W0DP94
Р	74	LEU	-	expression tag	UNP W0DP94
Р	75	TYR	-	expression tag	UNP W0DP94
Р	76	PHE	-	expression tag	UNP W0DP94
P	77	GLN		expression tag	UNP W0DP94
Р	78	GLY	-	expression tag	UNP W0DP94
Р	79	ALA	-	expression tag	UNP W0DP94
P	80	MET	-	expression tag	UNP W0DP94
P	81	GLY	-	expression tag	UNP W0DP94
Р	281	ALA	LYS	engineered mutation	UNP W0DP94

Chain	Residue	Modelled	Actual	Comment	Reference
S	55	MET	-	initiating methionine	UNP W0DP94
S	56	SER	_	expression tag	UNP W0DP94
S	57	TYR	_	expression tag	UNP W0DP94
S	58	TYR	-	expression tag	UNP W0DP94
S	59	HIS	-	expression tag	UNP W0DP94
S	60	HIS	-	expression tag	UNP W0DP94
\mathbf{S}	61	HIS	-	expression tag	UNP W0DP94
\mathbf{S}	62	HIS	-	expression tag	UNP W0DP94
\mathbf{S}	63	HIS	-	expression tag	UNP W0DP94
\mathbf{S}	64	HIS	-	expression tag	UNP W0DP94
\mathbf{S}	65	ASP	-	expression tag	UNP W0DP94
\mathbf{S}	66	TYR	-	expression tag	UNP W0DP94
\mathbf{S}	67	ASP	-	expression tag	UNP W0DP94
\mathbf{S}	68	ILE	-	expression tag	UNP W0DP94
S	69	PRO	-	expression tag	UNP W0DP94
S	70	THR	-	expression tag	UNP W0DP94
S	71	THR	-	expression tag	UNP W0DP94
S	72	GLU	_	expression tag	UNP W0DP94
S	73	ASN	-	expression tag	UNP W0DP94
S	74	LEU	-	expression tag	UNP W0DP94
S	75	TYR	-	expression tag	UNP W0DP94
S	76	PHE	-	expression tag	UNP W0DP94
S	77	GLN	-	expression tag	UNP W0DP94
S	78	GLY	_	expression tag	UNP W0DP94
S	79	ALA	-	expression tag	UNP W0DP94
S	80	MET	-	expression tag	UNP W0DP94
S	81	GLY	_	expression tag	UNP W0DP94
S	281	ALA	LYS	engineered mutation	UNP W0DP94
V	55	MET	-	initiating methionine	UNP W0DP94
V	56	SER	-	expression tag	UNP W0DP94
V	57	TYR	-	expression tag	UNP W0DP94
V	58	TYR	_	expression tag	UNP W0DP94
V	59	HIS	-	expression tag	UNP W0DP94
V	60	HIS	_	expression tag	UNP W0DP94
V	61	HIS	-	expression tag	UNP W0DP94
V	62	HIS	-	expression tag	UNP W0DP94
V	63	HIS	-	expression tag	UNP W0DP94
V	64	HIS	-	expression tag	UNP W0DP94
V	65	ASP	-	expression tag	UNP W0DP94
V	66	TYR	-	expression tag	UNP W0DP94
V	67	ASP	-	expression tag	UNP W0DP94
V	68	ILE	-	expression tag	UNP W0DP94

Continued from previous page...
Chain | Residue | Modelled | Actual |

Chain	Residue	Modelled	Actual	Comment	Reference
V	69	PRO	-	expression tag	UNP W0DP94
V	70	THR	_	expression tag	UNP W0DP94
V	71	THR	_	expression tag	UNP W0DP94
V	72	GLU	-	expression tag	UNP W0DP94
V	73	ASN	-	expression tag	UNP W0DP94
V	74	LEU	-	expression tag	UNP W0DP94
V	75	TYR	-	expression tag	UNP W0DP94
V	76	PHE	-	expression tag	UNP W0DP94
V	77	GLN	-	expression tag	UNP W0DP94
V	78	GLY	-	expression tag	UNP W0DP94
V	79	ALA	-	expression tag	UNP W0DP94
V	80	MET	-	expression tag	UNP W0DP94
V	81	GLY	-	expression tag	UNP W0DP94
V	281	ALA	LYS	engineered mutation	UNP W0DP94
Y	55	MET	-	initiating methionine	UNP W0DP94
Y	56	SER	-	expression tag	UNP W0DP94
Y	57	TYR	-	expression tag	UNP W0DP94
Y	58	TYR	-	expression tag	UNP W0DP94
Y	59	HIS	-	expression tag	UNP W0DP94
Y	60	HIS	-	expression tag	UNP W0DP94
Y	61	HIS	-	expression tag	UNP W0DP94
Y	62	HIS	-	expression tag	UNP W0DP94
Y	63	HIS	-	expression tag	UNP W0DP94
Y	64	HIS	-	expression tag	UNP W0DP94
Y	65	ASP	-	expression tag	UNP W0DP94
Y	66	TYR	-	expression tag	UNP W0DP94
Y	67	ASP	-	expression tag	UNP W0DP94
Y	68	ILE	-	expression tag	UNP W0DP94
Y	69	PRO	-	expression tag	UNP W0DP94
Y	70	THR	-	expression tag	UNP W0DP94
Y	71	THR	-	expression tag	UNP W0DP94
Y	72	GLU	-	expression tag	UNP W0DP94
Y	73	ASN	-	expression tag	UNP W0DP94
Y	74	LEU	-	expression tag	UNP W0DP94
Y	75	TYR	-	expression tag	UNP W0DP94
Y	76	PHE	-	expression tag	UNP W0DP94
Y	77	GLN	-	expression tag	UNP W0DP94
Y	78	GLY	-	expression tag	UNP W0DP94
Y	79	ALA	-	expression tag	UNP W0DP94
Y	80	MET	-	expression tag	UNP W0DP94
Y	81	GLY	-	expression tag	UNP W0DP94
Y	281	ALA	LYS	engineered mutation	UNP W0DP94

8P3M

Chain	Residue	Modelled	Actual	Comment	Reference
2	55	MET	-	initiating methionine	UNP W0DP94
2	56	SER	-	expression tag	UNP W0DP94
2	57	TYR	_	expression tag	UNP W0DP94
2	58	TYR	-	expression tag	UNP W0DP94
2	59	HIS	-	expression tag	UNP W0DP94
2	60	HIS	-	expression tag	UNP W0DP94
2	61	HIS	-	expression tag	UNP W0DP94
2	62	HIS	-	expression tag	UNP W0DP94
2	63	HIS	-	expression tag	UNP W0DP94
2	64	HIS	-	expression tag	UNP W0DP94
2	65	ASP	-	expression tag	UNP W0DP94
2	66	TYR	-	expression tag	UNP W0DP94
2	67	ASP	-	expression tag	UNP W0DP94
2	68	ILE	-	expression tag	UNP W0DP94
2	69	PRO	-	expression tag	UNP W0DP94
2	70	THR	-	expression tag	UNP W0DP94
2	71	THR	-	expression tag	UNP W0DP94
2	72	GLU	-	expression tag	UNP W0DP94
2	73	ASN	-	expression tag	UNP W0DP94
2	74	LEU	-	expression tag	UNP W0DP94
2	75	TYR	-	expression tag	UNP W0DP94
2	76	PHE	-	expression tag	UNP W0DP94
2	77	GLN	-	expression tag	UNP W0DP94
2	78	GLY	-	expression tag	UNP W0DP94
2	79	ALA	-	expression tag	UNP W0DP94
2	80	MET	-	expression tag	UNP W0DP94
2	81	GLY	-	expression tag	UNP W0DP94
2	281	ALA	LYS	engineered mutation	UNP W0DP94
5	55	MET	-	initiating methionine	UNP W0DP94
5	56	SER	-	expression tag	UNP W0DP94
5	57	TYR	-	expression tag	UNP W0DP94
5	58	TYR	-	expression tag	UNP W0DP94
5	59	HIS	-	expression tag	UNP W0DP94
5	60	HIS	-	expression tag	UNP W0DP94
5	61	HIS	-	expression tag	UNP W0DP94
5	62	HIS	_	expression tag	UNP W0 $\overline{\text{DP94}}$
5	63	HIS	_	expression tag	UNP W0DP94
5	64	HIS	-	expression tag	UNP W0DP94
5	65	ASP	-	expression tag	UNP W0DP94
5	66	TYR	-	expression tag	UNP W0DP94
5	67	ASP	-	expression tag	UNP W0DP94
5	68	ILE	-	expression tag	UNP W0DP94

Chain	Residue	Modelled	Actual	Comment	Reference
5	69	PRO	-	expression tag	UNP W0DP94
5	70	THR	-	expression tag	UNP W0DP94
5	71	THR	-	expression tag	UNP W0DP94
5	72	GLU	-	expression tag	UNP W0DP94
5	73	ASN	-	expression tag	UNP W0DP94
5	74	LEU	-	expression tag	UNP W0DP94
5	75	TYR	-	expression tag	UNP W0DP94
5	76	PHE	-	expression tag	UNP W0DP94
5	77	GLN	-	expression tag	UNP W0DP94
5	78	GLY	-	expression tag	UNP W0DP94
5	79	ALA	-	expression tag	UNP W0DP94
5	80	MET	-	expression tag	UNP W0DP94
5	81	GLY	-	expression tag	UNP W0DP94
5	281	ALA	LYS	engineered mutation	UNP W0DP94
8	55	MET	-	initiating methionine	UNP W0DP94
8	56	SER	-	expression tag	UNP W0DP94
8	57	TYR	-	expression tag	UNP W0DP94
8	58	TYR	-	expression tag	UNP W0DP94
8	59	HIS	-	expression tag	UNP W0DP94
8	60	HIS	-	expression tag	UNP W0DP94
8	61	HIS	-	expression tag	UNP W0DP94
8	62	HIS	-	expression tag	UNP W0DP94
8	63	HIS	-	expression tag	UNP W0DP94
8	64	HIS	-	expression tag	UNP W0DP94
8	65	ASP	-	expression tag	UNP W0DP94
8	66	TYR	-	expression tag	UNP W0DP94
8	67	ASP	-	expression tag	UNP W0DP94
8	68	ILE	-	expression tag	UNP W0DP94
8	69	PRO	-	expression tag	UNP W0DP94
8	70	THR	-	expression tag	UNP W0DP94
8	71	THR	-	expression tag	UNP W0DP94
8	72	GLU	-	expression tag	UNP W0DP94
8	73	ASN	-	expression tag	UNP W0DP94
8	74	LEU	-	expression tag	UNP W0DP94
8	75	TYR	-	expression tag	UNP W0DP94
8	76	PHE	-	expression tag	UNP W0DP94
8	77	GLN	-	expression tag	UNP W0DP94
8	78	GLY	-	expression tag	UNP W0DP94
8	79	ALA	-	expression tag	UNP W0DP94
8	80	MET	-	expression tag	UNP W0DP94
8	81	GLY	-	expression tag	UNP W0DP94
8	281	ALA	LYS	engineered mutation	UNP W0DP94

Chain	Residue	Modelled	Actual	Comment	Reference
Х	55	MET	-	initiating methionine	UNP W0DP94
х	56	SER	-	expression tag	UNP W0DP94
х	57	TYR	_	expression tag	UNP W0DP94
х	58	TYR	-	expression tag	UNP W0DP94
х	59	HIS	_	expression tag	UNP W0DP94
х	60	HIS	-	expression tag	UNP W0DP94
х	61	HIS	_	expression tag	UNP W0DP94
х	62	HIS	-	expression tag	UNP W0DP94
х	63	HIS	-	expression tag	UNP W0DP94
х	64	HIS	-	expression tag	UNP W0DP94
х	65	ASP	-	expression tag	UNP W0DP94
х	66	TYR	-	expression tag	UNP W0DP94
х	67	ASP	-	expression tag	UNP W0DP94
Х	68	ILE	-	expression tag	UNP W0DP94
х	69	PRO	-	expression tag	UNP W0DP94
х	70	THR	-	expression tag	UNP W0DP94
х	71	THR	-	expression tag	UNP W0DP94
х	72	GLU	-	expression tag	UNP W0DP94
х	73	ASN	-	expression tag	UNP W0DP94
х	74	LEU	-	expression tag	UNP W0DP94
х	75	TYR	-	expression tag	UNP W0DP94
х	76	PHE	-	expression tag	UNP W0DP94
х	77	GLN	-	expression tag	UNP W0DP94
х	78	GLY	-	expression tag	UNP W0DP94
х	79	ALA	-	expression tag	UNP W0DP94
х	80	MET	-	expression tag	UNP W0DP94
х	81	GLY	-	expression tag	UNP W0DP94
х	281	ALA	LYS	engineered mutation	UNP W0DP94
e	55	MET	-	initiating methionine	UNP W0DP94
e	56	SER	-	expression tag	UNP W0DP94
e	57	TYR	-	expression tag	UNP W0DP94
е	58	TYR	-	expression tag	UNP W0DP94
e	59	HIS	-	expression tag	UNP W0DP94
e	60	HIS	-	expression tag	UNP W0DP94
е	61	HIS	-	expression tag	UNP W0DP94
е	62	HIS	-	expression tag	UNP W0DP94
е	63	HIS	-	expression tag	UNP W0DP94
e	64	HIS	-	expression tag	UNP W0DP94
e	65	ASP	-	expression tag	UNP W0DP94
е	66	TYR	-	expression tag	UNP W0DP94
e	67	ASP	-	expression tag	UNP W0DP94
е	68	ILE	_	expression tag	UNP W0DP94

Continued from previous page... Chain Residue Modelled Actual

Continued on next page...

Chain		Modelled	Actual	Comment	Reference
е	69	PRO	_	expression tag	UNP W0DP94
e	70	THR	_	expression tag	UNP W0DP94
e	71	THR	_	expression tag	UNP W0DP94
e	72	GLU	-	expression tag	UNP W0DP94
e	73	ASN	_	expression tag	UNP W0DP94
e	74	LEU	_	expression tag	UNP W0DP94
e	75	TYR	-	expression tag	UNP W0DP94
е	76	PHE	_	expression tag	UNP W0DP94
е	77	GLN	_	expression tag	UNP W0DP94
е	78	GLY	-	expression tag	UNP W0DP94
е	79	ALA	_	expression tag	UNP W0DP94
е	80	MET	-	expression tag	UNP W0DP94
е	81	GLY	-	expression tag	UNP W0DP94
е	281	ALA	LYS	engineered mutation	UNP W0DP94
h	55	MET	-	initiating methionine	UNP W0DP94
h	56	SER	-	expression tag	UNP W0DP94
h	57	TYR	-	expression tag	UNP W0DP94
h	58	TYR	-	expression tag	UNP W0DP94
h	59	HIS	-	expression tag	UNP W0DP94
h	60	HIS	-	expression tag	UNP W0DP94
h	61	HIS	_	expression tag	UNP W0DP94
h	62	HIS	-	expression tag	UNP W0DP94
h	63	HIS	-	expression tag	UNP W0DP94
h	64	HIS	-	expression tag	UNP W0DP94
h	65	ASP	-	expression tag	UNP W0DP94
h	66	TYR	-	expression tag	UNP W0DP94
h	67	ASP	-	expression tag	UNP W0DP94
h	68	ILE	-	expression tag	UNP W0DP94
h	69	PRO	-	expression tag	UNP W0DP94
h	70	THR	-	expression tag	UNP W0DP94
h	71	THR	-	expression tag	UNP W0DP94
h	72	GLU	-	expression tag	UNP W0DP94
h	73	ASN	-	expression tag	UNP W0DP94
h	74	LEU	-	expression tag	UNP W0DP94
h	75	TYR	-	expression tag	UNP W0DP94
h	76	PHE	-	expression tag	UNP W0DP94
h	77	GLN	-	expression tag	UNP W0DP94
h	78	GLY	-	expression tag	UNP W0DP94
h	79	ALA	-	expression tag	UNP W0DP94
h	80	MET	-	expression tag	UNP W0DP94
h	81	GLY	-	expression tag	UNP W0DP94
h	281	ALA	LYS	engineered mutation	UNP W0DP94

Chain	Residue	Modelled	Actual	Comment	Reference
k	55	MET	-	initiating methionine	UNP W0DP94
k	56	SER	-	expression tag	UNP W0DP94
k	57	TYR	-	expression tag	UNP W0DP94
k	58	TYR	-	expression tag	UNP W0DP94
k	59	HIS	-	expression tag	UNP W0DP94
k	60	HIS	-	expression tag	UNP W0DP94
k	61	HIS	-	expression tag	UNP W0DP94
k	62	HIS	-	expression tag	UNP W0DP94
k	63	HIS	-	expression tag	UNP W0DP94
k	64	HIS	-	expression tag	UNP W0DP94
k	65	ASP	_	expression tag	UNP W0DP94
k	66	TYR	_	expression tag	UNP W0DP94
k	67	ASP	-	expression tag	UNP W0DP94
k	68	ILE	-	expression tag	UNP W0DP94
k	69	PRO	-	expression tag	UNP W0DP94
k	70	THR	-	expression tag	UNP W0DP94
k	71	THR	-	expression tag	UNP W0DP94
k	72	GLU	-	expression tag	UNP W0DP94
k	73	ASN	-	expression tag	UNP W0DP94
k	74	LEU	-	expression tag	UNP W0DP94
k	75	TYR	-	expression tag	UNP W0DP94
k	76	PHE	-	expression tag	UNP W0DP94
k	77	GLN	_	expression tag	UNP W0DP94
k	78	GLY	-	expression tag	UNP W0DP94
k	79	ALA	-	expression tag	UNP W0DP94
k	80	MET	-	expression tag	UNP W0DP94
k	81	GLY	-	expression tag	UNP W0DP94
k	281	ALA	LYS	engineered mutation	UNP W0DP94

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf					
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	G	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	J	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	М	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	Р	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	Р	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	S	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	V	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	Y	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	2	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	5	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					
2	8	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0					

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	х	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	h	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	k	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 3 is BORIC ACID (three-letter code: BO3) (formula: BH_3O_3).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf				
3	А	1	$\begin{array}{ccc} \text{Total} & \text{B} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0				
3	D	1	$\begin{array}{ccc} \text{Total} & \text{B} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0				

• Molecule 4 is COPPER (II) ION (three-letter code: CU) (formula: Cu) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	2	Total Cu 2 2	0	0
4	D	2	Total Cu 2 2	0	0
4	G	2	Total Cu 2 2	0	0
4	J	2	TotalCu22	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	М	2	Total Cu 2 2	0	0
4	Р	2	Total Cu 2 2	0	0
4	S	2	Total Cu 2 2	0	0
4	V	2	Total Cu 2 2	0	0
4	Y	2	Total Cu 2 2	0	0
4	2	2	Total Cu 2 2	0	0
4	5	2	Total Cu 2 2	0	0
4	8	2	$\begin{array}{ccc} \text{Total} & \text{Cu} \\ 2 & 2 \end{array}$	0	0
4	х	2	Total Cu 2 2	0	0
4	е	2	Total Cu 2 2	0	0
4	h	2	Total Cu 2 2	0	0
4	k	2	Total Cu 2 2	0	0

Continued from previous page...

• Molecule 5 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	Р	1	Total Na 1 1	0	0
5	V	1	Total Na 1 1	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf					
6	А	193	Total O 193 193	0	0					
6	D	198	Total O 198 198	0	0					
6	G	199	Total O 199 199	0	0					

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf					
6	J	219	Total O 219 219	0	0					
6	М	140	Total O 140 140	0	0					
6	Р	154	Total O 154 154	0	0					
6	S	145	Total O 145 145	0	0					
6	V	145	Total O 145 145	0	0					
6	Y	173	Total O 173 173	0	0					
6	2	143	Total O 143 143	0	0					
6	5	187	Total O 187 187	0	0					
6	8	137	Total O 137 137	0	0					
6	х	104	Total O 104 104	0	0					
6	е	94	Total O 94 94	0	0					
6	h	89	Total O 89 89	0	0					
6	k	100	Total O 100 100	0	0					

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Twin-arginine translocation signal domain-containing protein

• Molecule 1: Twin-arginine translocation signal domain-containing protein

Chain G: 75% 16% 5%

MET TYR TYR TYR TYR TYR HIS HIS HIS ASP TRR TYR THR THR THR THR THR THR THR THR THR TH	GLN GLY ALA MET ALA MET CLY CG CG CG CG CG CG CG CG CG CG CG CG CG	M119 W126 N126 N126 P129 M133 M134 A138 E148 E148 F164 F164 F17
P173 D185 R188 R188 R193 R193 F193 F209 F212 D209 F212 D220 F233 F233 F233 F233	D260 D265 M255 L256 R274 C284 C284 C284 C286 C290 C290 C290 C290 C290 C294 C294 C294 C294 C294 C294 C294 C294	G304 D306 R306 R306 R340 R340 C354 C355 C355 C355 C355 C355 C355 C355
A379 A379 S386 P387 D388 D388 0389 Q390 Q390 Q390 P422 P428 P428 P428 P428 P428 P428 C4399 C4397 C4399 C4397 C43777 C43777 C43777 C437777 C437777777777	4431 4432 7432 7432 7435 7435 7435 7435 7445 7445 7445 7445	M451 8455 N459 1464 V475 H482 T487 T487 T487 T483 T487 T483 T514
8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
• Molecule 1: Twin-arginine t	ranslocation signal do	main-containing protein
• Molecule 1: Twin-arginine t Chain J:	ranslocation signal do	main-containing protein 13% •• 5%
• Molecule 1: Twin-arginine t • Molecule 1: Twin-arginine t Chain J: • ####################################	ranslocation signal do 78% E & E & E & E & E & E & E & E & E & E &	main-containing protein 13% • 5%
Molecule 1: Twin-arginine t Chain J: B	ranslocation signal do	main-containing protein 13% • 5% 14% • 5% 15% • 5% 16% • 5% 16% • 5% 16% • 5% 16% • 5% 17% • 5% 18% • 5% 18% • 5% 18% • 5% 18% • 5% 18% • 5% 18% • 5%

 \bullet Molecule 1: Twin-arginine translocation signal domain-containing protein

С	ha	aiı	n	М																	76'	%																	1	6%	5		•	5	5%	1			
MET	SER	TYR	HIS	SIH	STH	SIH	SIH	ASP	TYR	TIF	PRO	THR	THR	GLU	ASN	LEU	TYR	THE	GL.Y	ALA	MET	GLY	K82		L98	D101		A110		S142	E150		L161	F162	1163 V16A	6165		V168	T169	F175) 	R188	M189	N190	L191	R193		E197	L201
-	V205	0070	12 <mark>09</mark>	T210	0222	K223	D224	1225		E-20	E232		R237		D250	L251	K252	N PCN	R265		R274		S280	A281	TOOL	1285	W287	E288	L289	V290		E298		G304	D305		A312		A315	D310	0100	V326	A327	000	R330 1331	P332		E341	P352
-	K363	V 30 1 D365	-	W369	E.375	V376	1377		S391	1092	M395		L398	R399		D413	1110 1110	2T73	R429		Y432	P433		F436		D443	1447		T450	M451	S455	P456		N459	EA7A	F	H482		A485	8408	2 5 7 2	N502	-	1507	DE1 E		F520	GE JO	0700
H527	MC 24	I532	-	R535	E5.38		R544		T548																																								
•	• Molecule 1: Twin-arginine translocation signal domain-containing protein																																																

1461 M229 1191 1477 V334 1191 1483 P345 1191 1491 P345 1191 1591 P345 1200 1592 P346 228 1593 F336 211 1594 P346 238 1594 P36 258 1594 P36 238 15

 \bullet Molecule 1: Twin-arginine translocation signal domain-containing protein

R535 M395 L191 E538 5395 1194 T542 N436 1194 S643 S395 1194 S643 S395 212 S441 K419 Z11 R413 K419 Z12 T543 N434 Z11 R419 K419 Z12 R437 K419 Z13 R443 Y435 Z44 R434 Y448 Z24 R451 H437 R243 R451 H437 R243 R451 H437 R262 R451 H436 Z24 R451 H437 R263 R451 H436 Z264 R451 H436 Z265 R451 H437 R263 R451 H436 Z264 R451 H437 R306 R451 H436 R366 R451 H437 R366 R451 H437 R366 R451 H437 R366 R440 R461 R366 R440 R44 R366 R440 R44 R366 R440 R46 R46<

• Molecule 1: Twin-arginine translocation signal domain-containing protein

K473 D306 D172 F431 F306 D172 H481 F336 D172 H481 F336 M183 H481 F336 M183 H481 F336 M183 H483 F338 M183 Y493 F338 M183 Y493 F338 M183 F500 D382 M133 F501 P344 V218 F503 H336 V218 F503 H336 V218 F503 H337 M236 F503 H336 V218 F503 F338 K226 F538 F428 V218 F538 F428 V218 F538 F438 K267 F538 F438

• Molecule 1: Twin-arginine translocation signal domain-containing protein

Chain x:	83%	10% • 5%
MET SER TYR TYR TYR HIS HIS HIS ASP ASP ASP	ILLE THR THR THR GLU GLU GLV GLV GLV GLV GLV GLV GLV GLV GLV GLV	V180 V180 V180 V205 V205 V205 V205 V205 V237 V237 V243 V243 V243 V243 V243 V243 V243 V243
R265 L266 K267 R274 R275 B276 S280 S280 E295 L295	B305 B305 B306 B346 B346 B356 B356 B356 B356 B356 B356 B356 B35	8416 8429 8429 6430 6430 1441 1441 1445 8451 1445 1445 1445 1445
E513 H527 H528 D529 D529 D529 C535 R535 R544 R544		
• Molecule 1: Tw	in-arginine translocation signal dor	nain-containing protein
Chain e:	86%	7% • 5%
MET SER TYR TYR HIS HIS HIS HIS HIS ASP ASP	11.12 PRO CLU CLU CLU ASN THR ASN ASN CLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	E171 R181 R181 E197 E297 D214 D250 D250 D250 D250 D250 C253 C253 C253 C253 C253 C253 C253 C253
E294 5303 6304 0305 0314 0314 0314 0329 M329 M329 M329 14 M329 14 M329 14 M329 M329 M329 M329 M329 M329 M329 M329	0382 0382 1396 1398 1411 0412 0412 0412 0412 0412 0412 0412	4463 E470 8505 8505 8505 8544 8544 7548
• Molecule 1: Tw	in-arginine translocation signal dor	nain-containing protein
Chain h:	86%	7% • 5%
MET SER TYR TYR HIS HIS HIS HIS HIS ASP TYR ASP	ILE THR THR THR ASN ASN ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	V152 L161 L161 L161 E197 E212 E212 E212 E212 B214 N231 R231 R231 R237 R237 R237 L251
K264 K264 K267 K268 K267 K264 K264 K264 K264 K264 K264 K264 K264	K353 (366) (366) (3391 (3395)	1484 M5 10 M5 25 G5 26 H5 27 H5 25 R5 35 R5 34 R5 44 R5 44 R5 44
• Molecule 1: Tw	in-arginine translocation signal dor	nain-containing protein
Chain k:	84%	10% 5%
MET SER TYR TYR HIS HIS HIS HIS HIS HIS HIS HIS HIS HIS	TILE THR THR ASN ASN ASN ASN TYR ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	E148 K159 N1160 L1161 E171 E171 E171 E171 E197 E197 E197 E19

R535 1233 1547 1251 1548 1251 1548 1251 1553 1251 1251 1251 1251 1251 1251 1251 1251 1251 1251 1251 1251 1251 1252 1251 1251 1251 1252 1251 1251 1251 1252 1250 1253 1250 1253 1377 1250 1377 1374 1377 1374</t

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	98.15Å 142.42Å 294.40Å	Deperitor
a, b, c, α , β , γ	90.00° 90.07° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	49.12 - 2.07	Depositor
Resolution (A)	49.07 - 2.07	EDS
% Data completeness	98.8 (49.12-2.07)	Depositor
(in resolution range)	98.5 (49.07 - 2.07)	EDS
R _{merge}	0.12	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.67 (at 2.07 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0267	Depositor
P.P.	0.179 , 0.234	Depositor
n, n_{free}	0.185 , 0.237	DCC
R_{free} test set	24463 reflections $(5.04%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	27.5	Xtriage
Anisotropy	0.214	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.34, 28.3	EDS
L-test for $twinning^2$	$< L > = 0.47, < L^2 > = 0.30$	Xtriage
Estimated twinning fraction	0.456 for h,-k,-l	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	60462	wwPDB-VP
Average B, all atoms $(Å^2)$	30.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 8.20% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4, CU, NA, BO3 $\,$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	ond lengths	Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	2	0.84	3/3730~(0.1%)	1.41	28/5094~(0.5%)	
1	5	0.91	8/3727~(0.2%)	1.49	42/5090~(0.8%)	
1	8	0.85	3/3720~(0.1%)	1.43	29/5083~(0.6%)	
1	А	0.98	9/3743~(0.2%)	1.50	36/5111~(0.7%)	
1	D	0.95	5/3731~(0.1%)	1.45	23/5094~(0.5%)	
1	G	0.96	6/3749~(0.2%)	1.51	46/5118~(0.9%)	
1	J	0.97	6/3723~(0.2%)	1.47	32/5085~(0.6%)	
1	М	0.94	14/3730~(0.4%)	1.40	28/5093~(0.5%)	
1	Р	0.90	4/3729~(0.1%)	1.44	23/5094~(0.5%)	
1	S	0.90	6/3717~(0.2%)	1.46	37/5077~(0.7%)	
1	V	0.92	8/3724~(0.2%)	1.43	37/5087~(0.7%)	
1	Y	0.90	7/3726~(0.2%)	1.43	26/5089~(0.5%)	
1	е	0.84	1/3719~(0.0%)	1.35	19/5083~(0.4%)	
1	h	0.90	7/3705~(0.2%)	1.36	31/5065~(0.6%)	
1	k	0.82	5/3721~(0.1%)	1.39	31/5085~(0.6%)	
1	х	0.86	1/3711~(0.0%)	1.38	31/5072~(0.6%)	
All	All	0.90	93/59605~(0.2%)	1.43	499/81420~(0.6%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	2	0	3
1	5	0	1
1	V	0	2
1	Y	0	1
1	е	0	3
1	h	0	1
1	k	0	2

Continued from previous page...

Mol	Chain	#Chirality outliers	#Planarity outliers
1	Х	0	1
All	All	0	14

The worst 5 of 93 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
1	h	288	GLU	CD-OE1	12.68	1.39	1.25
1	М	175	GLU	CD-OE2	-10.92	1.13	1.25
1	V	538	GLU	CD-OE1	10.78	1.37	1.25
1	Y	538	GLU	CD-OE1	9.57	1.36	1.25
1	Y	538	GLU	CD-OE2	8.98	1.35	1.25

The worst 5 of 499 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	k	365	ASP	CB-CA-C	-13.43	83.54	110.40
1	Y	330	ARG	NE-CZ-NH1	-12.83	113.89	120.30
1	Х	231	ARG	NE-CZ-NH2	-12.72	113.94	120.30
1	А	188	ARG	NE-CZ-NH1	12.38	126.49	120.30
1	G	274	ARG	NE-CZ-NH1	12.29	126.44	120.30

There are no chirality outliers.

5 of 14 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	2	117	TRP	Peptide
1	2	497	LEU	Peptide
1	V	322	GLY	Mainchain
1	V	429	ARG	Peptide
1	Y	497	LEU	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	2	3627	0	3482	56	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	5	3617		3474	30	
1	8	3617	0	3463	54	0
1	A	3636	0	3491	41	0
1	D	3628	0	3494	48	0
1	G	3636	0	3496	42	0
1	J	3620	0	3476	47	0
1	M	3627	0	3492	36	0
1	P	3626	0	3473	60	0
1	S	3614	0	3475	41	0
1	V	3621	0	3467	55	0
1	Ý	3617	0	3475	39	0
1	e	3608	0	3435	0	0
1	h	3602	0	3436	0	0
1	k	3611	0	3449	0	0
1	X	3608	0	3450	0	0
2	2	5	0	0	0	0
2	5	5	0	0	0	0
2	8	5	0	0	0	0
2	A	10	0	0	1	0
2	D	5	0	0	0	0
2	G	5	0	0	0	0
2	J	5	0	0	0	0
2	М	5	0	0	0	0
2	Р	10	0	0	0	0
2	S	5	0	0	0	0
2	V	5	0	0	0	0
2	Y	5	0	0	0	0
2	h	5	0	0	0	0
2	k	5	0	0	0	0
2	Х	5	0	0	0	0
3	А	4	0	3	0	0
3	D	4	0	3	0	0
4	2	2	0	0	0	0
4	5	2	0	0	0	0
4	8	2	0	0	0	0
4	A	2	0	0	0	0
4	D	2	0	0	0	0
4	G	2	0	0	0	0
4	J	2	0	0	0	0
4	М	2	0	0	0	0
4	Р	2	0	0	0	0
4	S	2	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	V	2	0	0	0	0
4	Y	2	0	0	0	0
4	е	2	0	0	0	0
4	h	2	0	0	0	0
4	k	2	0	0	0	0
4	Х	2	0	0	0	0
5	Р	1	0	0	0	0
5	V	1	0	0	0	0
6	2	143	0	0	3	0
6	5	187	0	0	1	0
6	8	137	0	0	3	0
6	А	193	0	0	3	0
6	D	198	0	0	2	0
6	G	199	0	0	0	0
6	J	219	0	0	3	0
6	М	140	0	0	2	0
6	Р	154	0	0	3	0
6	S	145	0	0	2	0
6	V	145	0	0	2	0
6	Y	173	0	0	1	0
6	е	94	0	0	0	0
6	h	89	0	0	0	0
6	k	100	0	0	0	0
6	X	104	0	0	0	0
All	All	60462	0	55534	547	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

The worst 5 of 547 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:D:197:GLU:OE2	1:5:197:GLU:OE2	1.59	1.19
1:8:148:GLU:OE1	1:8:183:LYS:HE3	1.42	1.18
1:P:429:ARG:HG3	1:P:429:ARG:HH11	1.01	1.17
1:J:450:THR:HG21	1:J:482:HIS:O	1.58	1.03
1:2:397:SER:O	1:2:398:LEU:CB	2.00	1.02

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentil	\mathbf{es}
1	2	465/494~(94%)	435 (94%)	27~(6%)	3~(1%)	25 15	,
1	5	466/494~(94%)	439 (94%)	23~(5%)	4 (1%)	17 8	
1	8	465/494~(94%)	430 (92%)	32~(7%)	3~(1%)	25 15	,
1	А	466/494~(94%)	432 (93%)	30~(6%)	4 (1%)	17 8	
1	D	465/494~(94%)	437 (94%)	26~(6%)	2~(0%)	34 25	,
1	G	467/494~(94%)	438 (94%)	27~(6%)	2~(0%)	34 25	
1	J	465/494~(94%)	435 (94%)	26~(6%)	4 (1%)	17 8	
1	М	465/494~(94%)	436 (94%)	27~(6%)	2~(0%)	34 25	,
1	Р	465/494~(94%)	431 (93%)	31 (7%)	3~(1%)	25 15	,
1	S	465/494~(94%)	431 (93%)	33~(7%)	1 (0%)	47 39	i
1	V	465/494~(94%)	432 (93%)	29~(6%)	4 (1%)	17 8	
1	Y	466/494~(94%)	432 (93%)	30~(6%)	4 (1%)	17 8	
1	е	466/494~(94%)	426 (91%)	36~(8%)	4 (1%)	17 8	
1	h	465/494~(94%)	427 (92%)	37~(8%)	1 (0%)	47 39	i
1	k	466/494 (94%)	423 (91%)	40 (9%)	3 (1%)	25 15	
1	х	465/494~(94%)	425 (91%)	30~(6%)	10 (2%)	6 1	
All	All	7447/7904 (94%)	6909 (93%)	484 (6%)	54 (1%)	22 11	

5 of 54 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	D	398	LEU
1	2	398	LEU
1	8	398	LEU
1	Х	171	GLU
1	А	205	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	2	387/415~(93%)	363~(94%)	24~(6%)	18	10
1	5	386/415~(93%)	364~(94%)	22~(6%)	20	12
1	8	385/415~(93%)	369~(96%)	16 (4%)	30	23
1	А	389/415~(94%)	373~(96%)	16 (4%)	30	23
1	D	388/415~(94%)	374 (96%)	14 (4%)	35	28
1	G	389/415~(94%)	380~(98%)	9 (2%)	50	45
1	J	386/415~(93%)	373~(97%)	13 (3%)	37	30
1	М	388/415~(94%)	371~(96%)	17 (4%)	28	21
1	Р	387/415~(93%)	369~(95%)	18 (5%)	26	18
1	S	384/415~(92%)	361 (94%)	23~(6%)	19	11
1	V	386/415~(93%)	365~(95%)	21 (5%)	22	14
1	Y	386/415~(93%)	367~(95%)	19 (5%)	25	17
1	е	383/415~(92%)	355~(93%)	28 (7%)	14	6
1	h	381/415~(92%)	358 (94%)	23~(6%)	19	11
1	k	384/415~(92%)	362 (94%)	22~(6%)	20	12
1	х	383/415~(92%)	358 (94%)	25~(6%)	17	9
All	All	6172/6640~(93%)	5862 (95%)	310 (5%)	24	16

5 of 310 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	Х	458	PRO
1	h	510	MET
1	е	148	GLU
1	е	463	VAL
1	k	395	MET

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 13 such side chains are listed below:

Mol	Chain	Res	Type
1	8	343	GLN
1	Х	309	HIS
1	k	459	ASN
1	е	434	ASN
1	k	390	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 53 ligands modelled in this entry, 34 are monoatomic - leaving 19 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Bond lengths		Bond angles				
	туре	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	SO4	X	601	-	4,4,4	0.67	0	6,6,6	0.45	0
2	SO4	D	601	-	4,4,4	1.08	0	6,6,6	0.76	0
2	SO4	А	705	-	4,4,4	1.44	1 (25%)	6,6,6	0.61	0
2	SO4	Р	702	-	4,4,4	0.51	0	6,6,6	0.13	0
2	SO4	М	701	-	4,4,4	0.83	0	6,6,6	0.30	0
2	SO4	8	701	-	4,4,4	0.73	0	6,6,6	0.25	0
2	SO4	5	601	-	4,4,4	0.92	0	6,6,6	0.38	0
2	SO4	S	601	-	4,4,4	0.66	0	6,6,6	0.52	0
2	SO4	G	701	-	4,4,4	1.56	1 (25%)	6,6,6	0.67	0

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	E	Bond ang	gles
1VIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
2	SO4	Р	701	-	4,4,4	0.98	0	$6,\!6,\!6$	0.63	0
2	SO4	2	701	-	4,4,4	0.86	0	$6,\!6,\!6$	0.72	0
2	SO4	А	701	-	4,4,4	0.74	0	$6,\!6,\!6$	0.29	0
2	SO4	J	601	-	4,4,4	1.18	0	$6,\!6,\!6$	0.42	0
2	SO4	k	701	-	4,4,4	0.80	0	$6,\!6,\!6$	0.24	0
2	SO4	V	601	-	4,4,4	0.80	0	$6,\!6,\!6$	0.67	0
2	SO4	h	601	-	4,4,4	0.69	0	$6,\!6,\!6$	0.22	0
3	BO3	А	702	-	3,3,3	0.42	0	$3,\!3,\!3$	1.06	0
2	SO4	Y	601	-	4,4,4	1.15	0	$6,\!6,\!6$	0.31	0
3	BO3	D	602	-	3,3,3	0.35	0	3, 3, 3	1.70	1 (33%)

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	G	701	SO4	O2-S	-2.14	1.34	1.46
2	А	705	SO4	O1-S	-2.12	1.34	1.46

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	D	602	BO3	03-B-01	-2.31	111.89	119.79

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	А	701	SO4	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	2	467/494~(94%)	-0.90	0 100 100	19, 30, 43, 73	0
1	5	467/494~(94%)	-0.95	0 100 100	17, 26, 40, 61	3~(0%)
1	8	467/494~(94%)	-0.90	0 100 100	19, 30, 43, 71	1 (0%)
1	А	467/494~(94%)	-0.95	0 100 100	16, 25, 38, 99	3~(0%)
1	D	467/494~(94%)	-0.97	0 100 100	16, 24, 38, 62	2 (0%)
1	G	467/494~(94%)	-0.93	0 100 100	16, 25, 38, 59	0
1	J	467/494~(94%)	-0.96	0 100 100	16, 24, 38, 61	1 (0%)
1	М	467/494~(94%)	-0.94	0 100 100	20, 28, 41, 55	0
1	Р	467/494~(94%)	-0.91	0 100 100	17, 28, 44, 79	1 (0%)
1	S	467/494~(94%)	-0.93	0 100 100	19, 28, 41, 67	0
1	V	467/494~(94%)	-0.92	0 100 100	18, 28, 43, 75	0
1	Y	467/494~(94%)	-0.93	0 100 100	16, 26, 41, 68	1 (0%)
1	е	467/494~(94%)	-0.82	1 (0%) 95 95	23, 35, 50, 78	1 (0%)
1	h	467/494~(94%)	-0.78	0 100 100	22, 34, 49, 70	0
1	k	467/494~(94%)	-0.77	0 100 100	24, 36, 51, 80	0
1	х	467/494~(94%)	-0.85	0 100 100	21, 33, 48, 75	1 (0%)
All	All	7472/7904~(94%)	-0.90	1 (0%) 100 100	16, 29, 45, 99	14 (0%)

All (1) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	е	430	GLY	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

8P3M

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors (A^2)	Q<0.9
3	BO3	D	602	4/4	0.95	0.06	33,34,39,42	0
3	BO3	А	702	4/4	0.96	0.05	41,41,43,49	0
2	SO4	k	701	5/5	0.96	0.11	25,27,34,34	5
2	SO4	Р	702	5/5	0.97	0.08	29,29,31,39	5
2	SO4	А	701	5/5	0.97	0.13	20,23,29,33	5
2	SO4	2	701	5/5	0.98	0.10	22,27,31,36	5
2	SO4	Y	601	5/5	0.98	0.18	19,23,26,28	5
4	CU	V	603	1/1	0.98	0.05	41,41,41,41	0
5	NA	Р	705	1/1	0.98	0.14	27,27,27,27	1
5	NA	V	604	1/1	0.98	0.19	24,24,24,24	1
2	SO4	D	601	5/5	0.99	0.10	29,33,39,41	5
2	SO4	G	701	5/5	0.99	0.14	17,18,20,22	5
2	SO4	5	601	5/5	0.99	0.14	19,20,22,23	5
2	SO4	Х	601	5/5	0.99	0.07	29,30,34,36	5
2	SO4	h	601	5/5	0.99	0.07	36,36,38,38	5
2	SO4	J	601	5/5	0.99	0.11	$30,\!31,\!35,\!38$	5
2	SO4	М	701	5/5	0.99	0.10	30,33,34,34	5
2	SO4	Р	701	5/5	0.99	0.09	26,26,28,33	5
4	CU	А	704	1/1	0.99	0.07	37,37,37,37	0
4	CU	D	603	1/1	0.99	0.08	27,27,27,27	0
4	CU	D	604	1/1	0.99	0.08	34,34,34,34	0
4	CU	G	703	1/1	0.99	0.08	$35,\!35,\!35,\!35$	0
4	CU	J	602	1/1	0.99	0.07	28,28,28,28	0
4	CU	J	603	1/1	0.99	0.09	$35,\!35,\!35,\!35$	0
4	CU	М	703	1/1	0.99	0.06	39,39,39,39	0
4	CU	Р	704	1/1	0.99	0.07	39,39,39,39	0
4	CU	S	603	1/1	0.99	0.06	$38,\!38,\!38,\!38$	0
2	SO4	A	705	5/5	0.99	0.14	18,19,22,24	5
4	CU	Y	602	1/1	0.99	0.08	31,31,31,31	0
4	CU	Y	603	1/1	0.99	0.08	37,37,37,37	0
4	CU	2	703	1/1	0.99	0.08	38,38,38,38	0
4	CU	8	702	1/1	0.99	0.05	$35,\!35,\!35,\!35$	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
4	CU	k	703	1/1	0.99	0.05	43,43,43,43	0
2	SO4	S	601	5/5	0.99	0.13	27,28,31,31	5
2	SO4	V	601	5/5	0.99	0.10	27,27,31,31	5
4	CU	А	703	1/1	1.00	0.07	32,32,32,32	0
4	CU	Р	703	1/1	1.00	0.10	32,32,32,32	0
4	CU	2	702	1/1	1.00	0.08	33,33,33,33	0
2	SO4	8	701	5/5	1.00	0.09	$25,\!28,\!31,\!35$	5
4	CU	5	602	1/1	1.00	0.06	33,33,33,33	0
4	CU	5	603	1/1	1.00	0.06	38,38,38,38	0
4	CU	S	602	1/1	1.00	0.06	33,33,33,33	0
4	CU	8	703	1/1	1.00	0.08	39,39,39,39	0
4	CU	Х	602	1/1	1.00	0.07	36,36,36,36	0
4	CU	Х	603	1/1	1.00	0.07	42,42,42,42	0
4	CU	е	601	1/1	1.00	0.06	38,38,38,38	0
4	CU	е	602	1/1	1.00	0.06	41,41,41,41	0
4	CU	h	602	1/1	1.00	0.06	$37,\!37,\!37,\!37$	0
4	CU	h	603	1/1	1.00	0.05	42,42,42,42	0
4	CU	k	702	1/1	1.00	0.05	40,40,40,40	0
4	CU	G	702	1/1	1.00	0.08	29,29,29,29	0
4	CU	V	602	1/1	1.00	0.06	35,35,35,35	0
4	CU	М	702	1/1	1.00	0.07	$3\overline{1,31,31,31}$	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

