

wwPDB EM Validation Summary Report (i)

Apr 16, 2024 - 01:45 pm BST

PDB ID	:	80IP
EMDB ID	:	EMD-16895
Title	:	$28\mathrm{S}$ mammalian mitochondrial small ribosomal subunit with mtRF1 and P-site
		tRNA
Authors	:	Saurer, M.; Leibundgut, M.; Scaiola, A.; Schoenhut, T.; Ban, N.
Deposited on	:	2023-03-23
Resolution	:	3.60 Å(reported)
Based on initial models	:	7QI4, ., 7NQH

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain							
1	BX	303	5%	95%							
2	Bd	126	12% 17% •	82	2%						
3	AA	962	5%	84%		15%					
4	AB	366	9%	75%	·	25%					
5	AC	167	•	79%		21%					
6	AD	199	• 36%		64%						
7	AE	376	•		68%						
8	AF	242	7%	86%		14%					

Mol	Chain	Length	Quality of chain	
0	AG	72	44%	170/
3	ЛО	12	9%	17%
10	AH	200	70%	30%
11	AI	9	78%	22%
12	AJ	139	78%	22%
13	AK	128	79%	21%
14	AL	259	68%	32%
15	AM	135	6 %	• 13%
16	AN	130	86%	14%
17	AO	258	73%	26%
18	AP	143	6%	32%
19	AQ	87	99%	·
20	AR	382	76%	• 24%
21	AS	190	71%	29%
22	AT	173	97%	•••
23	AU	205	9%	14%
24	AV	395	64% 97%	•••
25	AW	188	5 2% •	47%
26	AX	410	86%	14%
27	AY	381	^{14%} 39% 61%	
28	AZ	148	6 7%	33%
29	Aa	474	80%	• 20%
30	Ab	289	76%	24%
31	Ac	118	98%	
32	Ad	430	10%	• 20%
33	Ae	692	72% 85%	15%

Continued from previous page...

Continued from previous page...

Mol	Chain	Length	Quality of chain						
34	Ag	397	11%	83%		17%			
35	Ai	196	-	69%	•	30%			
36	Aj	505	12%	•	58%				

2 Entry composition (i)

There are 45 unique types of molecules in this entry. The entry contains 72369 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 39S ribosomal protein L19, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	BX	15	Total 99	C 66	N 17	O 16	0	0

• Molecule 2 is a protein called bL31m.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
2	Bd	23	Total 192	C 124	N 31	O 37	0	0

• Molecule 3 is a RNA chain called 12S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	АА	960	Total 20418	C 9169	N 3708	O 6581	Р 960	0	0

• Molecule 4 is a protein called 28S ribosomal protein S35, mitochondrial isoform 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	AB	275	Total 2222	C 1414	N 380	0 419	S 9	0	0

• Molecule 5 is a protein called Mitochondrial ribosomal protein S24.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	AC	132	Total 1075	C 695	N 195	0 181	$\frac{S}{4}$	0	0

• Molecule 6 is a protein called Aurora kinase A interacting protein 1.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
6	AD	72	Total 639	C 407	N 139	O 92	S 1	0	0

• Molecule 7 is a protein called bS6m,Mitochondrial ribosomal protein S6.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	AE	122	Total 981	C 620	N 178	0 177	${ m S}{ m 6}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AE	-22	SER	PRO	conflict	UNP A0A4X1TSM9

• Molecule 8 is a protein called Mitochondrial ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	AF	208	Total 1722	C 1097	N 314	O 300	S 11	0	0

• Molecule 9 is a RNA chain called P-site Met-tRNA(fMet).

Mol	Chain	Residues			AltConf	Trace				
9	AG	72	Total 1512	C 679	N 265	0 496	Р 71	S 1	0	0

• Molecule 10 is a protein called Mitochondrial ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	AH	140	Total 1155	С 746	N 197	O 208	$\frac{S}{4}$	0	0

• Molecule 11 is a RNA chain called mRNA.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
11	AI	9	Total 193	C 88	N 40	0 57	Р 8	0	0

• Molecule 12 is a protein called Mitochondrial ribosomal protein S12.

Mol	Chain	Residues		At	AltConf	Trace			
12	AJ	109	Total 840	C 524	N 172	0 138	S 6	0	0

• Molecule 13 is a protein called Mitochondrial ribosomal protein S14.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	AK	101	Total 858	C 534	N 174	O 144	S 6	0	0

• Molecule 14 is a protein called 28S ribosomal protein S15, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
14	AL	175	Total 1448	C 919	N 272	0 248	${ m S} 9$	0	0

• Molecule 15 is a protein called 28S ribosomal protein S16, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
15	AM	117	Total 932	C 588	N 184	0 155	${f S}{5}$	0	0

• Molecule 16 is a protein called uS17m.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	AN	112	Total 875	C 568	N 153	0 151	${ m S} { m 3}$	0	0

• Molecule 17 is a protein called 28S ribosomal protein S18b, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
17	AO	190	Total 1564	C 991	N 292	0 273	S 8	0	0

• Molecule 18 is a protein called Mitochondrial ribosomal protein S18C.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	AP	97	Total 784	C 507	N 132	0 138	${ m S} 7$	0	0

• Molecule 19 is a protein called 28S ribosomal protein S21, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
19	AQ	86	Total 737	C 455	N 148	0 126	S 8	0	0

• Molecule 20 is a protein called Mitochondrial ribosomal protein S22.

Mol	Chain	Residues		At		AltConf	Trace		
20	AR	292	Total 2378	C 1518	N 409	O 442	S 9	0	0

• Molecule 21 is a protein called mS23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	AS	135	Total 1101	C 709	N 199	0 192	S 1	0	0

• Molecule 22 is a protein called Mitochondrial ribosomal protein S25.

Mol	Chain	Residues		A	toms	AltConf	Trace		
22	AT	169	Total 1367	C 876	N 236	O 245	S 10	0	0

• Molecule 23 is a protein called Mitochondrial ribosomal protein S26.

Mol	Chain	Residues	Atoms					AltConf	Trace
23	AU	177	Total 1467	C 904	N 288	0 273	${S \over 2}$	0	0

• Molecule 24 is a protein called Mitochondrial ribosomal protein S27.

Mol	Chain	Residues		At		AltConf	Trace		
24	AV	388	Total 3109	C 1971	N 535	O 589	S 14	0	0

• Molecule 25 is a protein called Mitoribosomal protein ms28, mrps28.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	AW	99	Total 778	C 494	N 134	0 146	${S \atop 4}$	0	0

• Molecule 26 is a protein called Death associated protein 3.

Mol	Chain	Residues		At	AltConf	Trace			
26	AX	353	Total 2875	C 1837	N 515	0 513	S 10	0	0

• Molecule 27 is a protein called 28S ribosomal protein S31, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
27	AY	149	Total 1250	C 807	N 211	O 229	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called Mitochondrial ribosomal protein S33.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	AZ	99	Total 824	C 522	N 156	0 143	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called Peptide chain release factor 1, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
29	Aa	381	Total 3120	C 1943	N 572	O 592	S 13	1	0

There are 29 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Aa	446	GLY	-	expression tag	UNP 075570
Aa	447	GLY	-	expression tag	UNP 075570
Aa	448	SER	-	expression tag	UNP 075570
Aa	449	GLY	-	expression tag	UNP 075570
Aa	450	GLY	-	expression tag	UNP 075570
Aa	451	SER	-	expression tag	UNP 075570
Aa	452	GLY	-	expression tag	UNP 075570
Aa	453	ASP	-	expression tag	UNP 075570
Aa	454	TYR	-	expression tag	UNP 075570
Aa	455	LYS	-	expression tag	UNP 075570
Aa	456	ASP	-	expression tag	UNP 075570
Aa	457	HIS	-	expression tag	UNP 075570
Aa	458	ASP	-	expression tag	UNP 075570
Aa	459	GLY	-	expression tag	UNP 075570
Aa	460	ASP	-	expression tag	UNP 075570
Aa	461	TYR	-	expression tag	UNP 075570
Aa	462	LYS	-	expression tag	UNP 075570
Aa	463	ASP	-	expression tag	UNP 075570
Aa	464	HIS	-	expression tag	UNP 075570
Aa	465	ASP	-	expression tag	UNP 075570
Aa	466	ILE	-	expression tag	UNP 075570
Aa	467	ASP	-	expression tag	UNP 075570
Aa	468	TYR	-	expression tag	UNP 075570
Aa	469	LYS	-	expression tag	UNP 075570
Aa	470	ASP	-	expression tag	UNP 075570

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
Aa	471	ASP	-	expression tag	UNP 075570
Aa	472	ASP	-	expression tag	UNP 075570
Aa	473	ASP	-	expression tag	UNP 075570
Aa	474	LYS	-	expression tag	UNP 075570

• Molecule 30 is a protein called Mitochondrial ribosomal protein S2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
30	Ab	220	Total 1762	C 1126	N 326	0 304	S 6	0	0

• Molecule 31 is a protein called Coiled-coil-helix-coiled-coil-helix domain containing 1.

Mol	Chain	Residues	Atoms				AltConf	Trace	
31	Ac	116	Total 933	C 579	N 185	0 161	S 8	0	0

• Molecule 32 is a protein called 28S ribosomal protein S5, mitochondrial isoform X2.

Mol	Chain	Residues	Atoms					AltConf	Trace
32	Ad	343	Total 2732	C 1707	N 527	0 487	S 11	0	0

• Molecule 33 is a protein called mS39.

Mol	Chain	Residues	Atoms					AltConf	Trace
33	Ae	588	Total 4748	C 3039	N 804	0 879	S 26	0	0

• Molecule 34 is a protein called uS9m.

Mol	Chain	Residues	Atoms				AltConf	Trace	
34	Ag	328	Total 2650	C 1678	N 478	0 481	S 13	0	0

• Molecule 35 is a protein called Mitochondrial ribosomal protein S11.

Mol	Chain	Residues	Atoms				AltConf	Trace	
35	Ai	137	Total 1008	C 632	N 192	0 181	${ m S} { m 3}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ai	186	5F0	ASN	variant	UNP A0A286ZJJ6

• Molecule 36 is a protein called Mitochondrial ribosomal protein S34.

Mol	Chain	Residues	Atoms				AltConf	Trace	
36	Aj	213	Total 1788	C 1131	N 338	0 311	S 8	0	0

• Molecule 37 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
37	АА	120	Total Mg 120 120	0
37	AD	1	Total Mg 1 1	0
37	AG	1	Total Mg 1 1	0
37	AI	1	Total Mg 1 1	0
37	AJ	2	Total Mg 2 2	0
37	AX	1	Total Mg 1 1	0
37	Ab	1	Total Mg 1 1	0

 $\bullet\,$ Molecule 38 is SPERMINE (three-letter code: SPM) (formula: $\rm C_{10}H_{26}N_4).$

Mol	Chain	Residues	Atoms	AltConf
38	AA	1	Total C N 14 10 4	0

Mol	Chain	Residues	Atoms	AltConf
39	АА	1	Total C N 10 7 3	0

• Molecule 40 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
40	AA	11	Total K 11 11	0

• Molecule 41 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
41	AO	1	Total Zn 1 1	0

• Molecule 42 is FE-S-O HYBRID CLUSTER (three-letter code: FS2) (formula: Fe₄O₃S₂).

Ν	Aol	Chain	Residues	Atoms	AltConf
	42	AP	1	Total Fe S	0
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	42	AT	1	4 2 2	0

• Molecule 43 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $\rm C_{10}H_{16}N_5O_{13}P_3).$

Mol	Chain	Residues		Ate	oms			AltConf
12	٨v	1	Total	С	Ν	Ο	Р	0
40	АЛ	1	31	10	5	13	3	0

• Molecule 44 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula: $C_{10}H_{15}N_5O_{11}P_2$).

Mol	Chain	Residues	AltConf					
44	AX	1	Total 28	C 10	N 5	0 11	Р 2	0

• Molecule 45 is water.

Mol	Chain	Residues	Atoms	AltConf
45	AX	3	Total O 3 3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 39S ribosomal protein L19, mitochondrial

U223 C244 A250 U257 C258 A261 A261 A261 A261 A261 C288 C288	A293 C296 A297 A310 A311 A312 A312 A312 A312 A313 A313 C315 C315	A317 C318 A329 A328 A328 C354 C355 C354 C355 A367 A367 A367	C372 C361 C365 C395 C396 C396	C417 A421 U428 A455 A455 C457
A461 6465 0471 A477 A477 A477 A477 A477 C495 C530	C538 A539 A539 C541 U566 A571 A571 C576 C576 C576 C576 U596	0004 0004 0005 0005 0005 0005 0005 0005	A641 A645 A645 A645 A647 A665 A665	6882 C685 A698 U699
A708 A711 A711 A720 C721 U722 U723 U723 U733 A731 A733 A734	A739 U740 C741 C742 A743 A743 A746 C745 A748 A751 A751	A 753 C 766 A 730 A 730 G 822 G 823 C 825 C 825 C 825 C 825	A 4838 C 848 C 848 A 868 A 868 C 848 A 868 C 870 C 870 C C 870 C C 870 C C 870 C C C	A872 A873 A875 A876 A876 A876 A877 A876 A878 A878 A878
A882 C883 C884 U885 A886 A886 A886 C891 A890 C891 A893 A893 U894	A896 C897 A898 A998 A900 A901 C902 A919 A919 C917 A919 C917	A 958 A 929 G 930 U 932 A 943 A 944 A 944 A 945 G 955 G 957 G 957	1959 1950 1950 1960 1962	
• Molecule 4: 28S rik	posomal protein S35,	mitochondrial iso	form 1	
Chain AB:	75%		• 25%	
MET TILE TILE VAL SER SER SER ARG GLY ALA ARG ALA ALA VAL	L ELU ARG ARG ARG ALA ALA PRO PRO VAL LEU ALA ALA ALA	CYS PRO LEU PRO LEU VAL CYS CYS ASP ASP ASP ASP ASP ASP ASP ASP	ALA THR SER LEU PRO ALA TRP LEU LEU	LVS ARG ALA GLY THR PHE
ARG ALA ALA ALA SER SER MET ALA ALA ALA ALA ALA ARG SER SER SER SER	ALA LEU ARG ARG ARG CLU CLU PRO GLU CLU ARG ALA	R51 R52 K53 K53 G65 G65 G7 K94	D130 D140 S141 D142 D186	1211 E281 E282 E286 Q270 Q271
K272 A273 A274 E275 K276 K276 L278 L278 E279 L280 S281 K282 S281	E284 ♦ L286 ♦ K289 ♦ K289 ♦ K289 ♦ K325 ♦			
• Molecule 5: Mitoch	ondrial ribosomal pro	otein S24		
Chain AC:	79%		21%	
MET VAL ALLA ALLA ALLA CVAL CVS GLY CVS GLY CVS CVS GLY VAL LEU VAL	TREP SER SER ARG CTS CTS CTS CTS ARG ALA ARG ALA ARG ALA ARG ALA SER SER SER SER SER SER SER SER SER SER	ALA VAL CYS KI36 GI02 I167		
• Molecule 6: Aurora	a kinase A interacting	; protein 1		
Chain AD:	36%	64%		
MET PHE LEU VAL ARG LEU CLN LEU LEU LEU ARG ARA ARA CLN THR	ALY ALA GLY GLY SER SER PRO PRO PRO PRO CLU VAL LEU VAL LEU VAL LEU VAL ARG GLU VAL	HIS ALA CYS CYS ARG PRO ARG TYR SER THR GLN PRO PRO	GLY PRO SER GLY ILE ALA SER LEU PRO CLY	LYS HIS VAL HIS PRO GLU LEU
GLU GLU GLU VAL LEU VAL LYS ARC ARC ARC SER SER SER SER SER CLU	TRP THR LEU THR THR THR THR THR CLEU CLEU CLU CLU CLY CLY THR CLY	PRO GLY THR VAL SER PRO ALA CLN CLN CVS	PRO PRO GLN GLY GLY GLY VAL VAL	GLY ASP LYS CLU VAL VAL ARG
ASP THR PRO GLN GLN CYS K128 K128 C188 C188 C188	661D			

• Molecule 7: bS6m,Mitochondrial ribosomal protein S6

 \bullet Molecule 12: Mitochondrial ribosomal protein S12

Chain AJ:	78%	22%
MET TRP SER SER SER SER LEU LEU CLY CLY CLY CLY CLY CLY CLY CLY CVS CVS CVS	CLY CLEU LEU LLEU PRO PRO ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	
• Molecule 13: Mitoc	nondrial ribosomal protein S14	-
Chain AK:	79%	21%
MET ALA ALA ALA ALA BLC DEU CEU CEU CEU CEU CEU CEU CEU CEU CEU C	VAL PRO SER SER ALA SER ALA GLN VAL AAL AAL BC B31 B31 B31 B31 B31 B31 B31 B31 B31 B31	
• Molecule 14: 28S ri	posomal protein S15, mitochono	drial
Chain AL:	68%	32%
MET LEU LEU ALA ALA ALA ALA ALA ALA SER SER TLE TLE CLN GLN	VAL VAL GLN CLN CLN CLN CLN VAL CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLE	LEU PRO PRO PRO PRO PRO CLY CLEU LEU ARG ALA ARG ALA ARG ALA ALA ALA ALA ALA CLY PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
0.1 Y 0.1 U 0.1 U 0.1 U 0.1 N 1.1 H 1.1 U 0.1 V 1.1 E 1.1 E 1.1 E 1.1 E 1.1 E 0.1 Y 1.1 E 0.1 Y 0.1 Y 0.1 Y 1.1 E 0.1 Y 0.1 Y	LEU CIS LEU ASN ASN PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	E118 P120 E121 E121 A227 A231 A231 A233 A233 A234 A233 A233 A234 A235 A233 A233 A234 A235 A233 A235 A235 A235 A235 A235 A235
• Molecule 15: 28S ri	posomal protein S16, mitochono	drial
Chain AM:	85%	• 13%
MET VAL GLN GLN GLN THR THR THR VAL CISU CISU CISU CISU CISU CISU	Q123 C125 C125 C125 C125 C126 C126 C126 C12 C126 C12 C126 C12 C126 C12 C126 C12 C126 C12 C126 C12 C126 C127 C126 C123 C126 C123 C123 C123 C123 C123 C123 C123 C123	
• Molecule 16: uS17m	1	
Chain AN:	86%	14%
MET 32 32 44 6107 51108 5111 7111 61112 61113 5ER 7HR	LEU THR THR THR ASN ASN ALA ALA ALA ALA ALA CUU CUU CUU CUU CUU CUU CUU CUU CUU CU	
• Molecule 17: 28S ri	cosomal protein S18b, mitochor	ndrial
Chain AO:	73%	• 26%
MET ALA ALA ALA ALA SER SER SER SER ASU ASU ASU ASG ASG ASG ASG ASG ASG ASG ASG ASG ASU ASG ASU ASU ASU ASU ASU ASU ASU ASU ASU ASU	SER PRO PRO ARG ALA ALA ALA ALA CVAL CLEU CLEU CLEU CLEU CLEU CVS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ASP ASP ASP SER CLU PRO GLN VAL PRO PSO PSO PSO PSO PSO PSO PSO PSO PSO PS

• Molecule 35: Mitochondrial ribosomal protein S11

Cha	in .	Ai:	-									699	%										·				30'	%											
MET GLN VAL	VAL ARG	ASN ALA	GLY SER	ARG LEU	GIN	SER TRP	ALA TPD	PRO	PRO LYS	THR	ILE	VAL ALA	GLY	PRO	ALA SFR	THR	ILE	ARG	SER ALA	PRO	HIS	CTN	ASP ALA	ALA ALA	LYS	ASP	GLU	ASP	GLU	ALA	THR	SER							
S61	۲.Jh	R120	5F0186	L196																																			
• M	ole	cul	e 3	6:	М	[ito	ch	on	dr	ial	ri	bc	osc	m	al	pı	rot	tei	n	S3	84																		
Cha	in .	Aj:		12	:%	-		42'	%						•								5	8%															
MET ARG GLU	ARG ARG	LEU	GLY ARG	VAL THR	GLN	THR	THR	ARG	ALA ARG	ILE	LEU	HIS	ALA	PRO	GLU ALA	PRO	GLY ARG	ALA	GLY	LEU	THR	VAL	THR	ALA GLN	GLY	GLN	GLY LEU	GLN	ASP	GLY	SER	TLE	GLN						
GLY TRP ASP	GL V GL V	ARG ARG	VAL SER	CYS HIS	SER	PHE SER	PRO	ARG	ASP THR	THR	VAL	ARG ARG	ALA	PRO	GLN	ARG	GLN	VAL	ASP LYS	THR	LEU ILE	GLY	GLY	SER GLN	SER	GLY	PRO SER	VAL SER	SER	SER	THR	CLY GLY	PRO ALA						
PRO VAL PRO	GL Y ARG	LEU THR	ALA PHE	ARG GLU	AL.A LEII	PRO CYS	ARG	GLN	ALA ASP	TYR	LEU	SER GLY	LEU	GLY	THR	GLU	GLU SER	ILE	PRO PRO	PRO	ALA ALA	SIH	TRP ALA	ARG PRO	SIH	GLY	PRO ARG	ALA	PRO GI V	ALA	ALA ARG	ALA	ARG VAL						
ALA ALA ALA	ALA VAL	PRO TRP	PRO PRO	PRO CYS	ALA	PRO PRO	GLY	GLY	ARG SER	ARG	PRO	ARG ALA	GLY	THR	LEU	VAL	ARG VAL	ARG	ASP LEU	PRO	GLY ARG	GLY	PRO PRO	ARG SER	PRO AT A	PRO	ALA PRO	ALA ARC	ALA	GLY	PRO	SER	SER VAL						
GLY GLY	PRO PRO	GLY LEU	PHE CYS	ALA SER	GLY	ALA ARG	THR	TEU	ARG GLU	THR	ALA	ALA SER	GLY	GLY	ARG	ARG	ARG	ALA	ALA ALA	SER	SER GLY	GLN	SER THR	GLU ALA	PRO AT A	ALA	M1	AZ R3	K4	KS	A12	Ela	R16	V18	R19				
A20 L21	K22 E23	Q24 R25	E26	R27	D30	132	F74	H	A105	E107		D110	L118	V1 73	07 TV	S126	E127	A1 28 R1 29		D138	L141		E146	E14/	A149	F150	1151 A152	F153	T154	V156	P157	D159	T160	M173	K180	D183	F1 94	K19/ 1198	
D199	K206 L207	E208 A209	K210	K212	T213	GLY AT A	ALA	VAL																															

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	50622	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	81000	Depositor
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	3.185	Depositor
Minimum map value	-1.749	Depositor
Average map value	-0.001	Depositor
Map value standard deviation	0.102	Depositor
Recommended contour level	0.5	Depositor
Map size (Å)	532.5, 532.5, 532.5	wwPDB
Map dimensions	500, 500, 500	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.065, 1.065, 1.065	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GDP, 5MU, 5F0, AYA, FS2, K, FME, MG, MA6, ZN, ATP, SPD, SPM, 5MC, B8T

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Ъ <i>Т</i> -1	Chain	Bo	nd lengths	B	Bond angles							
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5							
1	BX	0.29	0/103	0.37	0/143							
2	Bd	0.27	0/197	0.42	0/265							
3	AA	0.20	0/22734	0.67	4/35392~(0.0%)							
4	AB	0.24	0/2268	0.44	0/3069							
5	AC	0.25	0/1105	0.47	0/1496							
6	AD	0.23	0/650	0.53	0/858							
7	AE	0.25	0/999	0.50	0/1347							
8	AF	0.24	0/1764	0.45	0/2368							
9	AG	0.30	1/1677~(0.1%)	0.69	0/2606							
10	AH	0.24	0/1181	0.47	0/1597							
11	AI	0.19	0/217	0.67	0/337							
12	AJ	0.25	0/858	0.52	0/1152							
13	AK	0.23	0/874	0.53	0/1171							
14	AL	0.24	0/1473	0.44	0/1970							
15	AM	0.24	0/954	0.52	0/1284							
16	AN	0.25	0/894	0.47	0/1213							
17	AO	0.25	0/1616	0.47	0/2195							
18	AP	0.25	0/802	0.42	0/1079							
19	AQ	0.25	0/740	0.54	0/986							
20	AR	0.24	0/2428	0.44	0/3279							
21	AS	0.25	0/1126	0.49	0/1514							
22	AT	0.25	0/1399	0.45	0/1881							
23	AU	0.24	0/1490	0.50	0/2005							
24	AV	0.23	0/3171	0.44	0/4292							
25	AW	0.25	0/790	0.49	0/1064							
26	AX	0.24	0/2945	0.45	0/3984							
27	AY	0.25	0/1285	0.42	0/1734							
28	AZ	0.24	0/841	0.49	0/1121							
29	Aa	0.23	0/3171	0.45	0/4263							
30	Ab	0.25	0/1804	0.48	0/2445							
31	Ac	0.24	0/942	0.50	0/1261							
32	Ad	0.24	0/2785	0.50	0/3735							

Mal	Chain	Bo	Bond lengths		ond angles
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	Ae	0.24	0/4856	0.40	0/6579
34	Ag	0.24	0/2707	0.47	0/3636
35	Ai	0.25	0/1018	0.48	0/1375
36	Aj	0.23	0/1835	0.52	0/2484
All	All	0.23	1/75699~(0.0%)	0.55	4/107180 (0.0%)

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
9	AG	1	A	OP3-P	-10.53	1.48	1.61

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	AA	119	С	C2-N1-C1'	5.63	125.00	118.80
3	AA	745	С	C2-N1-C1'	5.30	124.64	118.80
3	AA	745	С	N1-C2-O2	5.22	122.03	118.90
3	AA	119	С	N1-C2-O2	5.04	121.93	118.90

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	BX	13/303~(4%)	12 (92%)	1 (8%)	0	100 100

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
		1	1

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	Bd	21/126~(17%)	20~(95%)	1 (5%)	0	100	100
4	AB	273/366~(75%)	268 (98%)	5 (2%)	0	100	100
5	AC	130/167~(78%)	125 (96%)	5 (4%)	0	100	100
6	AD	70/199~(35%)	70 (100%)	0	0	100	100
7	AE	120/376~(32%)	118 (98%)	2 (2%)	0	100	100
8	AF	206/242~(85%)	201 (98%)	5 (2%)	0	100	100
10	AH	138/200~(69%)	129 (94%)	8 (6%)	1 (1%)	22	61
12	AJ	107/139~(77%)	105 (98%)	2 (2%)	0	100	100
13	AK	99/128~(77%)	99 (100%)	0	0	100	100
14	AL	173/259~(67%)	169 (98%)	4 (2%)	0	100	100
15	AM	115/135~(85%)	112 (97%)	3 (3%)	0	100	100
16	AN	110/130~(85%)	106 (96%)	4 (4%)	0	100	100
17	AO	188/258 (73%)	185 (98%)	3 (2%)	0	100	100
18	AP	95/143~(66%)	95 (100%)	0	0	100	100
19	AQ	84/87~(97%)	84 (100%)	0	0	100	100
20	AR	290/382~(76%)	283 (98%)	7 (2%)	0	100	100
21	AS	133/190~(70%)	130 (98%)	3 (2%)	0	100	100
22	AT	167/173~(96%)	165 (99%)	2(1%)	0	100	100
23	AU	175/205~(85%)	174 (99%)	1 (1%)	0	100	100
24	AV	386/395~(98%)	369 (96%)	17 (4%)	0	100	100
25	AW	97/188~(52%)	96 (99%)	1 (1%)	0	100	100
26	AX	351/410~(86%)	341 (97%)	10 (3%)	0	100	100
27	AY	147/381~(39%)	146 (99%)	1 (1%)	0	100	100
28	AZ	97/148~(66%)	95 (98%)	2 (2%)	0	100	100
29	Aa	380/474~(80%)	372 (98%)	8 (2%)	0	100	100
30	Ab	218/289~(75%)	209 (96%)	9 (4%)	0	100	100
31	Ac	114/118 (97%)	111 (97%)	3 (3%)	0	100	100
32	Ad	341/430~(79%)	331 (97%)	10 (3%)	0	100	100
33	Ae	584/692~(84%)	576 (99%)	8 (1%)	0	100	100
34	Ag	326/397~(82%)	323 (99%)	3 (1%)	0	100	100
35	Ai	134/196~(68%)	130 (97%)	4 (3%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
36	Aj	211/505~(42%)	208~(99%)	3 (1%)	0	100	100
All	All	6093/8831 ($69%$)	5957 (98%)	135 (2%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
10	AH	126	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
1	BX	8/266~(3%)	8 (100%)	0	100	100
2	Bd	19/114~(17%)	18 (95%)	1 (5%)	22	58
4	AB	249/322~(77%)	247 (99%)	2 (1%)	81	91
5	AC	115/142~(81%)	115 (100%)	0	100	100
6	AD	66/174~(38%)	66 (100%)	0	100	100
7	AE	107/283~(38%)	107~(100%)	0	100	100
8	AF	181/205~(88%)	180 (99%)	1 (1%)	86	94
10	AH	130/180~(72%)	130 (100%)	0	100	100
12	AJ	92/116~(79%)	92~(100%)	0	100	100
13	AK	92/114~(81%)	92~(100%)	0	100	100
14	AL	159/222~(72%)	$159\ (100\%)$	0	100	100
15	AM	97/113~(86%)	95~(98%)	2(2%)	53	78
16	AN	97/114~(85%)	97~(100%)	0	100	100
17	AO	170/225~(76%)	168~(99%)	2(1%)	71	87
18	AP	89/127~(70%)	89~(100%)	0	100	100
19	AQ	77/78~(99%)	77~(100%)	0	100	100
20	AR	258/330~(78%)	256 (99%)	2(1%)	81	91

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
21	AS	113/162~(70%)	112 (99%)	1 (1%)	78	90
22	AT	152/155~(98%)	150 (99%)	2 (1%)	69	86
23	AU	149/168~(89%)	149 (100%)	0	100	100
24	AV	325/347~(94%)	322~(99%)	3 (1%)	78	90
25	AW	86/160~(54%)	84 (98%)	2 (2%)	50	76
26	AX	312/361~(86%)	312 (100%)	0	100	100
27	AY	134/342~(39%)	134 (100%)	0	100	100
28	AZ	86/125~(69%)	86 (100%)	0	100	100
29	Aa	339/424~(80%)	336~(99%)	3 (1%)	78	90
30	Ab	187/233~(80%)	187 (100%)	0	100	100
31	Ac	100/102~(98%)	100 (100%)	0	100	100
32	Ad	282/351~(80%)	277~(98%)	5 (2%)	59	81
33	Ae	521/604~(86%)	521 (100%)	0	100	100
34	Ag	273/333~(82%)	273 (100%)	0	100	100
35	Ai	102/150~(68%)	102 (100%)	0	100	100
36	Aj	188/404 (46%)	185 (98%)	3 (2%)	62	83
All	All	5355/7546 (71%)	5326 (100%)	29 (0%)	89	95

Continued from previous page...

5 of 29 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
24	AV	315	LEU
36	Aj	173	MET
25	AW	148	LEU
32	Ad	288	HIS
25	AW	109	VAL

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 59 such sidechains are listed below:

Mol	Chain	Res	Type
26	AX	169	GLN
35	Ai	107	GLN
29	Aa	202	GLN
35	Ai	73	ASN
33	Ae	380	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
11	AI	8/9~(88%)	2~(25%)	0
3	AA	956/962~(99%)	143 (14%)	0
9	AG	70/72~(97%)	10 (14%)	0
All	All	1034/1043~(99%)	155 (14%)	0

5 of 155 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
3	AA	5	А
3	AA	18	G
3	AA	34	U
3	AA	42	А
3	AA	43	U

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

9 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	T in le	Bo	ond leng	ths	B	ond ang	les
INIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
19	AYA	AQ	2	19	6,7,8	0.77	0	$5,\!8,\!10$	0.29	0
3	MA6	AA	945	3	18,26,27	1.10	1 (5%)	19,38,41	1.93	3 (15%)
3	MA6	AA	944	3	18,26,27	1.10	2 (11%)	19,38,41	2.03	3 (15%)
9	FME	AG	72	9	8,9,10	0.55	0	7,9,11	0.98	1 (14%)
31	AYA	Ac	2	31	6,7,8	0.78	0	5,8,10	0.27	0
3	5MU	AA	428	3	19,22,23	1.38	5 (26%)	28,32,35	1.98	6 (21%)
35	5F0	Ai	186	35	8,8,9	1.46	2 (25%)	7,9,11	1.69	1 (14%)
3	B8T	AA	846	3	19,22,23	0.43	0	26,31,34	0.37	0
3	5MC	AA	848	3	18,22,23	0.93	2 (11%)	26,32,35	1.05	2 (7%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
19	AYA	AQ	2	19	-	2/4/6/8	-
3	MA6	AA	945	3	-	4/7/29/30	0/3/3/3
3	MA6	AA	944	3	-	0/7/29/30	0/3/3/3
9	FME	AG	72	9	-	1/7/9/11	-
31	AYA	Ac	2	31	-	2/4/6/8	-
3	5MU	AA	428	3	-	0/7/25/26	0/2/2/2
35	5F0	Ai	186	35	-	4/9/9/10	-
3	B8T	AA	846	3	-	0/7/27/28	0/2/2/2
3	5MC	AA	848	3	-	0/7/25/26	0/2/2/2

The worst 5 of 12 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	AA	944	MA6	C5-N7	3.33	1.51	1.39
3	AA	945	MA6	C5-N7	3.31	1.51	1.39
35	Ai	186	5F0	OD1-C1	2.92	1.40	1.33
3	AA	428	5MU	C6-C5	2.66	1.39	1.34
3	AA	428	5MU	C4-N3	-2.62	1.34	1.38

The worst 5 of 16 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	AA	944	MA6	C4-C5-N7	-5.65	103.51	109.40
3	AA	945	MA6	C4-C5-N7	-5.22	103.96	109.40
3	AA	428	5MU	C4-N3-C2	-4.88	121.04	127.35
3	AA	944	MA6	C1'-N9-C4	-4.84	118.13	126.64
3	AA	428	5MU	N3-C2-N1	4.57	120.95	114.89

There are no chirality outliers.

5	of	13	$\operatorname{torsion}$	outliers	are	listed	below:
---	----	----	--------------------------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms
3	AA	945	MA6	C5-C6-N6-C9
3	AA	945	MA6	C5-C6-N6-C10
9	AG	72	FME	O1-CN-N-CA
35	Ai	186	5F0	OD1-C1-CA-CB
19	AQ	2	AYA	OT-CT-N-CA

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 145 ligands modelled in this entry, 139 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type	Chain	Dec	Bond lengths			Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
38	SPM	AA	1120	-	13,13,13	0.35	0	12,12,12	0.94	0
39	SPD	AA	1121	-	9,9,9	0.33	0	8,8,8	0.85	0
44	GDP	AX	503	-	24,30,30	0.94	1 (4%)	30,47,47	1.30	4 (13%)
43	ATP	AX	501	37	26,33,33	0.61	0	31,52,52	0.73	2 (6%)
42	FS2	AT	201	22,15	0,5,14	-	-	-		
42	FS2	AP	201	7,18	0,5,14	-	-	-		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
42	FS2	AT	201	22,15	-	-	0/2/2/6
38	SPM	AA	1120	-	-	2/11/11/11	-
39	SPD	AA	1121	-	-	0/7/7/7	-
43	ATP	AX	501	37	-	2/18/38/38	0/3/3/3
44	GDP	AX	503	-	-	3/12/32/32	0/3/3/3
42	FS2	AP	201	7,18	-	-	0/2/2/6

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
44	AX	503	GDP	C6-N1	-2.31	1.34	1.37

The worst 5 of 6 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
44	AX	503	GDP	PA-O3A-PB	-3.59	120.49	132.83
44	AX	503	GDP	C3'-C2'-C1'	3.05	105.58	100.98
44	AX	503	GDP	C8-N7-C5	2.37	107.50	102.99
43	AX	501	ATP	C5-C6-N6	2.28	123.81	120.35
44	AX	503	GDP	C5-C6-N1	2.26	117.94	113.95

There are no chirality outliers.

5 of 7 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
43	AX	501	ATP	O4'-C4'-C5'-O5'
44	AX	503	GDP	O4'-C4'-C5'-O5'
43	AX	501	ATP	C3'-C4'-C5'-O5'
44	AX	503	GDP	C3'-C4'-C5'-O5'
38	AA	1120	SPM	N5-C6-C7-C8

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sup Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-16895. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

Primary map 6.2.1

X Index: 250

Y Index: 250

Z Index: 250

6.2.2Raw map

X Index: 250

Y Index: 250

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 246

Z Index: 224

6.3.2 Raw map

X Index: 0

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.5. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 657 $\rm nm^3;$ this corresponds to an approximate mass of 593 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.278 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.278 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.60	-	-
Author-provided FSC curve	3.58	3.97	3.63
Unmasked-calculated*	6.29	9.70	6.85

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 6.29 differs from the reported value 3.6 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-16895 and PDB model 80IP. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.5 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.5).

9.4 Atom inclusion (i)

At the recommended contour level, 67% of all backbone atoms, 65% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.5) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.6520	0.4180
AA	0.8450	0.4580
AB	0.6500	0.4330
AC	0.7640	0.4920
AD	0.7230	0.4690
AE	0.7220	0.4620
AF	0.7030	0.4340
AG	0.4860	0.3220
AH	0.6680	0.4500
AI	0.7630	0.4740
AJ	0.7200	0.4980
AK	0.7860	0.4910
AL	0.6510	0.4470
AM	0.7590	0.4740
AN	0.7450	0.4690
AO	0.7150	0.4560
AP	0.7380	0.4770
AQ	0.7920	0.4810
AR	0.6260	0.4280
AS	0.6120	0.4160
AT	0.7660	0.4770
AU	0.6680	0.4120
AV	0.3250	0.2600
AW	0.6990	0.4640
AX	0.6530	0.4120
AY	0.4790	0.3500
AZ	0.7150	0.4670
Aa	0.2980	0.3230
Ab	0.7590	0.4620
Ac	0.6560	0.4550
Ad	0.6800	0.4790
Ae	0.1270	0.2150
Ag	0.6790	0.4220
Ai	0.7500	0.4680
Aj	0.5540	0.4000

0.0 <0.0

1.0

Continued from previous page...

Chain	Atom inclusion	Q-score
BX	0.1720	0.2790
Bd	0.3460	0.3870

