Sep 9, 2021 - 09:49 AM BST

PDB ID : 7OIE
EMDB ID : EMD-12927
Title : Cryo-EM structure of late human 39S mitoribosome assembly intermediates, state 5B
Authors : Cheng, J.; Berninghausen, O.; Beckmann, R.
Deposited on : 2021-05-11
Resolution : $3.50 \AA$ (reported)
This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.
We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (i)) were used in the production of this report:
EMDB validation analysis : 0.0.0.dev97
Mogul : 1.8.5 (274361), CSD as541be (2020)
MolProbity : FAILED
buster-report : 1.1.7 (2018)
Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins) : Engh \& Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : 2.23 .1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: ELECTRON MICROSCOPY

The reported resolution of this entry is $3.50 \AA$.
There are no overall percentile quality scores available for this entry.
MolProbity failed to run properly - the sequence quality summary graphics cannot be shown.

2 Entry composition (i)

There are 58 unique types of molecules in this entry. The entry contains 99578 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called 39S ribosomal protein L2, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	D	236	Total 1842	C	N 373	O 315	S 9	0	0

- Molecule 2 is a protein called 39S ribosomal protein L3, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
2	E	304	Total 2396	C	N	O	S	0
			416	430	11		0	

- Molecule 3 is a protein called 39S ribosomal protein L4, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	F	250	Total 2013	C	N 365	O 348	S	0	0

- Molecule 4 is a protein called 39S ribosomal protein L9, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf
Trace							
4	H	95	Total 784 C N O 0	0			
			152	134	0		

- Molecule 5 is a protein called 39S ribosomal protein L10, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	I	158	Total 1283	$\begin{gathered} \hline \mathrm{C} \\ 828 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 235 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 210 \end{gathered}$		0	0

- Molecule 6 is a protein called 39S ribosomal protein L11, mitochondrial.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace | 6 |
| :---: |

- Molecule 7 is a protein called 39S ribosomal protein L13, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	K	177	Total 1451	C	N	O	S	0	0

- Molecule 8 is a protein called 39S ribosomal protein L14, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	L	115	Total 889	C 559	N 171	O 154	S 5	0	0

- Molecule 9 is a protein called 39S ribosomal protein L15, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
9	M	287	Total	C	N	O	S	0
			2305	1472	425	402	6	

- Molecule 10 is a protein called 39S ribosomal protein L16, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	N	205	$\begin{aligned} & \hline \text { Total } \\ & 1654 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1056 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 308 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 280 \\ \hline \end{gathered}$		0	0

- Molecule 11 is a protein called 39S ribosomal protein L17, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
11	O	152	$\begin{array}{c}\text { Total } \\ 1245\end{array}$	$\begin{array}{c}\mathrm{C} \\ 784\end{array}$	N	O	S	215

- Molecule 12 is a protein called 39S ribosomal protein L18, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	P	141	Total 1148	$\begin{gathered} \hline \mathrm{C} \\ 719 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 221 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 203 \end{gathered}$	S 5	0	0

- Molecule 13 is a protein called 39S ribosomal protein L19, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf		
Trace										
13	Q	217	$\begin{array}{c}\text { Total } \\ 1805\end{array}$	$\begin{array}{c}\mathrm{C} \\ 1159\end{array}$	N	317	320	9	$] 0$	0
:---:										

- Molecule 14 is a protein called 39S ribosomal protein L20, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
14	R	140	Total 1153	C	N	O	S	0	0
			231	186	4	0			

- Molecule 15 is a protein called 39S ribosomal protein L21, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
15	S	156	Total 1251	C	N 222	O 219	S	0	0

- Molecule 16 is a protein called 39 S ribosomal protein L22, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace
16	T	159	$\begin{array}{c}\text { Total } \\ 1305\end{array}$	$\begin{array}{c}\mathrm{C} \\ 835\end{array}$	N	O	S	224

- Molecule 17 is a protein called 39S ribosomal protein L23, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
17	U	139	Total 1154	C	N	O	S	
			220	197	3	0	0	

- Molecule 18 is a protein called 39S ribosomal protein L24, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf		
Trace										
18	V	192	$\begin{array}{c}\text { Total } \\ 1575\end{array}$	$\begin{array}{c}\text { C } \\ 1003\end{array}$	$\begin{array}{c}\text { N } \\ 281\end{array}$	283	O	S	$) 0$	0
:---:										

- Molecule 19 is a protein called 39S ribosomal protein L27, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
19	W	109	Total 859	C	N	O	S	0
			162	142	3		0	

- Molecule 20 is a protein called 39S ribosomal protein L28, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
20	X	243	Total 2035	C 1317	351	N	O	S
			362	5	0	0		

- Molecule 21 is a protein called 39S ribosomal protein L47, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
20	Y	176	Total 1517	C 970	291	252	4	0	0

- Molecule 22 is a protein called 39S ribosomal protein L30, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace
22	Z	120	$\begin{array}{c}\text { Total } \\ 978\end{array}$	$\begin{array}{c}\mathrm{C} \\ 626\end{array}$	$\begin{array}{c}\mathrm{N} \\ 183\end{array}$	O	S	S
3								

- Molecule 23 is a protein called 39S ribosomal protein L32, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace		
23	0	108	$\begin{array}{c}\text { Total } \\ 880\end{array}$	$\begin{array}{c}\text { C } \\ 545\end{array}$	$\begin{array}{c}\text { N } \\ 172\end{array}$	157	O	S	$] 0$	0
:---:										

- Molecule 24 is a protein called 39S ribosomal protein L33, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
24	1	52	Total 433	C 278	N	O	S	0	0
			70	2	0	0			

- Molecule 25 is a protein called 39S ribosomal protein L34, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
25	2	43	$\begin{array}{c}\text { Total } \\ 351\end{array}$	$\begin{array}{c}\text { C } \\ 218\end{array}$	N	O	S	56	1

- Molecule 26 is a protein called 39S ribosomal protein L35, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
26	3	95	$\begin{gathered} \hline \text { Total } \\ 831 \end{gathered}$	C 539	N 162	O 127	S 3	0	0

- Molecule 27 is a protein called 39S ribosomal protein L36, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
27	4	36	Total 322	C 20	N	O	S	0	0
			70	46	3	0	0		

- Molecule 28 is a protein called 39S ribosomal protein L37, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
28	5	387	Total	C	N	O	S	0
			3156	2039	548	558	11	

- Molecule 29 is a protein called 39S ribosomal protein L38, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
29	6	324	$\begin{aligned} & \hline \text { Total } \\ & 2640 \end{aligned}$	C	N 470	O 468	S	0	0

- Molecule 30 is a protein called 39 S ribosomal protein L39, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
30	7	287	Total 2334	C	N	O	S	0	0
				397	425	17	0		

- Molecule 31 is a protein called 39S ribosomal protein L40, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace		
31	8	99	$\begin{array}{c}\text { Total } \\ 836\end{array}$	$\begin{array}{c}\text { C } \\ 535\end{array}$	144	O	155	2	$) 0$	0
:---:										

- Molecule 32 is a protein called 39S ribosomal protein L41, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace	
32	9	117	Total 947	C 614	N 163	168	O	2	0
0									

- Molecule 33 is a protein called 39S ribosomal protein L42, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
33	a	73	Total 611	C 385	N	115	O	S

- Molecule 34 is a protein called 39S ribosomal protein L43, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
34	b	148	Total 1178	C	N	O	S	0	0
			733	229	213	3			

- Molecule 35 is a protein called 39S ribosomal protein L44, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
35	c	275	Total 2217	C	N 383	O 410	S 9	0	0

- Molecule 36 is a protein called 39S ribosomal protein L45, mitochondrial.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 37 is a protein called 39 S ribosomal protein L46, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace		
37	e	217	$\begin{array}{c}\text { Total } \\ 1762\end{array}$	$\begin{array}{c}\text { C } \\ 1124\end{array}$	$\begin{array}{c}\text { N }\end{array}$	310	O	S		
323	5								$) 0$	0
:---:										

- Molecule 38 is a protein called 39S ribosomal protein L48, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
38	f	116	Total 915	C 585	N	152	175	O
			3	0	0			

- Molecule 39 is a protein called 39S ribosomal protein L49, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
39	g	129	Total 1067	C 690	\mathbf{N}	O	S	
			190	2	0	0		

- Molecule 40 is a protein called 39S ribosomal protein L50, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
40	h	100	Total 827	C 524	N	O	S	S

- Molecule 41 is a protein called 39S ribosomal protein L51, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
41	i	97	Total 827	C	N	O	S	0	0
			532	165	126	4			

- Molecule 42 is a protein called 39S ribosomal protein L52, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
42	j	85	$\begin{array}{c}\text { Total } \\ 684\end{array}$	$\begin{array}{c}\mathrm{C} \\ 423\end{array}$	$\begin{array}{c}\mathrm{N} \\ 133\end{array}$	O	S	26

- Molecule 43 is a protein called 39S ribosomal protein L53, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
43	k	80	Total 627	C	N 116	O 114	S 5	0	0

- Molecule 44 is a protein called 39S ribosomal protein L54, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace		
44	l	23	$\begin{array}{c}\text { Total } \\ 221\end{array}$	$\begin{array}{c}\text { C } \\ 137\end{array}$	N	O	32		$) 0$	0
:---:										

- Molecule 45 is a protein called 39S ribosomal protein L55, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace			
45	m	45	$\begin{array}{c}\text { Total } \\ 372\end{array}$	$\begin{array}{c}\mathrm{C} \\ 232\end{array}$	N	O	S	62	2	$) 0$	0
:---:											

- Molecule 46 is a protein called Ribosomal protein 63 , mitochondrial.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 47 is a protein called Peptidyl-tRNA hydrolase ICT1, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
47	p	127	Total 1058	C	N	O	S	0
			201	192	4	0	0	

- Molecule 48 is a protein called Growth arrest and DNA damage-inducible proteins-interacting protein 1.

Mol	Chain	Residues	Atoms					AltConf
48	q	164	Total 1379	C	N	O	S	
			268	249	5	0	0	

- Molecule 49 is a protein called 39S ribosomal protein S18a, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
49	r	146	$\begin{array}{c}\text { Total } \\ 1203\end{array}$	$\begin{array}{c}\mathrm{C} \\ 764\end{array}$	232	N	O	S	0

- Molecule 50 is a protein called 39S ribosomal protein S30, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
50	S	370	Total 3036	$\begin{gathered} \hline \mathrm{C} \\ 1946 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 542 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ .534 \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ 14 \end{gathered}$	0	0

- Molecule 51 is a protein called Mitochondrial assembly of ribosomal large subunit protein 1.

Mol	Chain	Residues	Atoms				AltConf	Trace			
51	u	111	$\begin{array}{c}\text { Total } \\ 927\end{array}$	$\begin{array}{c}\text { C } \\ 595\end{array}$	$\begin{array}{c}\text { N }\end{array}$	O	S	167	10	$] 0$	0
:---:											

- Molecule 52 is a protein called MIEF1 upstream open reading frame protein.

Mol	Chain	Residues	Atoms				AltConf	Trace
52	v	69	Total 588	$\begin{gathered} \hline \mathrm{C} \\ 372 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 116 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 100 \end{gathered}$	0	0

- Molecule 53 is a protein called Acyl carrier protein, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
53	w	79	Total 638	C 410	N	O	O	S

- Molecule 54 is a RNA chain called 16 S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
54	A	1472	Total	C	N	O	P	0	0
			31265	14027	5646	10120	1472		

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	1437	U	UNK	conflict	GB 1025814679

- Molecule 55 is a RNA chain called mitochondrial Val tRNA.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace $~\left(\right.$| 55 | B | 56 | Total | C | N | O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 534 | 214 | 387 | 56 | 0 | 0 |

- Molecule 56 is ZINC ION (three-letter code: ZN) (formula: Zn).

| Mol | Chain | Residues | Atoms | Alt Conf |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 56 | 0 | 1 | Total
 Zn
 1 | 0 |
| 56 | r | 1 | Total Zn
 1 1 | 0 |

- Molecule 57 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| Mol | Chain | Residues | Atoms | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 57 | g | 1 | Total Mg
 1 | 0 |
| 57 | A | 1 | Total
 1 Mg
 1 | 0 |

- Molecule 58 is 4'-PHOSPHOPANTETHEINE (three-letter code: PNS) (formula: $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{PS}$).

Mol	Chain	Residues	Atoms						AltConf
58	v	1	Total	C	N	O	P	S	0
			21	11	2	6	1	1	

MolProbity failed to run properly - this section is therefore empty.

3 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	28807	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $\left(e^{-} / \AA^{2}\right)$	28	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	Depositor
Image detector	FEI FALCON II $(4 \mathrm{k} \mathrm{x} \mathrm{4k)}$	Depositor
Maximum map value	1.178	Depositor
Minimum map value	-0.747	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.027	Depositor
Recommended contour level	0.05	wwPDB
Map size (\AA)	$390.24,390.24,390.24$	wwPDB
Map dimensions	$360,360,360$	wwPDB
Map angles $\left({ }^{\circ}\right)$	Depositor	
Pixel spacing (\AA)	$90.0,90.0,90.0$	

4 Model quality (i)

4.1 Standard geometry (i)

MolProbity failed to run properly - this section is therefore empty.

4.2 Too-close contacts (i)

MolProbity failed to run properly - this section is therefore empty.

4.3 Torsion angles (i)

4.3.1 Protein backbone (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.2 Protein sidechains (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.3 RNA (i)

MolProbity failed to run properly - this section is therefore empty.

4.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

4.5 Carbohydrates (i)

There are no monosaccharides in this entry.

4.6 Ligand geometry (i)

Of 5 ligands modelled in this entry, 4 are monoatomic - leaving 1 for Mogul analysis.
In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond
length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z|>2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Res	Link	Bond lengths			Bond angles		
					Counts	RMSZ	$\#\|Z\|>2$	Counts	RMSZ	$\#\|Z\|>2$
58	PNS	v	101	-	$13,20,21$	2.40	$4(30 \%)$	$18,26,29$	1.13	$1(5 \%)$

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
58	PNS	v	101	-	-	$11 / 24 / 26 / 27$	-

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed (\AA)	Ideal (\AA)
58	v	101	PNS	C34-N36	5.57	1.45	1.33
58	v	101	PNS	C39-N41	5.37	1.45	1.33
58	v	101	PNS	O35-C34	-2.21	1.19	1.23
58	v	101	PNS	O40-C39	-2.07	1.19	1.23

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed $\left({ }^{\circ}\right)$	Ideal $\left({ }^{\circ}\right)$
58	v	101	PNS	C37-C38-C39	-2.23	108.65	112.36

There are no chirality outliers.
5 of 11 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
58	v	101	PNS	C28-C29-C32-O33
58	v	101	PNS	C31-C29-C32-O33
58	v	101	PNS	N41-C42-C43-S44
58	v	101	PNS	C30-C29-C32-O33
58	v	101	PNS	N36-C37-C38-C39

There are no ring outliers.
No monomer is involved in short contacts.
The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths,
bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight >250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.
Ligand PNS v 101

4.7 Other polymers (i)

There are no such residues in this entry.

4.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
41	i	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (\AA)
1	i	$68: \mathrm{LYS}$	C	$69:$ HIS	N	1.12

5 Map visualisation

This section contains visualisations of the EMDB entry EMD-12927. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

5.1 Orthogonal projections (i)

5.1.1 Primary map

The images above show the map projected in three orthogonal directions.

5.2 Central slices (i)

5.2.1 Primary map

X Index: 180

Y Index: 180

Z Index: 180

The images above show central slices of the map in three orthogonal directions.

5.3 Largest variance slices (i)

5.3.1 Primary map

The images above show the largest variance slices of the map in three orthogonal directions.

5.4 Orthogonal surface views (i)

5.4.1 Primary map

X

Y

Z

The images above show the 3D surface view of the map at the recommended contour level 0.05 . These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

5.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

6 Map analysis (i)

This section contains the results of statistical analysis of the map.

6.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x -axis. The y -axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

6.2 Volume estimate (i)

The volume at the recommended contour level is $1014 \mathrm{~nm}^{3}$; this corresponds to an approximate mass of 916 kDa .

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

6.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of $0.286 \AA^{-1}$

7 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

7.1 FSC ©

*Reported resolution corresponds to spatial frequency of $0.286 \AA^{-1}$

7.2 Resolution estimates (i)

Resolution estimate (\AA)	Estimation criterion (FSC cut-off)			
	0.143	0.5	Half-bit	
Reported by author	3.50	-	-	
Author-provided FSC curve	3.50	4.40	3.59	
Unmasked-calculated*	-	-	-	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

8 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12927 and PDB model 7OIE. Per-residue inclusion information can be found in section ?? on page ??.

8.1 Map-model overlay (i)

X

Y

The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

8.2 Atom inclusion (i)

At the recommended contour level, 87% of all backbone atoms, 84% of all non-hydrogen atoms, are inside the map.

