

Full wwPDB X-ray Structure Validation Report (i)

Nov 16, 2023 – 05:17 AM JST

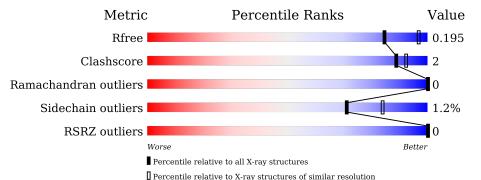
:	6KZY
:	Cu(II) loaded Tegillarca granosa ferritin
:	Jiang, Q.Q.; Su, X.R.; Ming, T.H.; Huan, H.S.
:	2019-09-25
:	2.30 Å(reported)
	: : :

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


Xtriage (Phenix) EDS buster-report Percentile statistics	: : :	20191225.v01 (using entries in the PDB archive December 25th 2019)
-	:	
CCP4 Ideal geometry (proteins)		7.0.044 (Gargrove) Engh & Huber (2001)
Ideal geometry (DNA, RNA) Validation Pipeline (wwPDB-VP)		

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\hbox{-}RAY\,DIFFRACTION$

The reported resolution of this entry is 2.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

	 	~ •

Metric	Whole archive	Similar resolution
Metric	$(\# {\rm Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	5042 (2.30-2.30)
Clashscore	141614	5643 (2.30-2.30)
Ramachandran outliers	138981	5575 (2.30-2.30)
Sidechain outliers	138945	5575(2.30-2.30)
RSRZ outliers	127900	4938 (2.30-2.30)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	172	95%	
1	В	172	93%	5% •
1	С	172	90%	8% •
1	D	172	95%	

2 Entry composition (i)

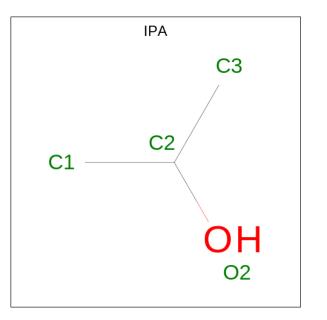
There are 6 unique types of molecules in this entry. The entry contains 6025 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	Δ	169	Total	С	Ν	0	\mathbf{S}	0	1	0
	А	109	1391	872	235	275	9	0	1	U
1	В	168	Total	С	Ν	0	S	0	2	0
	D		1394	874	236	275	9			
1	С	168	Total	С	Ν	0	S	0	1	0
	U	108	1385	869	234	273	9	0	1	0
1	Л	168	Total	С	Ν	0	S	0	1	0
1	I D	108	1385	869	234	273	9	0	1	0

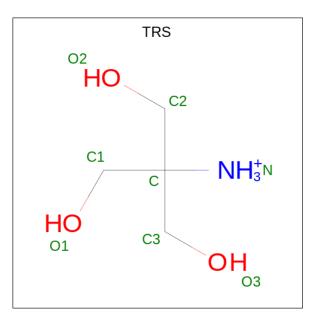
• Molecule 1 is a protein called Ferritin.

• Molecule 2 is COPPER (II) ION (three-letter code: CU) (formula: Cu) (labeled as "Ligand of Interest" by depositor).


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	2	Total Cu 2 2	0	0
2	В	2	Total Cu 2 2	0	0
2	С	3	Total Cu 3 3	0	0
2	D	1	Total Cu 1 1	0	0

• Molecule 3 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	7	Total Na 7 7	0	0
3	В	11	Total Na 11 11	0	0
3	С	9	Total Na 9 9	0	0
3	D	10	Total Na 10 10	0	0


• Molecule 4 is ISOPROPYL ALCOHOL (three-letter code: IPA) (formula: C₃H₈O).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 3 & 1 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 3 1 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 3 1 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 3 1 \end{array}$	0	0

• Molecule 5 is 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL (three-letter code: TRS) (formula: $C_4H_{12}NO_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ 8 & 4 & 1 & 3 \end{array}$	0	0


• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	97	Total O 97 97	0	0
6	В	100	Total O 100 100	0	0
6	С	102	Total O 102 102	0	0
6	D	102	Total O 102 102	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Ferritin

4 Data and refinement statistics (i)

Property	Value	Source
Space group	H 3 2	Depositor
Cell constants	217.05Å 217.05Å 132.87Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	-
Resolution (Å)	32.72 - 2.30	Depositor
	32.72 - 2.30	EDS
% Data completeness	97.7 (32.72-2.30)	Depositor
(in resolution range)	97.7 (32.72-2.30)	EDS
R _{merge}	0.09	Depositor
R _{sym}	0.09	Depositor
$< I/\sigma(I) > 1$	11.28 (at 2.29Å)	Xtriage
Refinement program	PHENIX 1.10.1_2155	Depositor
D D	0.152 , 0.195	Depositor
R, R_{free}	0.152 , 0.195	DCC
R_{free} test set	2575 reflections $(4.96%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	28.0	Xtriage
Anisotropy	0.165	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.32 , 13.4	EDS
L-test for twinning ²	$< L > = 0.49, < L^2 > = 0.33$	Xtriage
	0.479 for -2/3*h-1/3*k-4/3*l,-1/3*h-2/3*k+	
	$\begin{array}{c} 4/3^{*}l, -1/3^{*}h + 1/3^{*}k + 1/3^{*}l \\ 0.477 \ \text{for} \ -h, 1/3^{*}h - 1/3^{*}k - 4/3^{*}l, -1/3^{*}h - 2/3^{*}k \end{array}$	
Estimated twinning fraction		Xtriage
	+1/3*1	8*
	$0.470 \text{ for } -1/3 + \frac{1}{3} + $	
F_{a},F_{c} correlation	$\frac{3^*k + 1/3^*l}{0.96}$	EDS
Total number of atoms	6025	wwPDB-VP
	29.0	wwPDB-VP
Average B, all atoms $(Å^2)$	29.0	wwrdd-vp

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.27% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CU, NA, IPA, TRS

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.36	0/1418	0.49	0/1906	
1	В	0.36	0/1421	0.49	0/1909	
1	С	0.37	0/1412	0.49	0/1897	
1	D	0.36	0/1412	0.47	0/1897	
All	All	0.36	0/5663	0.48	0/7609	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1391	0	1331	4	0
1	В	1394	0	1333	6	0
1	С	1385	0	1326	8	0
1	D	1385	0	1323	3	0
2	А	2	0	0	0	0
2	В	2	0	0	0	0
2	С	3	0	0	0	0
2	D	1	0	0	0	0
3	А	7	0	0	0	0

Mol	Chain	Non-H		H(added)	Clashes	Symm-Clashes
3	В	11	0	0	0	0
3	С	9	0	0	0	0
3	D	10	0	0	0	0
4	А	4	0	8	2	0
4	В	4	0	8	0	0
4	С	4	0	8	3	0
4	D	4	0	8	0	0
5	А	8	0	12	0	0
6	А	97	0	0	0	0
6	В	100	0	0	1	2
6	С	102	0	0	2	0
6	D	102	0	0	1	1
All	All	6025	0	5357	21	2

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (21) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	A + a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:167:LYS:NZ	6:D:301:HOH:O	2.17	0.76
1:C:167:LYS:NZ	6:C:302:HOH:O	2.19	0.76
1:C:29:SER:OG	4:C:213:IPA:H11	1.99	0.63
1:C:78:ILE:O	6:C:301:HOH:O	2.17	0.58
1:B:80:LEU:HG	6:B:322:HOH:O	2.06	0.55
4:C:213:IPA:H13	1:D:61:ARG:HE	1.72	0.54
1:B:55[A]:HIS:NE2	1:B:59:GLU:OE1	2.42	0.53
4:C:213:IPA:C1	1:D:61:ARG:HE	2.23	0.51
1:C:55[A]:HIS:NE2	1:C:59:GLU:OE2	2.45	0.49
1:B:55[A]:HIS:CE1	1:B:59:GLU:OE1	2.67	0.48
1:A:54:LYS:O	1:A:58:GLU:HG3	2.14	0.47
1:C:55[A]:HIS:CE1	1:C:59:GLU:OE2	2.68	0.46
1:A:33:GLN:NE2	4:A:210:IPA:H11	2.32	0.44
1:C:67:LEU:HG	1:C:135:TYR:OH	2.17	0.44
1:A:33:GLN:HE22	4:A:210:IPA:H11	1.82	0.44
1:B:51:LYS:HE3	1:B:54:LYS:HD3	1.99	0.43
1:A:77:ARG:HA	1:A:77:ARG:HD3	1.87	0.42
1:C:38:TYR:CE1	1:C:90:GLU:HB2	2.54	0.41
1:B:77:ARG:HA	1:B:77:ARG:HD3	1.95	0.41
1:B:153:LEU:HD23	1:B:153:LEU:HA	1.95	0.40
1:C:105:GLU:HG3	1:C:146:ILE:CD1	2.51	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
6:B:322:HOH:O	6:B:328:HOH:O[4_556]	2.03	0.17
6:B:385:HOH:O	6:D:369:HOH:O[4_556]	2.15	0.05

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	168/172~(98%)	166 (99%)	2(1%)	0	100	100
1	В	168/172~(98%)	166 (99%)	2(1%)	0	100	100
1	С	167/172~(97%)	165~(99%)	2(1%)	0	100	100
1	D	167/172~(97%)	165~(99%)	2(1%)	0	100	100
All	All	670/688~(97%)	662 (99%)	8 (1%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	149/151~(99%)	147~(99%)	2(1%)	69 82
1	В	150/151~(99%)	149 (99%)	1 (1%)	84 92
1	С	149/151~(99%)	147~(99%)	2(1%)	69 82

Contr	Continueu from pretious page												
Mol	Chain	Analysed	Rotameric	Outliers	Percentiles								
1	D	148/151 (98%)	146 (99%)	2(1%)	67 81								
All	All	596/604~(99%)	589~(99%)	7 (1%)	71 84								

Continued from previous page...

All (7) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	30	TYR
1	А	67	LEU
1	В	30	TYR
1	С	3	GLN
1	С	30	TYR
1	D	3	GLN
1	D	30	TYR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	33	GLN
1	В	33	GLN
1	D	3	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 50 ligands modelled in this entry, 45 are monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Turne	Chain	Res Link		B	ond leng	gths	В	ond ang	gles
	Type	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
4	IPA	С	213	-	3,3,3	0.46	0	3,3,3	0.48	0
4	IPA	В	214	-	3,3,3	0.48	0	3,3,3	0.40	0
4	IPA	А	210	-	3,3,3	0.52	0	3,3,3	0.42	0
4	IPA	D	212	-	3,3,3	0.50	0	3,3,3	0.32	0
5	TRS	А	211	-	7,7,7	0.31	0	9,9,9	0.61	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	TRS	А	211	-	-	2/9/9/9	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (2) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	А	211	TRS	N-C-C1-O1
5	А	211	TRS	C3-C-C1-O1

There are no ring outliers.

2 monomers are involved in 5 short contacts:

	Mol	Chain	Res	Type	Clashes	Symm-Clashes
ſ	4	С	213	IPA	3	0
	4	А	210	IPA	2	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2		$OWAB(Å^2)$	$\mathbf{Q} \! < \! 0.9$
1	А	169/172~(98%)	-0.45	0 100	100	22, 27, 43, 64	0
1	В	168/172~(97%)	-0.44	0 100	100	21, 27, 41, 52	0
1	С	168/172~(97%)	-0.45	0 100	100	20, 28, 40, 53	0
1	D	168/172~(97%)	-0.46	0 100	100	21, 27, 43, 53	0
All	All	673/688~(97%)	-0.45	0 100	100	20, 27, 42, 64	0

There are no RSRZ outliers to report.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

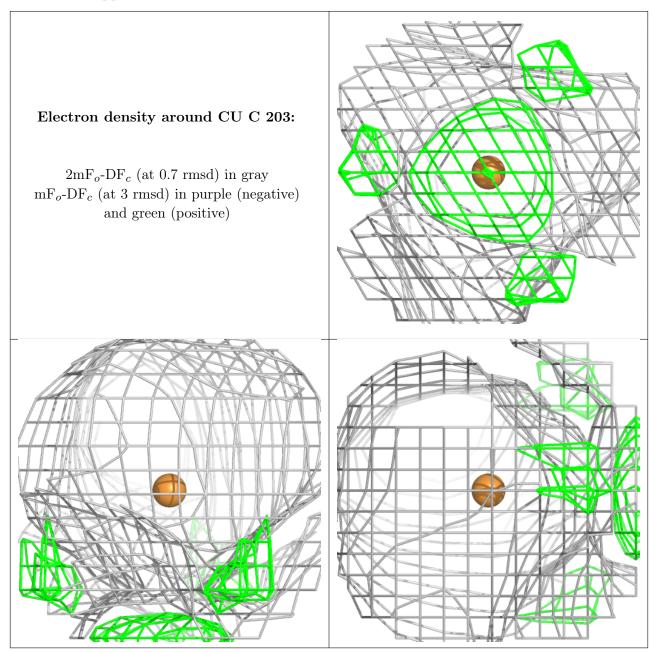
There are no monosaccharides in this entry.

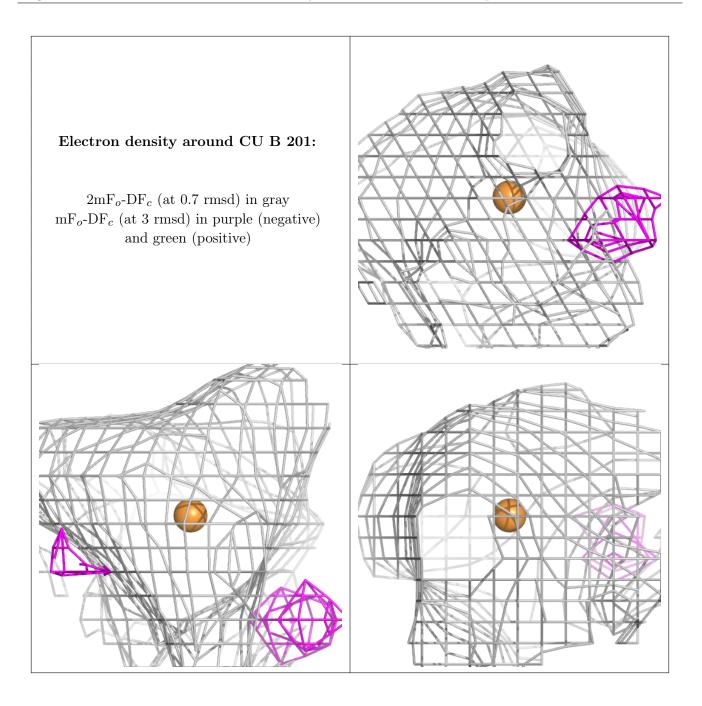
6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

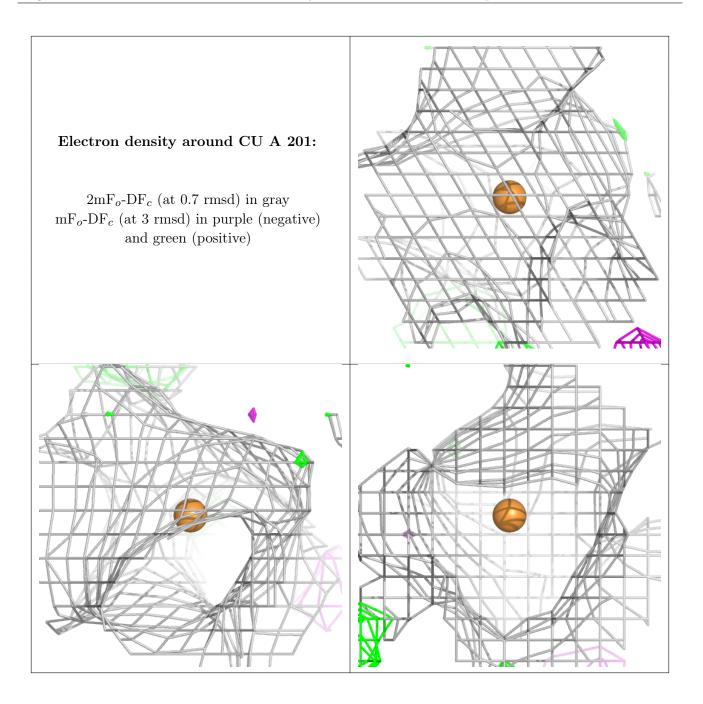
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
5	TRS	А	211	8/8	0.83	0.19	41,52,72,78	0
3	NA	D	204	1/1	0.87	0.15	$57,\!57,\!57,\!57$	0
3	NA	А	208	1/1	0.87	0.24	46,46,46,46	0
3	NA	В	212	1/1	0.88	0.37	52,52,52,52	0

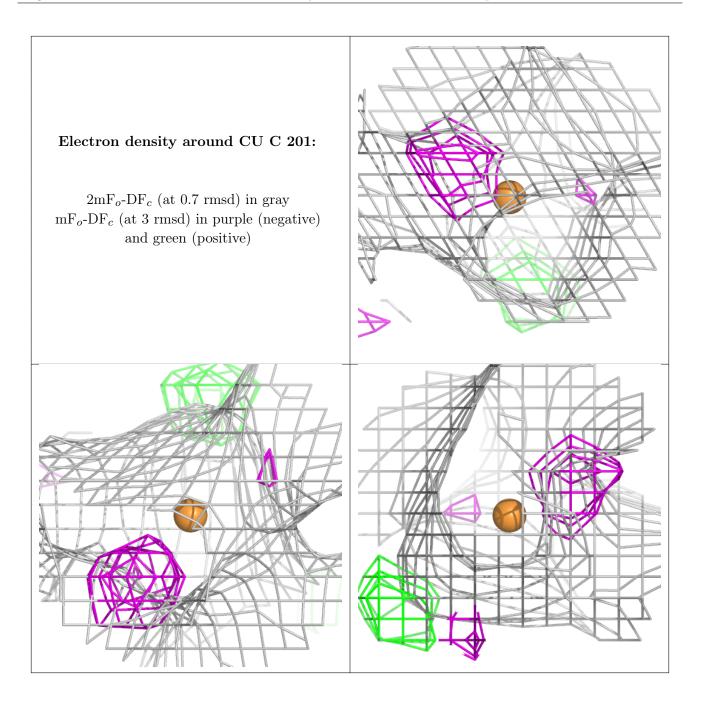
Continued from previous page									
Mol	Type	Chain	\mathbf{Res}	Atoms	RSCC	RSR	$\operatorname{B-factors}(\operatorname{\AA}^2)$	Q<0.9	
3	NA	С	208	1/1	0.88	0.11	$50,\!50,\!50,\!50$	0	
3	NA	D	211	1/1	0.89	0.21	$59,\!59,\!59,\!59$	0	
3	NA	С	205	1/1	0.90	0.20	$55,\!55,\!55,\!55$	0	
3	NA	С	209	1/1	0.91	0.12	$65,\!65,\!65,\!65$	0	
4	IPA	В	214	4/4	0.91	0.24	$30,\!31,\!45,\!46$	0	
2	CU	С	203	1/1	0.91	0.06	101,101,101,101	1	
3	NA	В	209	1/1	0.92	0.26	48,48,48,48	0	
3	NA	С	211	1/1	0.92	0.22	44,44,44,44	0	
4	IPA	А	210	4/4	0.93	0.17	$28,\!37,\!39,\!39$	0	
2	CU	В	201	1/1	0.93	0.07	$93,\!93,\!93,\!93$	0	
3	NA	В	208	1/1	0.93	0.27	$50,\!50,\!50,\!50$	0	
3	NA	D	207	1/1	0.94	0.22	49,49,49,49	0	
3	NA	D	209	1/1	0.94	0.18	$47,\!47,\!47,\!47$	0	
4	IPA	С	213	4/4	0.94	0.24	$29,\!38,\!40,\!43$	0	
4	IPA	D	212	4/4	0.94	0.14	$29,\!37,\!43,\!47$	0	
3	NA	В	210	1/1	0.94	0.15	56, 56, 56, 56	0	
3	NA	В	207	1/1	0.95	0.37	$45,\!45,\!45,\!45$	0	
3	NA	А	203	1/1	0.95	0.11	$52,\!52,\!52,\!52$	0	
3	NA	А	209	1/1	0.95	0.26	$51,\!51,\!51,\!51$	0	
3	NA	С	210	1/1	0.95	0.31	$49,\!49,\!49,\!49$	0	
3	NA	В	203	1/1	0.95	0.21	34,34,34,34	0	
3	NA	В	211	1/1	0.95	0.29	$50,\!50,\!50,\!50$	0	
3	NA	В	206	1/1	0.95	0.31	49,49,49,49	0	
3	NA	D	205	1/1	0.96	0.35	$50,\!50,\!50,\!50$	0	
3	NA	D	203	1/1	0.96	0.14	40,40,40,40	0	
3	NA	А	204	1/1	0.96	0.22	39,39,39,39	0	
3	NA	D	208	1/1	0.97	0.34	$50,\!50,\!50,\!50$	0	
3	NA	С	204	1/1	0.97	0.10	38, 38, 38, 38	0	
2	CU	А	201	1/1	0.97	0.05	$70,\!70,\!70,\!70$	0	
3	NA	С	206	1/1	0.97	0.16	$43,\!43,\!43,\!43$	0	
3	NA	С	207	1/1	0.97	0.14	$47,\!47,\!47,\!47$	0	
3	NA	А	207	1/1	0.97	0.18	44,44,44,44	0	
3	NA	D	206	1/1	0.97	0.40	47,47,47,47	0	
2	CU	С	201	1/1	0.97	0.07	$69,\!69,\!69,\!69$	0	
3	NA	В	213	1/1	0.98	0.12	37,37,37,37	0	
3	NA	С	212	1/1	0.98	0.14	38,38,38,38	0	
3	NA	А	206	1/1	0.98	0.13	$35,\!35,\!35,\!35$	0	
2	CU	D	201	1/1	0.98	0.07	72,72,72,72	0	
3	NA	А	205	1/1	0.98	0.14	37,37,37,37	0	
3	NA	D	210	1/1	0.99	0.12	37,37,37,37	0	
3	NA	В	204	1/1	0.99	0.09	38,38,38,38	0	
3	NA	В	205	1/1	0.99	0.21	47,47,47,47	0	

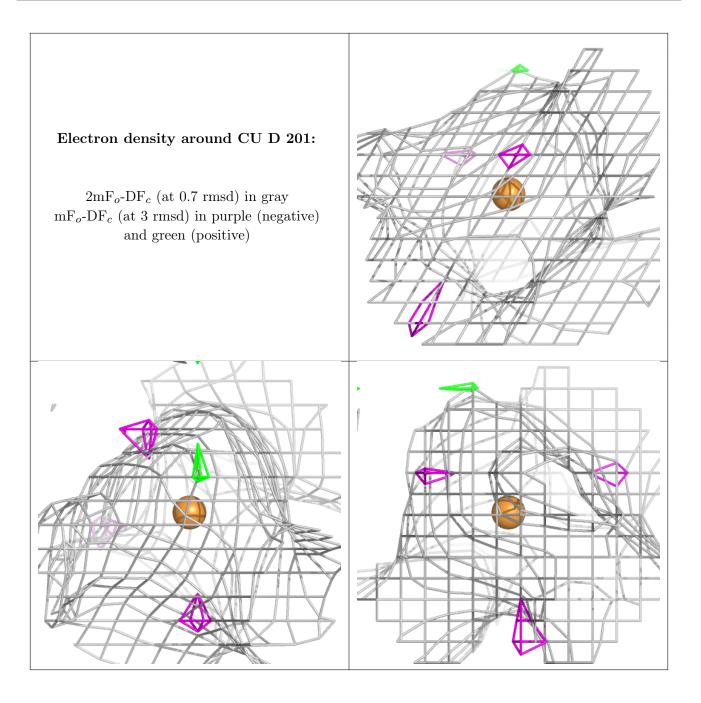

Continued from previous page...

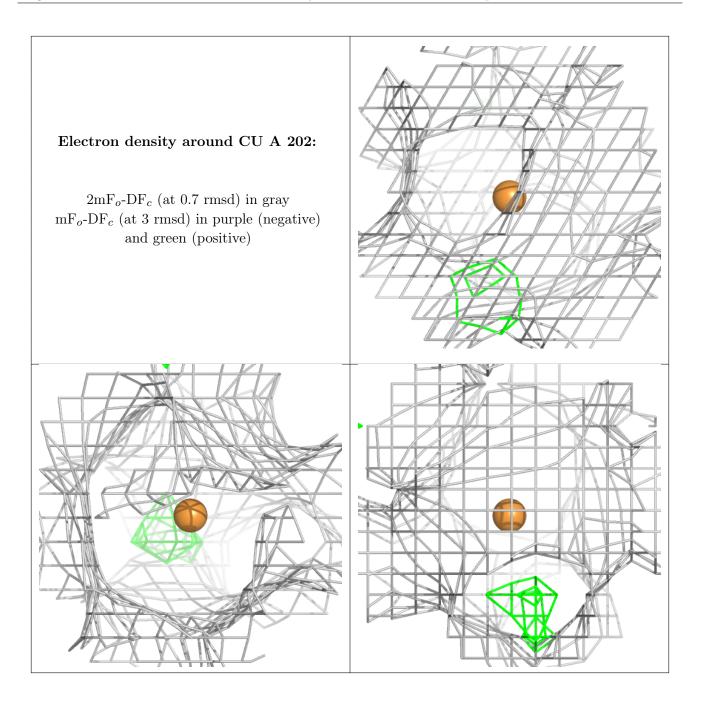

001000	Continuou front protocuo pago									
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\operatorname{B-factors}(\operatorname{\AA}^2)$	Q<0.9		
2	CU	А	202	1/1	0.99	0.12	48,48,48,48	0		
2	CU	С	202	1/1	0.99	0.17	$52,\!52,\!52,\!52$	1		
3	NA	D	202	1/1	0.99	0.15	34,34,34,34	0		
2	CU	В	202	1/1	0.99	0.11	$69,\!69,\!69,\!69$	0		

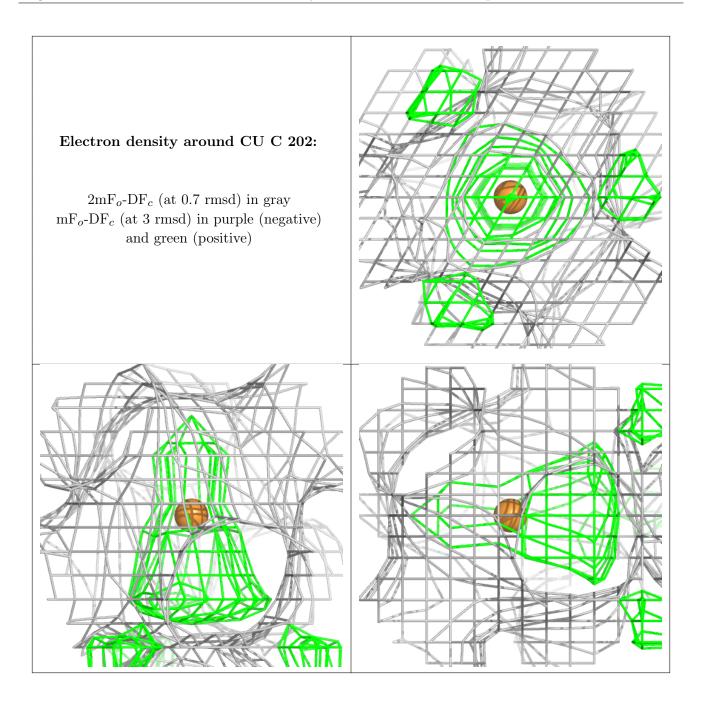
Continued from previous page...

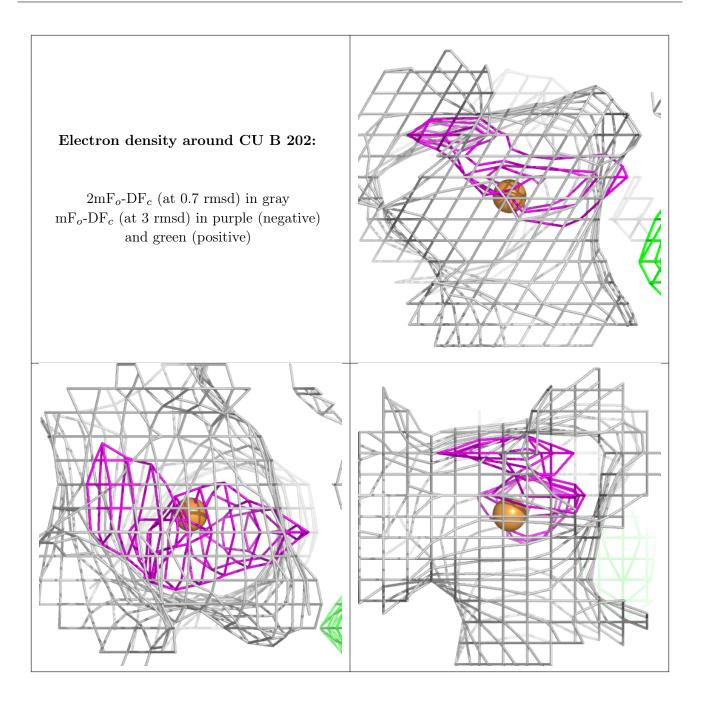

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.











6.5 Other polymers (i)

There are no such residues in this entry.

