

wwPDB EM Validation Summary Report (i)

Mar 20, 2024 – 12:23 AM JST

DDD ID		
PDB ID	:	6K61
EMDB ID	:	EMD-9918
Title	:	Cryo-EM structure of the tetrameric photosystem I from a heterocyst-forming
		cyanobacterium Anabaena sp. PCC7120
Authors	:	Zheng, L.; Li, Y.; Li, X.; Zhong, Q.; Li, N.; Zhang, K.; Zhang, Y.; Chu, H.;
		Ma, C.; Li, G.; Zhao, J.; Gao, N.
Deposited on	:	2019-05-31
Resolution	:	2.37 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 70
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.37 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

154571

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit
to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues
that contain outliers for $>=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey
segment represents the fraction of residues that are not modelled. The numeric value for each
fraction is indicated below the corresponding segment, with a dot representing fractions $<\!\!=\!5\%$
The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM
map (all-atom inclusion $< 40\%$). The numeric value is given above the bar.

4023

3826

Mol	Chain	Length	Quality of chain	
1	А	752	97%	••
1	a	752	98%	••
2	Х	44	68% • 30%	
2	х	44	9% 66% 5% 30%	
3	В	741	98%	•
3	b	741	98%	
4	С	81	94%	5%•
4	с	81	95%	•••
5	D	139	97%	·

Mol	Chain	Length	Quality of chain	
5	d	139	• 96%	••
6	Е	70	87%	13%
6	е	70	87%	13%
7	F	164	86%	14%
7	f	164	85%	• 14%
8	J	49	92%	8%
8	j	49	92%	8%
9	Κ	86	6% 83%	• 15%
9	k	86	91%	9%
10	Ι	46	74%	26%
10	i	46	74%	26%
11	L	172	88%	• 10%
11	1	172	89%	• 10%
12	М	32	97%	·
12	m	32	97%	·

Continued from previous page...

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
13	CL0	А	801	Х	-	-	-
13	CL0	a	801	Х	-	-	-
14	CLA	А	802	X	-	-	-
14	CLA	А	803	Х	-	-	-
14	CLA	А	804	X	-	-	-
14	CLA	А	805	X	-	-	-
14	CLA	А	806	X	-	-	-
14	CLA	А	807	X	-	-	-
14	CLA	А	808	Х	-	-	-
14	CLA	А	809	Х	-	-	-
14	CLA	А	810	Х	-	-	-
14	CLA	А	811	Х	-	-	-

Continued from previous page									
Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density		
14	CLA	A	812	X	-	-	-		
14	CLA	А	813	Х	-	-	-		
14	CLA	А	814	Х	_	-	-		
14	CLA	А	815	Х	_	-	_		
14	CLA	А	816	Х	_	-	-		
14	CLA	А	817	Х	-	-	-		
14	CLA	А	818	X	-	-	-		
14	CLA	А	819	X	-	-	-		
14	CLA	А	820	Х	-	-	-		
14	CLA	А	821	Х	-	-	-		
14	CLA	А	822	Х	-	-	-		
14	CLA	А	823	Х	-	-	-		
14	CLA	А	824	Х	-	-	-		
14	CLA	А	825	Х	-	-	-		
14	CLA	А	826	Х	-	-	-		
14	CLA	А	827	Х	_	-	_		
14	CLA	А	828	Х	_	-	_		
14	CLA	А	829	Х	-	-	-		
14	CLA	А	830	Х	-	-	-		
14	CLA	А	831	X	-	-	-		
14	CLA	А	832	X	-	_	-		
14	CLA	А	833	X	-	_	-		
14	CLA	A	834	X	_	-	_		
14	CLA	A	835	X	-	-	-		
14	CLA	A	836	X	_	-	_		
14	CLA	A	837	X	_	-	_		
14	CLA	A	838	X	_	-	_		
14	CLA	A	840	X	_	-	_		
14	CLA	A	841	X	_	-	_		
14	CLA	A	842	X	_		_		
14	CLA	A	843	X	_		_		
14	CLA	В	801	X	_	_	_		
14	CLA	B	802	X	_	_	_		
14	CLA	B	804	X	_	_	_		
14	CLA	B	805	X			_		
14	CLA	B	806	X	_		_		
14	CLA	B	807	X			_		
14	CLA	R	808	X	_		_		
1/		R	800	X	-	-	-		
14		B	810		-	-	-		
14		B D	811		-	-	-		
14		ם מ	011		-	-	-		
14	ULA	D	012	$ \Lambda$	-	-	-		

 α ntin Jf ÷

Continued from previous page									
Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density		
14	CLA	В	813	X	-	-	-		
14	CLA	В	814	X	-	-	-		
14	CLA	В	815	X	-	-	-		
14	CLA	В	816	X	-	-	-		
14	CLA	В	817	X	-	-	-		
14	CLA	В	818	X	-	-	-		
14	CLA	В	819	Х	_	-	-		
14	CLA	В	820	Х	_	-	-		
14	CLA	В	821	Х	_	-	-		
14	CLA	В	822	Х	-	-	-		
14	CLA	В	823	X	-	-	-		
14	CLA	В	824	X	-	-	-		
14	CLA	В	825	Х	-	-	-		
14	CLA	В	826	Х	-	-	-		
14	CLA	В	827	Х	-	-	-		
14	CLA	В	828	Х	-	-	-		
14	CLA	В	829	Х	-	-	-		
14	CLA	В	830	Х	_	-	-		
14	CLA	В	831	Х	_	-	-		
14	CLA	В	832	Х	_	-	-		
14	CLA	В	833	Х	-	-	-		
14	CLA	В	834	Х	-	-	-		
14	CLA	В	835	X	-	_	-		
14	CLA	В	836	X	-	-	-		
14	CLA	В	837	X	_	_	-		
14	CLA	В	838	X	-	-	-		
14	CLA	В	839	X	_	-	_		
14	CLA	В	840	X	_	_	_		
14	CLA	В	841	X	_	_	_		
14	CLA	В	842	X	_	_	_		
14	CLA	B	843	X	_	_	_		
14	CLA	F	202	X	_	_	_		
14	CLA	F	204	X	_	_			
14	CLA	J	101	X		_			
14	CLA	J	102	X	_	_			
14	CLA	K	102	X	_	_			
14	CLA	K	102	X					
1/		I.	1501	X		-			
1/1		I.	1501	X X		-			
14		V L	1701		-	-	-		
14			800		-	-	-		
14		a	002		-	-	-		
14	ULA	a	803	Λ	-	-	-		

 α ntin Jf ÷

Continued from previous page									
Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density		
14	CLA	a	804	X	-	-	-		
14	CLA	a	805	X	-	-	-		
14	CLA	a	806	X	-	-	-		
14	CLA	a	807	X	-	-	-		
14	CLA	a	808	X	-	-	-		
14	CLA	a	809	X	-	-	-		
14	CLA	a	810	Х	-	-	-		
14	CLA	a	811	Х	_	-	-		
14	CLA	a	812	Х	_	-	-		
14	CLA	a	813	Х	_	-	-		
14	CLA	а	814	Х	-	-	-		
14	CLA	a	815	Х	-	-	-		
14	CLA	a	816	Х	-	-	-		
14	CLA	a	817	Х	-	-	-		
14	CLA	a	818	Х	-	-	-		
14	CLA	a	819	Х	-	-	-		
14	CLA	a	820	Х	-	-	-		
14	CLA	a	821	Х	_	-	-		
14	CLA	a	822	Х	_	-	_		
14	CLA	a	823	Х	_	-	-		
14	CLA	a	824	Х	-	-	-		
14	CLA	a	825	Х	-	-	-		
14	CLA	a	827	Х	-	-	-		
14	CLA	a	828	X	-	-	-		
14	CLA	a	829	X	-	_	-		
14	CLA	a	830	X	-	_	-		
14	CLA	a	831	X	-	_	-		
14	CLA	a	832	X	-	-	-		
14	CLA	a	833	X	-	-	_		
14	CLA	a	834	X	_	_	_		
14	CLA	a	835	X	_		_		
14	CLA	a	836	X	_	_	_		
14	CLA	a	837	X	_		_		
14	CLA	a	838	X	_		_		
14	CLA	a	839	X	_	_	_		
14	CLA	a	840	X	_	-	_		
14	CLA	a	841	X	_	_			
14	CLA	h	802	X	_				
14	CLA	h	803	X					
14	CLA	h	80/	X	_				
1/		h	805	X	-	-			
14		L L	806 806		-	-	-		
14	ULA	u u	000	Λ	-	-	-		

 α ntin Jf ÷

Continued from previous page									
Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density		
14	CLA	b	807	Х	_	-	-		
14	CLA	b	808	Х	_	-	-		
14	CLA	b	809	Х	-	-	-		
14	CLA	b	810	X	-	-	-		
14	CLA	b	811	X	-	-	-		
14	CLA	b	812	Х	-	-	-		
14	CLA	b	813	Х	-	-	-		
14	CLA	b	814	Х	-	-	-		
14	CLA	b	815	Х	-	-	-		
14	CLA	b	817	Х	-	-	-		
14	CLA	b	818	Х	-	_	-		
14	CLA	b	819	Х	_	-	-		
14	CLA	b	820	Х	_	-	-		
14	CLA	b	821	Х	_	-	-		
14	CLA	b	822	Х	_	-	-		
14	CLA	b	823	X	-	-	-		
14	CLA	b	824	X	-	-	-		
14	CLA	b	825	X	_	_	-		
14	CLA	b	826	X	-	-	-		
14	CLA	b	828	X	-	-	-		
14	CLA	b	829	X	_	_	_		
14	CLA	b	830	X	_	_	_		
14	CLA	b	831	X	_	_	_		
14	CLA	b	832	X	_	-	_		
14	CLA	b	833	X	_	_	_		
14	CLA	b	834	X	_	_	_		
14	CLA	b	835	X	_	_	_		
14	CLA	b	836	X	_	_	_		
14	CLA	b	837	X	_	_	_		
14	CLA	b	838	X	_	_	_		
14	CLA	b	839	X	_	_	_		
14	CLA	b	840	X		_	_		
14	CLA	b	841	X		_			
14	CLA	h	842	X		_			
14	CLA	f	201	X	_	_	_		
14	CLA	f	203	X	_	_	_		
14	CLA	i	101	X					
1/		J i	101	X	-	-			
1/		J i	102	X	-	-			
1/		J V	100						
14		k k	101		-	-	-		
14		K 1	102		-	-	-		
14	ULA		203	$ \Lambda$	-	-	-		

 α ntin J fa ÷

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
14	CLA	1	205	X	-	-	-
14	CLA	m	1201	Х	-	-	-
14	CLA	Х	1701	X	-	-	-

Continued from previous page...

2 Entry composition (i)

There are 20 unique types of molecules in this entry. The entry contains 49283 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Photosystem I P700 chlorophyll a apoprotein A1.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	742	Total 5823	C 3820	N 1003	O 979	S 21	0	0
1	a	742	Total 5823	C 3820	N 1003	O 979	S 21	0	0

• Molecule 2 is a protein called Photosystem I 4.8 kDa protein.

Mol	Chain	Residues	At	oms	AltConf	Trace	
2	Х	31	Total (257 17	C N 79 40	O 38	0	0
2	х	31	Total (257 17	C N 79 40	O 38	0	0

• Molecule 3 is a protein called Photosystem I P700 chlorophyll a apoprotein A2 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	D	740	Total	С	Ν	Ο	\mathbf{S}	0	0
<u>э</u> В	740	5918	3905	991	1004	18	0	0	
9	h	740	Total	С	Ν	Ο	S	0	0
0	D	740	5918	3905	991	1004	18	0	0

• Molecule 4 is a protein called Photosystem I iron-sulfur center.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	С	80	Total 598	C 367	N 103	0 117	S 11	0	0
4	С	80	Total 598	$\begin{array}{c} \mathrm{C} \\ 367 \end{array}$	N 103	O 117	S 11	0	0

• Molecule 5 is a protein called Photosystem I reaction center subunit II.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Л	135	Total	С	Ν	0	\mathbf{S}	0	0
	D	155	1040	666	179	194	1	0	
5	d	136	Total	С	Ν	0	S	0	0
0	u	130	1047	670	180	196	1	0	0

• Molecule 6 is a protein called Photosystem I reaction center subunit IV.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
6	F	61	Total	С	Ν	0	0	0
0		01	490	313	84	93	0	0
6	0	61	Total	С	Ν	0	0	0
0	е	01	490	313	84	93	0	U

• Molecule 7 is a protein called Photosystem I reaction center subunit III.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	F	1.4.1	Total	С	Ν	0	S	0	0
1	(Г	141	1080	690	184	204	2	0	0
7	f	1.4.1	Total	С	Ν	Ο	S	0	0
1	1	141	1080	690	184	204	2	0	0

• Molecule 8 is a protein called Photosystem I reaction center subunit IX.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
8	Т	45	Total	С	Ν	0	0	0
0	0	40	359	244	54	61	0	0
8	i	45	Total	С	Ν	0	0	0
0	J	40	359	244	54	61	0	0

• Molecule 9 is a protein called Photosystem I reaction center subunit PsaK 1.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
0	K	72	Total	С	Ν	0	\mathbf{S}	0	0
9	П	10	537	357	89	90	1	0	0
0	ŀ	78	Total	С	Ν	0	S	0	0
9	K	10	568	376	94	97	1	0	0

• Molecule 10 is a protein called Photosystem I reaction center subunit VIII.

Mol	Chain	Residues	Atoms				AltConf	Trace
10	Ι	34	Total 275	C 189	N 38	O 48	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms				AltConf	Trace
10	i	34	Total 275	C 189	N 38	O 48	0	0

• Molecule 11 is a protein called Photosystem I reaction center subunit XI.

Mol	Chain	Residues	Atoms					AltConf	Trace
11	т	155	Total	С	Ν	Ο	S	0	0
		100	1163	763	197	202	1	0	0
11	1	155	Total	С	Ν	0	S	0	0
	1	1 100	1163	763	197	202	1	0	0

• Molecule 12 is a protein called Photosystem I reaction center subunit XII.

Mol	Chain	Residues	A	Aton	ıs	AltConf	Trace	
12	М	31	Total	С	Ν	0	0	0
12	IVI	51	241	160	37	44	0	0
19	m	21	Total	С	Ν	0	0	0
12	111	51	241	160	37	44	0	0

• Molecule 13 is CHLOROPHYLL A ISOMER (three-letter code: CL0) (formula: $C_{55}H_{72}MgN_4O_5$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		AltConf				
13	А	1	Total 65	C 55	Mg 1	N 4	O 5	0

Continued from previous page...

Mol	Chain	Residues		AltConf				
13	a	1	Total 65	C 55	Mg 1	N 4	O 5	0

• Molecule 14 is CHLOROPHYLL A (three-letter code: CLA) (formula: $C_{55}H_{72}MgN_4O_5$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		At	oms			AltConf
14	Λ	1	Total	С	Mg	Ν	0	0
14	A	1	65	55	1	4	5	0
14	Λ	1	Total	С	Mg	Ν	0	0
14	Л	1	65	55	1	4	5	0
1.4 Δ	Λ	1	Total	С	Mg	Ν	Ο	0
14	Л	1	54	44	1	4	5	0
14	Λ	1	Total	С	Mg	Ν	Ο	0
14	A	1	65	55	1	4	5	0
14	Λ	1	Total	С	Mg	Ν	Ο	0
14	A	1	65	55	1	4	5	0
14	Λ	1	Total	С	Mg	Ν	Ο	0
14	Л	1	60	50	1	4	5	0
14	Λ	1	Total	С	Mg	Ν	Ο	0
14	Л	1	65	55	1	4	5	0
14	Λ	1	Total	С	Mg	Ν	Ο	0
14	Л	1	65	55	1	4	5	0
14	Δ	1	Total	С	Mg	Ν	Ο	0
14	Л	L	45	35	1	4	5	U
1.4	Δ	1	Total	С	Mg	Ν	Ο	0
14	Л	L	65	55	1	4	5	0

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
14	٨	1	Total	С	Mg	Ν	Ο	0
14	A	1	59	49	1	4	5	0
14	٨	1	Total	С	Mg	Ν	0	0
14	A	1	60	50	1	4	5	0
14	٨	1	Total	С	Mg	Ν	0	0
14	A	1	54	44	1	4	5	0
14	Δ	1	Total	С	Mg	Ν	0	0
14	A	1	45	35	1	4	5	0
1.4	٨	1	Total	С	Mg	Ν	0	0
14	A	1	45	35	1	4	5	0
1.4	٨	1	Total	С	Mg	Ν	Ο	0
14	A	1	59	49	1	4	5	0
1.4	٨	1	Total	С	Mg	Ν	Ο	0
14	A	1	60	50	1	4	5	0
1.4	٨	1	Total	С	Mg	Ν	Ο	0
14	A	1	65	55	1	4	5	0
14	Δ	1	Total	С	Mg	Ν	Ο	0
14	A	1	54	44	1	4	5	0
14	٨	1	Total	С	Mg	Ν	Ο	0
14	A	1	65	55	1	4	5	0
1.4	Δ	1	Total	С	Mg	Ν	0	0
14	A	1	45	35	1	4	5	0
1.4	Δ	1	Total	С	Mg	Ν	0	0
14	A	1	54	44	1	4	5	0
14	Δ	1	Total	С	Mg	Ν	0	0
14	A	1	45	35	1	4	5	0
14	Δ	1	Total	С	Mg	Ν	0	0
14	Л	1	65	55	1	4	5	0
14	Λ	1	Total	С	Mg	Ν	0	0
14	Π	I	54	44	1	4	5	0
14	Δ	1	Total	С	Mg	Ν	Ο	0
14	Π	I	65	55	1	4	5	0
14	Δ	1	Total	С	Mg	Ν	0	Ο
14	Π	I	65	55	1	4	5	0
1/	Δ	1	Total	С	Mg	Ν	Ο	0
1.4	17	1	65	55	1	4	5	0
1/	Δ	1	Total	С	Mg	Ν	0	Ο
14	11	1	65	55	1	4	5	U
14	Δ	1	Total	\mathbf{C}	Mg	Ν	0	0
1.4		1	54	44	1	4	5	0
14	Δ	1	Total	С	Mg	Ν	0	Ο
14	п	T	65	55	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
14	٨	1	Total	С	Mg	Ν	0	0
14	A	1	65	55	1	4	5	0
14	٨	1	Total	С	Mg	Ν	0	0
14	А	1	65	55	1	4	5	0
14	٨	1	Total	С	Mg	Ν	0	0
14	A	1	54	44	1	4	5	0
14	٨	1	Total	С	Mg	Ν	Ο	0
14	A	1	45	35	1	4	5	0
14	٨	1	Total	С	Mg	Ν	0	0
14	A	1	51	41	1	4	5	0
14	Λ	1	Total	С	Mg	Ν	Ο	0
14	A	1	65	55	1	4	5	0
14	Λ	1	Total	С	Mg	Ν	Ο	0
14	A	1	65	55	1	4	5	0
14	Λ	1	Total	С	Mg	Ν	0	0
14	Л	1	59	49	1	4	5	0
14	Λ	1	Total	С	Mg	Ν	0	0
14	Π	1	65	55	1	4	5	0
14	Λ	1	Total	С	Mg	Ν	Ο	0
14	Π	1	65	55	1	4	5	0
1/	Δ	1	Total	С	Mg	Ν	Ο	0
14	Λ	1	45	35	1	4	5	0
14	x	1	Total	С	Mg	Ν	Ο	0
11		1	49	39	1	4	5	0
14	В	1	Total	С	Mg	Ν	Ο	0
		1	65	55	1	4	5	0
14	В	1	Total	С	Mg	Ν	Ο	0
	2	-	65	55	1	4	5	
14	В	1	Total	С	Mg	Ν	Ο	0
	2	-	65	55	1	4	5	
14	В	1	Total	С	Mg	Ν	Ο	0
	_	_	65	55	1	4	5	
14	В	1	Total	C	Mg	Ν	0	0
		_	65	55	1	4	5	, , , , , , , , , , , , , , , , , , ,
14	В	1	'Iotal	C	Mg	N	0	0
			55	45	1	4	5	-
14	В	1	'Iotal	C	Mg	N	Ũ	0
			65	55		4	5	
14	В	1	'Iotal	C	Mg	N	Ũ	0
			65	55	1	4	5	-
14	В	1	'I'otal	C	Mg	N	Ũ	0
14	В	_	65	55	1	4	5	-

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
14	р	1	Total	С	Mg	Ν	Ο	0
14	В	1	65	55	1	4	5	0
14	р	1	Total	С	Mg	Ν	0	0
14	В	1	65	55	1	4	5	0
14	р	1	Total	С	Mg	Ν	0	0
14	В	1	60	50	1	4	5	0
1.4	D	1	Total	С	Mg	Ν	0	0
14	В	1	54	44	1	4	5	0
14	D	1	Total	С	Mg	Ν	0	0
14	D	1	54	44	1	4	5	0
1.4	D	1	Total	С	Mg	Ν	Ο	0
14	D	1	65	55	1	4	5	0
1.4	D	1	Total	С	Mg	Ν	Ο	0
14	В	1	50	40	1	4	5	0
1.4	D	1	Total	С	Mg	Ν	Ο	0
14	D	1	49	39	1	4	5	0
1.4	D	1	Total	С	Mg	Ν	Ο	0
14	D	1	45	35	1	4	5	0
14	р	1	Total	С	Mg	Ν	Ο	0
14	В	1	65	55	1	4	5	0
14	р	1	Total	С	Mg	Ν	Ο	0
14	В	1	65	55	1	4	5	0
14	D	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
1.4	D	1	Total	С	Mg	Ν	0	0
14	D	1	45	35	1	4	5	0
14	D	1	Total	С	Mg	Ν	0	0
14	D	1	45	35	1	4	5	0
14	В	1	Total	С	Mg	Ν	0	0
14	D	1	55	45	1	4	5	0
14	В	1	Total	С	Mg	Ν	Ο	0
14	D	1	65	55	1	4	5	0
14	В	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	В	1	Total	С	Mg	Ν	Ο	0
14	D	1	65	55	1	4	5	U
14	B	1	Total	С	Mg	Ν	Ο	Ο
1.4	D	Ţ	65	55	1	4	5	U
14	R	1	Total	С	Mg	Ν	Ο	Ο
14		1	65	55	1	4	5	U
14	В	1	Total	С	Mg	Ν	Ο	0
14	D	L	65	55	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
14	р	1	Total	С	Mg	Ν	Ο	0
14	В	1	65	55	1	4	5	0
14	р	1	Total	С	Mg	Ν	0	0
14	В	1	54	44	1	4	5	0
14	р	1	Total	С	Mg	Ν	0	0
14	В	1	60	50	1	4	5	0
1.4	D	1	Total	С	Mg	Ν	0	0
14	D	1	58	48	1	4	5	0
1.4	D	1	Total	С	Mg	Ν	0	0
14	D	1	54	44	1	4	5	0
1.4	D	1	Total	С	Mg	Ν	Ο	0
14	D	1	45	35	1	4	5	0
1.4	D	1	Total	С	Mg	Ν	Ο	0
14	В	1	45	35	1	4	5	0
1.4	D	1	Total	С	Mg	Ν	0	0
14	В	1	60	50	1	4	5	0
14	р	1	Total	С	Mg	Ν	0	0
14	В	1	65	55	1	4	5	0
14	р	1	Total	С	Mg	Ν	Ο	0
14	В	1	47	37	1	4	5	0
14	р	1	Total	С	Mg	Ν	Ο	0
14	В	1	65	55	1	4	5	0
1.4	D	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
1.4	Б	1	Total	С	Mg	Ν	0	0
14	Г	1	65	55	1	4	5	0
14	Б	1	Total	С	Mg	Ν	0	0
14	Ľ	1	45	35	1	4	5	0
14	Т	1	Total	С	Mg	Ν	0	0
14	0	I	45	35	1	4	5	0
14	Т	1	Total	С	Mg	Ν	0	0
14	J	1	37	31	1	4	1	0
14	K	1	Total	С	Mg	Ν	0	0
14	IX	1	41	33	1	4	3	0
1/	K	1	Total	С	Mg	Ν	Ο	0
14	17	1	49	39	1	4	5	U
14	T	1	Total	С	Mg	Ν	Ο	Ο
1.4		Ĩ	51	41	1	4	5	U
14	т	1	Total	С	Mg	Ν	Ο	0
14		1	60	50	1	4	5	U
11	т	1	Total	С	Mg	Ν	0	Ο
14		1	45	35	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
14	_	1	Total	С	Mg	Ν	Ο	0
14	а	1	65	55	1	4	5	0
14		1	Total	С	Mg	Ν	0	0
14	a	1	54	44	1	4	5	0
14		1	Total	С	Mg	Ν	0	0
14	а	1	65	55	1	4	5	0
14	_	1	Total	С	Mg	Ν	0	0
14	а	1	65	55	1	4	5	0
14		1	Total	С	Mg	Ν	Ο	0
14	a	1	60	50	1	4	5	0
14		1	Total	С	Mg	Ν	Ο	0
14	a	1	65	55	1	4	5	0
14		1	Total	С	Mg	Ν	Ο	0
14	a	1	65	55	1	4	5	0
14		1	Total	С	Mg	Ν	Ο	0
14	a	1	45	35	1	4	5	0
14	0	1	Total	С	Mg	Ν	Ο	0
14	a	1	65	55	1	4	5	0
14	-	1	Total	С	Mg	Ν	Ο	0
14	a	1	59	49	1	4	5	0
14	-	1	Total	С	Mg	Ν	0	0
14	a	1	60	50	1	4	5	0
1.4	0	1	Total	С	Mg	Ν	0	0
14	a	1	54	44	1	4	5	0
14	0	1	Total	С	Mg	Ν	0	0
14	a	1	45	35	1	4	5	0
14	0	1	Total	С	Mg	Ν	Ο	0
14	a	I	45	35	1	4	5	0
14	9	1	Total	С	Mg	Ν	Ο	0
14	a	I	59	49	1	4	5	0
1/	9	1	Total	С	Mg	Ν	Ο	0
17	a	Ĩ	60	50	1	4	5	0
1/	9	1	Total	С	Mg	Ν	Ο	0
17	a	Ĩ	65	55	1	4	5	0
14	я	1	Total	С	Mg	Ν	Ο	0
1.4	a	Ť	54	44	1	4	5	0
14	a	1	Total	\mathbf{C}	Mg	Ν	0	0
	u	L	65	55	1	4	5	0
14	я	1	Total	\mathbf{C}	Mg	Ν	0	Ο
	a	1	45	35	1	4	5	0
14	2	1	Total	$\overline{\mathbf{C}}$	Mg	N	0	0
1.4	a	L	54	44	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
14	_	1	Total	С	Mg	Ν	Ο	0
14	а	1	45	35	1	4	5	0
14		1	Total	С	Mg	Ν	0	0
14	a	1	65	55	1	4	5	0
14		1	Total	С	Mg	Ν	0	0
14	а	1	54	44	1	4	5	0
14	_	1	Total	С	Mg	Ν	0	0
14	а	1	65	55	1	4	5	0
1.4	_	1	Total	С	Mg	Ν	0	0
14	a	1	65	55	1	4	5	0
1.4		1	Total	С	Mg	Ν	Ο	0
14	a	1	65	55	1	4	5	0
1.4		1	Total	С	Mg	Ν	Ο	0
14	a	1	65	55	1	4	5	0
1.4		1	Total	С	Mg	Ν	Ο	0
14	a	1	54	44	1	4	5	0
1.4	0	1	Total	С	Mg	Ν	Ο	0
14	a	1	65	55	1	4	5	0
1.4	-	1	Total	С	Mg	Ν	Ο	0
14	a	1	65	55	1	4	5	0
1.4	0	1	Total	С	Mg	Ν	0	0
14	a	1	65	55	1	4	5	0
14	0	1	Total	С	Mg	Ν	0	0
14	a	1	54	44	1	4	5	0
14	9	1	Total	С	Mg	Ν	Ο	0
14	a	T	45	35	1	4	5	0
1/	9	1	Total	\mathbf{C}	Mg	Ν	Ο	0
14	a	I	51	41	1	4	5	0
1/	9	1	Total	С	Mg	Ν	Ο	0
17	a	Ĩ	65	55	1	4	5	0
14	я	1	Total	\mathbf{C}	Mg	Ν	Ο	0
17	a	Ĩ	65	55	1	4	5	0
14	а	1	Total	С	Mg	Ν	Ο	0
		1	65	55	1	4	5	0
14	а	1	Total	С	Mg	Ν	Ο	0
		1	65	55	1	4	5	
14	a	1	Total	С	Mg	Ν	Ο	0
		*	45	35	1	4	5	V
14	v	1	Total	С	Mg	Ν	Ο	0
1.1	<u>л</u>	L	49	39	1	4	5	U
14	h	1	Total	С	Mg	Ν	Ο	0
11	U U	1	65	55	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
1.4	h	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	h	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	1	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	1_	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	h	1	Total	С	Mg	Ν	Ο	0
14	D	1	65	55	1	4	5	0
14	1_	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	1	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	1	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	1	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	1	1	Total	С	Mg	Ν	0	0
14	b	1	65	55	1	4	5	0
14	1	1	Total	С	Mg	Ν	0	0
14	b	1	60	50	1	4	5	0
14	1	1	Total	С	Mg	Ν	0	0
14	b	1	54	44	1	4	5	0
14	1	1	Total	С	Mg	Ν	0	0
14	D	1	54	44	1	4	5	0
14	1_	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	h	1	Total	С	Mg	Ν	Ο	0
14	D	1	50	40	1	4	5	0
14	h	1	Total	С	Mg	Ν	Ο	0
14	D	1	49	39	1	4	5	0
14	h	1	Total	С	Mg	Ν	Ο	0
14	D	1	45	35	1	4	5	0
14	h	1	Total	С	Mg	Ν	Ο	0
14	D	1	65	55	1	4	5	0
14	h	1	Total	С	Mg	Ν	Ο	0
14	U	L	65	55	1	4	5	U
1 /	L	1	Total	С	Mg	Ν	0	0
14	a		65	55	1	4	5	U
14	L	1	Total	С	Mg	Ν	0	0
14	a	1	45	35	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
14	1_	1	Total	С	Mg	Ν	0	0
14	D	1	45	35	1	4	5	0
14	1	1	Total	С	Mg	Ν	0	0
14	D	1	55	45	1	4	5	0
14	1	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	1_	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	1_	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
1.4	1-	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
1.4	1_	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
14	1_	1	Total	С	Mg	Ν	0	0
14	D	1	65	55	1	4	5	0
1.4	h	1	Total	С	Mg	Ν	Ο	0
14	D	1	65	55	1	4	5	0
14	1	1	Total	С	Mg	Ν	Ο	0
14	D	1	54	44	1	4	5	0
14	1-	1	Total	С	Mg	Ν	0	0
14	D	1	60	50	1	4	5	0
14	h	1	Total	С	Mg	Ν	Ο	0
14	D	1	65	55	1	4	5	0
14	h	1	Total	С	Mg	Ν	0	0
14	D	1	54	44	1	4	5	0
14	h	1	Total	С	Mg	Ν	0	0
14	D	1	45	35	1	4	5	0
14	h	1	Total	С	Mg	Ν	0	0
14	U	1	45	35	1	4	5	0
14	h	1	Total	С	Mg	Ν	Ο	0
14	U	I	60	50	1	4	5	0
14	h	1	Total	С	Mg	Ν	0	0
14	U	I	65	55	1	4	5	0
14	h	1	Total	С	Mg	Ν	Ο	0
14	U	1	47	$\overline{37}$	1	4	5	0
1/	h	1	Total	С	Mg	Ν	0	Ο
1.4	U	T	65	55	1	4	5	U
14	h	1	Total	С	Mg	Ν	0	0
	U	1	65	55	1	4	5	U
11	f	1	Total	С	Mg	Ν	0	Ο
14	1	L	59	49	1	4	5	U

Mol	Chain	Residues	_	At	oms			AltConf
14	f	1	Total	С	Mg	Ν	0	0
14	1	1	45	35	1	4	5	0
14	i	1	Total	С	Mg	Ν	Ο	0
14	J	T	58	48	1	4	5	0
14	i	1	Total	С	Mg	Ν	Ο	0
14	J	1	45	35	1	4	5	0
14	i	1	Total	С	Mg	Ν	Ο	0
14	J	T	37	31	1	4	1	0
1/	k	1	Total	\mathbf{C}	Mg	Ν	Ο	0
14	К	1	41	33	1	4	3	0
14	k	1	Total	\mathbf{C}	Mg	Ν	Ο	0
17	K	I	49	39	1	4	5	0
14	1	1	Total	\mathbf{C}	Mg	Ν	Ο	0
17	1	I	45	35	1	4	5	0
14	1	1	Total	С	Mg	Ν	Ο	0
	1	Ŧ	60	50	1	4	5	0
14	1	1	Total	\mathbf{C}	Mg	Ν	Ο	0
	1	1	45	35	1	4	5	0
14	m	1	Total	\mathbf{C}	Mg	Ν	Ο	0
1.1	111		55	45	1	4	5	0

Continued from previous page...

• Molecule 15 is PHYLLOQUINONE (three-letter code: PQN) (formula: $C_{31}H_{46}O_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
15	А	1	Total C O 33 31 2	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
15	В	1	Total C O 33 31 2	0
15	a	1	Total C O 33 31 2	0
15	b	1	Total C O 33 31 2	0

• Molecule 16 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
16	А	1	TotalFeS844	0
16	С	1	TotalFeS844	0
16	С	1	TotalFeS844	0
16	a	1	TotalFeS844	0
16	с	1	TotalFeS844	0
16	С	1	TotalFeS844	0

• Molecule 17 is BETA-CAROTENE (three-letter code: BCR) (formula: $C_{40}H_{56}$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
17	А	1	Total C 40 40	0
17	А	1	Total C 40 40	0
17	А	1	Total C 40 40	0
17	А	1	Total C 40 40	0
17	А	1	Total C 40 40	0
17	А	1	Total C 40 40	0
17	В	1	Total C 40 40	0
17	В	1	Total C 40 40	0
17	В	1	Total C 40 40	0
17	В	1	Total C 40 40	0
17	В	1	Total C 40 40	0
17	В	1	Total C 40 40	0
17	F	1	Total C 40 40	0
17	F	1	Total C 40 40	0

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Residues	Atoms	AltConf
17	т	1	Total C	0
17	J	T	40 40	0
17	Т	1	Total C	0
11		I	40 40	0
17	J	1	Total C	0
	0	1	40 40	0
17	K	1	Total C	0
		-	40 40	, in the second
17	Ι	1	Total C	0
		_	40 40	
17	I	1	Total C	0
			40 40	
17	L	1	Total C	0
			40 40	
17	М	1	Total C	0
			40 40	
17	a	1	Total C	0
			40 40	
17	a	1	Total C	0
		_	40 40	
17	a	1	Total C	0
			40 40	
17	a	1	Total C	0
			40 40	_
17	a	1	Total C	0
			40 40	
17	a	1	Total C	0
			40 40	
17	b	1	Total C	0
			40 40	
17	b	1	Total C	0
			40 40	
17	b	1	Total C	0
			40 40	
17	b	1	Total C	0
			$\begin{array}{c c} 40 & 40 \\ \hline \end{array}$	
17	b	1	Total C	0
			40 40	
17	b	1	Total C	0
			$\begin{array}{c c} 40 & 40 \\ \hline \end{array}$	
17	f	1	Total C	0
			40 40	

Mol	Chain	Residues	Atoms	AltConf
17	f	1	Total C 40 40	0
17	j	1	Total C 40 40	0
17	j	1	Total C 40 40	0
17	j	1	Total C 40 40	0
17	k	1	Total C 40 40	0
17	i	1	Total C 40 40	0
17	i	1	Total C 40 40	0
17	1	1	Total C 40 40	0
17	1	1	Total C 40 40	0
17	1	1	Total C 40 40	0
17	m	1	Total C 40 40	0

Continued from previous page...

• Molecule 18 is 1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE (three-letter code: LHG) (formula: C₃₈H₇₅O₁₀P) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms			AltConf	
18	Λ	1	Total	С	Ο	Р	0
10	Л	1	49	38	10	1	0
18	Δ	1	Total	С	Ο	Р	0
10	Π	T	49	38	10	1	0
18	F	1	Total	С	Ο	Р	0
10	Ľ	T	43	32	10	1	0
18	0	1	Total	С	Ο	Р	0
10	a	1	49	38	10	1	0
18	9	1	Total	С	Ο	Р	0
10	a	1	49	38	10	1	0
18	i	1	Total	С	Ο	Р	0
10	I	1	43	32	10	1	0

• Molecule 19 is 1,2-DI-O-ACYL-3-O-[6-DEOXY-6-SULFO-ALPHA-D-GLUCOPYRANOSY L]-SN-GLYCEROL (three-letter code: SQD) (formula: C₄₁H₇₈O₁₂S) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	Atoms			AltConf
10	v	1	Total	С	Ο	S	0
19	Λ	1	54	41	12	1	0
10		1	Total	С	Ο	S	0
19	X	1	54	41	12	1	0
10	h	1	Total	С	Ο	S	0
19	D	1	54	41	12	1	0
10	1	1	Total	С	Ο	S	0
19	1	1	54	41	12	1	U

 \bullet Molecule 20 is 1,2-DISTEAROYL-MONOGALACTOSYL-DIGLYCERIDE (three-letter

code: LMG) (formula: $C_{45}H_{86}O_{10}$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
20	В	1	Total C O 35 25 10	0
20	В	1	Total C O 55 45 10	0
20	b	1	Total C O 55 45 10	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Photosystem I P700 chlorophyll a apoprotein A1

• Molecule 3: Photosystem I P700 chlorophyll a apoprotein A2 1

Chain b:	98%	
MET A2 13 13 110 110 110 130	V411 L431 L475 N612 V652 F668 F669 F694 F694 C741	
• Molecule 4	: Photosystem I iron-sulfur center	
Chain C:	94%	5% •
MET S2 V39 F62 F62 L63		
• Molecule 4	Photosystem I iron-sulfur center	
Chain c:	95%	
MET S2 V39 F62 V04		
• Molecule 5	Photosystem I reaction center subunit II	
Chain D:	97%	•
MET ALA GLU THR L5 A139		
• Molecule 5	Photosystem I reaction center subunit II	
Chain d: 📥	96%	••
MET ALA GLU F S S S C L19		
• Molecule 6	: Photosystem I reaction center subunit IV	
Chain E:	87%	13%
MET V2 E62 ALA PRO LYS ALA ALA LYS	LYS LYS	
• Molecule 6	: Photosystem I reaction center subunit IV	
Chain e:	87%	13%

• Molecule 7: Photosystem I reaction center subunit III

Chain F:	86%	14%
MET ARG ARG LEU PHE PHE ALA LEU LEU LEU CTS SER SER	SER PHE ALIA PRO ALA ALA ALA L75 R164	
• Molecule 7: Photo	system I reaction center subunit III	
Chain f:	85%	• 14%
MET ARG ARG ARG ARG ARG PHE PHE ALA ILEU CLEU CLEU CLEU CLEU SER SER	SER PHE ALA PRO PRO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 8: Photo	system I reaction center subunit IX	
Chain J:	92%	8%
MET ALA ASP LYS A5 P49		
• Molecule 8: Photo	osystem I reaction center subunit IX	
Chain j:	92%	8%
MET ALA ASP AS P49		
• Molecule 9: Photo	system I reaction center subunit PsaK	[1
Chain K:	83%	•• 15%
MET LEU STRR STRR STRR STRR LEU LEU ALA ALA ALA ALA ALA ALA LIA LIA	R36 037 738 850 850 851 853 850 851 163 163 163 163	
• Molecule 9: Photo	system I reaction center subunit PsaK	1
Chain k:	91%	9%
MET LEU LEU LEU LEU LEU ALA ASI ASI ASI		

• Molecule 10: Photosystem I reaction center subunit VIII

Chain I:	74%	26%
MET ALA THR THR PHE PHE LEU ELU LEU D12 D12 ALA ALA ALA		
• Molecule 10: Phot	cosystem I reaction center subunit VIII	Ι
Chain i:	74%	26%
MET ALA ALA ALA ALA ALA ELEU FRO SER ALA ALA ALA ALA ALA	ALA	
• Molecule 11: Phot	cosystem I reaction center subunit XI	
Chain L:	88%	• 10%
MET ALA GLA GLA ALA ALA ALA SER LEU FRO PRO PRO PRO	ARG N17 L64 R85 R85 GLY	
• Molecule 11: Phot	cosystem I reaction center subunit XI	
Chain l:	89%	• 10%
MET ALA GLA ALA ALA ALA ALA ALA ALA ALA ALA	ARC ARS ARS ARS ARS ARS ARS ARS ARS ARS ARS	
• Molecule 12: Phot	cosystem I reaction center subunit XII	
Chain M:	97%	
MET S2 K32		
• Molecule 12: Phot	cosystem I reaction center subunit XII	
Chain m:	97%	•
MET S2 S2 K32 K32		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C2	Depositor
Number of particles used	71600	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	58	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.173	Depositor
Minimum map value	-0.073	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.007	Depositor
Recommended contour level	0.019	Depositor
Map size (Å)	420.80002, 420.80002, 420.80002	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.052, 1.052, 1.052	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CLA, LHG, LMG, CL0, PQN, SF4, SQD, BCR

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.49	1/6022~(0.0%)	0.59	3/8214~(0.0%)	
1	a	0.50	0/6022	0.58	1/8214~(0.0%)	
2	Х	0.41	0/267	0.54	0/366	
2	Х	0.34	0/267	0.48	0/366	
3	В	0.54	2/6142~(0.0%)	0.71	5/8396~(0.1%)	
3	b	0.54	2/6142~(0.0%)	0.62	4/8396~(0.0%)	
4	С	0.52	0/608	0.68	0/825	
4	с	0.55	0/608	0.65	0/825	
5	D	0.45	0/1064	0.62	0/1436	
5	d	0.45	0/1071	0.62	1/1446~(0.1%)	
6	Е	0.43	0/499	0.48	0/677	
6	е	0.41	0/499	0.46	0/677	
7	F	0.38	0/1104	0.57	0/1500	
7	f	0.40	0/1104	0.54	0/1500	
8	J	0.38	0/371	0.52	0/509	
8	j	0.36	0/371	0.51	0/509	
9	Κ	0.35	0/551	0.67	1/750~(0.1%)	
9	k	0.41	0/583	0.58	0/796	
10	Ι	0.43	0/284	0.54	0/388	
10	i	0.53	0/284	0.59	0/388	
11	L	0.48	0/1198	0.64	1/1642~(0.1%)	
11	1	0.50	0/1198	0.60	0/1642	
12	М	0.44	0/245	0.57	0/334	
12	m	0.46	0/245	0.59	0/334	
All	All	0.49	$5/3\overline{6749}~(0.0\%)$	0.61	$16/\overline{50130}\ (0.0\%)$	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
3	В	0	4
3	b	0	2
4	с	0	1
All	All	0	8

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
3	В	411	VAL	CB-CG1	-8.36	1.35	1.52
3	В	652	VAL	CB-CG2	-6.76	1.38	1.52
3	b	411	VAL	CB-CG1	-6.03	1.40	1.52
3	b	652	VAL	CB-CG2	-5.68	1.41	1.52
1	А	376	PRO	C-N	-5.04	1.22	1.34

The worst 5 of 16 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	В	493	TYR	C-N-CD	-20.83	74.77	120.60
3	В	493	TYR	C-N-CA	13.79	179.94	122.00
3	b	431	LEU	CA-CB-CG	7.55	132.66	115.30
5	d	19	LEU	CA-CB-CG	7.06	131.54	115.30
3	b	155	LEU	CA-CB-CG	6.75	130.83	115.30

There are no chirality outliers.

Mol	Chain	Res	Type	Group
1	А	121	ILE	Peptide
3	В	480	THR	Peptide
3	В	493	TYR	Peptide
3	В	674	TRP	Peptide
3	В	693	PRO	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	740/752~(98%)	709~(96%)	30~(4%)	1 (0%)	51	67
1	a	740/752~(98%)	710 (96%)	30~(4%)	0	100	100
2	Х	29/44~(66%)	28~(97%)	1 (3%)	0	100	100
2	х	29/44~(66%)	28 (97%)	1 (3%)	0	100	100
3	В	738/741~(100%)	715 (97%)	21 (3%)	2(0%)	41	53
3	b	$738/741\ (100\%)$	721 (98%)	16 (2%)	1 (0%)	51	67
4	С	78/81~(96%)	73 (94%)	3 (4%)	2(3%)	5	4
4	с	78/81~(96%)	72 (92%)	6 (8%)	0	100	100
5	D	133/139~(96%)	130 (98%)	3 (2%)	0	100	100
5	d	134/139~(96%)	131 (98%)	3 (2%)	0	100	100
6	Е	59/70~(84%)	57 (97%)	2 (3%)	0	100	100
6	е	59/70~(84%)	57 (97%)	2 (3%)	0	100	100
7	F	139/164~(85%)	131 (94%)	8 (6%)	0	100	100
7	f	139/164~(85%)	135 (97%)	4 (3%)	0	100	100
8	J	43/49~(88%)	43 (100%)	0	0	100	100
8	j	43/49~(88%)	43 (100%)	0	0	100	100
9	К	71/86~(83%)	69 (97%)	2 (3%)	0	100	100
9	k	76/86~(88%)	74 (97%)	2(3%)	0	100	100
10	Ι	32/46~(70%)	31 (97%)	1 (3%)	0	100	100
10	i	32/46~(70%)	31 (97%)	1 (3%)	0	100	100
11	L	153/172~(89%)	152 (99%)	1 (1%)	0	100	100
11	1	153/172~(89%)	151 (99%)	2 (1%)	0	100	100
12	М	29/32~(91%)	28 (97%)	1 (3%)	0	100	100
12	m	29/32~(91%)	28 (97%)	1 (3%)	0	100	100
All	All	4494/4752~(95%)	4347 (97%)	141 (3%)	6 (0%)	54	67

5 of 6 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	122	VAL
3	В	494	PRO
3	В	694	ILE
3	b	694	ILE
4	С	63	LEU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	595/605~(98%)	590~(99%)	5 (1%)	81	91
1	a	595/605~(98%)	590~(99%)	5 (1%)	81	91
2	Х	25/34~(74%)	24 (96%)	1 (4%)	31	47
2	х	25/34~(74%)	23~(92%)	2(8%)	12	17
3	В	600/602~(100%)	594 (99%)	6 (1%)	76	87
3	b	600/602~(100%)	596~(99%)	4 (1%)	84	92
4	С	67/69~(97%)	65~(97%)	2(3%)	41	59
4	с	67/69~(97%)	65~(97%)	2(3%)	41	59
5	D	107/110~(97%)	107 (100%)	0	100	100
5	d	108/110~(98%)	107 (99%)	1 (1%)	78	89
6	Ε	54/60~(90%)	54 (100%)	0	100	100
6	е	54/60~(90%)	54 (100%)	0	100	100
7	F	110/129~(85%)	110 (100%)	0	100	100
7	f	110/129~(85%)	109 (99%)	1 (1%)	78	89
8	J	39/42~(93%)	39 (100%)	0	100	100
8	j	39/42~(93%)	39 (100%)	0	100	100
9	К	54/64~(84%)	52 (96%)	2(4%)	34	50
9	k	57/64~(89%)	57 (100%)	0	100	100
10	Ι	31/39~(80%)	31 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
10	i	31/39~(80%)	31~(100%)	0	100	100	
11	L	118/131~(90%)	115~(98%)	3~(2%)	47	65	
11	1	118/131~(90%)	116~(98%)	2(2%)	60	76	
12	М	26/27~(96%)	26 (100%)	0	100	100	
12	m	26/27~(96%)	26 (100%)	0	100	100	
All	All	3656/3824~(96%)	3620 (99%)	36 (1%)	77	87	

5 of 36 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
3	b	431	LEU
11	1	141	ASN
3	b	612	ASN
5	d	118	ARG
4	С	39	VAL

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 69 such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
3	b	612	ASN
3	b	640	ASN
7	f	46	ASN
3	В	689	HIS
3	В	679	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

259 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Bos	Link	B	ond leng	gths	Bo	ond angl	es
WIOI	туре	Ullaili	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
14	CLA	a	807	-	$65,\!73,\!73$	1.45	9 (13%)	76,113,113	1.54	10 (13%)
14	CLA	Κ	102	-	49,57,73	1.65	6 (12%)	55,93,113	1.69	8 (14%)
14	CLA	a	836	-	$51,\!59,\!73$	1.54	9 (17%)	59,96,113	1.71	11 (18%)
14	CLA	В	826	-	65,73,73	1.37	6 (9%)	76,113,113	1.60	10 (13%)
14	CLA	b	827	3	65,73,73	1.36	8 (12%)	76,113,113	1.55	12 (15%)
17	BCR	j	105	-	41,41,41	1.17	2 (4%)	56,56,56	1.32	7 (12%)
14	CLA	b	815	-	54,62,73	1.61	7 (12%)	62,99,113	1.70	10 (16%)
14	CLA	А	843	18	45,53,73	1.73	8 (17%)	52,89,113	1.73	9 (17%)
14	CLA	b	804	-	65,73,73	1.47	8 (12%)	76,113,113	1.53	10 (13%)
14	CLA	m	1201	3	55,63,73	1.53	9 (16%)	64,101,113	1.60	9 (14%)
14	CLA	b	831	-	65,73,73	1.31	9 (13%)	76,113,113	1.48	5 (6%)
17	BCR	i	102	-	41,41,41	1.20	3 (7%)	56,56,56	1.32	8 (14%)
14	CLA	А	835	1	54,62,73	1.61	8 (14%)	62,99,113	1.54	8 (12%)
14	CLA	a	827	-	65,73,73	1.36	<mark>6 (9%)</mark>	76,113,113	1.63	11 (14%)
14	CLA	В	823	3	45,53,73	1.68	9 (20%)	52,89,113	1.99	14 (26%)
14	CLA	a	830	1	54,62,73	1.53	9 (16%)	62,99,113	1.43	9 (14%)
14	CLA	А	821	-	65,73,73	1.56	7 (10%)	76,113,113	1.35	10 (13%)
14	CLA	А	841	1	65,73,73	1.44	9 (13%)	76,113,113	1.48	10 (13%)
14	CLA	F	204	-	45,53,73	1.74	7 (15%)	52,89,113	1.64	10 (19%)
14	CLA	a	832	1	65,73,73	1.36	7 (10%)	76,113,113	1.54	11 (14%)
17	BCR	В	848	-	41,41,41	1.09	3 (7%)	56,56,56	1.30	5 (8%)
17	BCR	a	847	-	41,41,41	1.12	2 (4%)	56,56,56	1.26	6 (10%)
14	CLA	a	837	1	65,73,73	1.38	10 (15%)	76,113,113	1.69	11 (14%)
14	CLA	j	102	-	45,53,73	1.72	7 (15%)	52,89,113	1.67	7 (13%)
14	CLA	В	838	-	45,53,73	1.83	8 (17%)	52,89,113	1.57	9 (17%)
14	CLA	b	813	-	60,68,73	1.58	9 (15%)	70,107,113	1.49	13 (18%)

Mal	T	Chain	Dec	T :l.	Bond lengths		Bond angles			
NIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
17	BCR	a	846	-	41,41,41	1.13	2 (4%)	56, 56, 56	1.45	9 (16%)
14	CLA	В	829	3	65,73,73	1.50	7 (10%)	76,113,113	1.69	10 (13%)
17	BCR	В	847	-	41,41,41	1.12	2 (4%)	$56,\!56,\!56$	1.34	9 (16%)
14	CLA	А	815	-	45,53,73	1.66	7 (15%)	52,89,113	1.92	6 (11%)
14	CLA	В	819	-	45,53,73	1.70	8 (17%)	52,89,113	1.62	9 (17%)
14	CLA	В	807	3	55,63,73	1.50	7 (12%)	64,101,113	1.61	8 (12%)
14	CLA	a	816	-	59,67,73	1.49	10 (16%)	68,105,113	1.57	11 (16%)
17	BCR	В	846	-	41,41,41	1.10	3 (7%)	56,56,56	1.33	9 (16%)
14	CLA	b	824	3	45,53,73	1.69	7 (15%)	52,89,113	1.68	7 (13%)
17	BCR	K	103	-	41,41,41	1.10	2 (4%)	56,56,56	1.32	8 (14%)
14	CLA	А	837	-	51,59,73	1.49	7 (13%)	59,96,113	1.89	10 (16%)
14	CLA	a	804	1	65,73,73	1.37	7 (10%)	76,113,113	1.67	14 (18%)
14	CLA	В	815	3	54,62,73	1.58	7 (12%)	62,99,113	1.57	9 (14%)
14	CLA	a	806	-	60,68,73	1.50	10 (16%)	70,107,113	1.49	9 (12%)
14	CLA	j	101	-	58,66,73	1.55	9 (15%)	67,104,113	1.59	10 (14%)
15	PQN	a	842	-	34,34,34	1.47	2 (5%)	42,45,45	1.27	5 (11%)
14	CLA	a	826	-	65,73,73	1.39	9 (13%)	76,113,113	1.59	8 (10%)
14	CLA	В	814	3	54,62,73	1.48	7 (12%)	62,99,113	1.81	11 (17%)
14	CLA	В	836	3	54,62,73	1.43	7 (12%)	62,99,113	1.83	12 (19%)
14	CLA	a	811	-	59,67,73	1.53	7 (11%)	68,105,113	1.50	8 (11%)
14	CLA	А	810	1	45,53,73	1.70	7 (15%)	52,89,113	1.73	7 (13%)
14	CLA	b	838	-	45,53,73	1.74	7 (15%)	52,89,113	1.60	6 (11%)
17	BCR	b	847	-	41,41,41	1.17	3 (7%)	56,56,56	1.41	10 (17%)
14	CLA	В	832	3	65,73,73	1.57	10 (15%)	76,113,113	1.76	11 (14%)
14	CLA	А	816	-	45,53,73	1.73	7 (15%)	52,89,113	1.72	8 (15%)
14	CLA	А	818	1	60,68,73	1.54	10 (16%)	70,107,113	1.46	7 (10%)
14	CLA	В	825	-	55,63,73	1.54	6 (10%)	64,101,113	1.64	7 (10%)
19	SQD	b	801	-	53,54,54	0.97	6 (11%)	62,65,65	1.73	11 (17%)
14	CLA	А	806	1	65,73,73	1.42	9 (13%)	76,113,113	1.58	10 (13%)
14	CLA	b	807	-	65,73,73	1.42	10 (15%)	76,113,113	1.91	12 (15%)
14	CLA	А	822	-	45,53,73	1.68	7 (15%)	52,89,113	1.69	8 (15%)
14	CLA	b	836	3	54,62,73	1.54	8 (14%)	62,99,113	1.78	13 (20%)
14	CLA	В	827	3	65,73,73	1.40	8 (12%)	76,113,113	1.72	13 (17%)
14	CLA	А	812	-	59,67,73	1.53	7 (11%)	68,105,113	1.47	7 (10%)
14	CLA	a	821	1	45,53,73	1.73	8 (17%)	52,89,113	1.80	11 (21%)

Mal	Trune	Chain	Dec	Tinle	Bond lengths		Bond angles			
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
17	BCR	В	849	-	41,41,41	1.21	6 (14%)	56,56,56	1.46	7 (12%)
14	CLA	А	813	-	60,68,73	1.52	9 (15%)	70,107,113	1.53	12 (17%)
14	CLA	В	812	-	65,73,73	1.39	8 (12%)	76,113,113	1.69	13 (17%)
14	CLA	В	805	-	65,73,73	1.36	8 (12%)	76,113,113	1.47	6 (7%)
14	CLA	b	803	-	65,73,73	1.44	10 (15%)	76,113,113	1.58	13 (17%)
14	CLA	b	832	3	65,73,73	1.51	9 (13%)	76,113,113	1.71	15 (19%)
17	BCR	k	103	-	41,41,41	1.06	2 (4%)	56,56,56	1.30	7 (12%)
14	CLA	j	103	-	38,45,73	1.86	9 (23%)	43,78,113	1.69	7 (16%)
17	BCR	А	850	-	41,41,41	1.15	3 (7%)	56,56,56	1.25	7 (12%)
14	CLA	b	837	-	45,53,73	1.70	7 (15%)	52,89,113	1.79	10 (19%)
14	CLA	a	815	-	45,53,73	1.73	7 (15%)	52,89,113	1.75	6 (11%)
17	BCR	J	103	-	41,41,41	1.13	3 (7%)	56,56,56	1.28	6 (10%)
14	CLA	a	819	-	54,62,73	1.58	7 (12%)	62,99,113	1.66	8 (12%)
14	CLA	L	1502	11	60,68,73	1.45	8 (13%)	70,107,113	1.67	10 (14%)
14	CLA	a	802	1	65,73,73	1.42	7 (10%)	76,113,113	1.53	8 (10%)
14	CLA	f	203	-	45,53,73	1.72	8 (17%)	52,89,113	1.69	6 (11%)
14	CLA	В	833	3	54,62,73	1.57	8 (14%)	62,99,113	1.51	7 (11%)
17	BCR	F	205	-	41,41,41	1.12	2 (4%)	56,56,56	1.28	7 (12%)
17	BCR	А	848	-	41,41,41	1.13	1 (2%)	56,56,56	1.46	9 (16%)
14	CLA	А	825	-	65,73,73	1.38	8 (12%)	76,113,113	1.55	9 (11%)
14	CLA	1	205	-	45,53,73	1.68	7 (15%)	52,89,113	1.92	9 (17%)
14	CLA	В	811	3	65,73,73	1.47	10 (15%)	76,113,113	1.86	14 (18%)
17	BCR	b	850	-	41,41,41	1.10	3 (7%)	56,56,56	1.10	3 (5%)
14	CLA	х	1701	2	49,57,73	1.66	8 (16%)	55,93,113	1.54	6 (10%)
17	BCR	f	202	-	41,41,41	1.20	3 (7%)	56,56,56	1.25	5 (8%)
14	CLA	В	834	-	60,68,73	1.43	7 (11%)	70,107,113	1.61	6 (8%)
14	CLA	А	830	1	65,73,73	1.57	9 (13%)	76,113,113	1.72	10 (13%)
17	BCR	А	847	-	41,41,41	1.09	3 (7%)	56,56,56	1.28	6 (10%)
14	CLA	a	810	-	65,73,73	1.45	9 (13%)	76,113,113	1.59	9 (11%)
14	CLA	А	819	-	65,73,73	1.44	7 (10%)	76,113,113	1.65	10 (13%)
17	BCR	А	849	-	41,41,41	1.17	3 (7%)	56,56,56	1.44	8 (14%)
17	BCR	a	848	-	41,41,41	1.16	2 (4%)	56,56,56	1.28	7 (12%)
14	CLA	А	805	1	65,73,73	1.36	7 (10%)	76,113,113	1.76	15 (19%)
14	CLA	a	818	-	65,73,73	1.36	7 (10%)	76,113,113	1.73	13 (17%)
14	CLA	b	811	-	65,73,73	1.42	11 (16%)	76,113,113	1.71	10 (13%)

Mol	Type	Chain	Dog	Link	Bond lengths		Bond angles			
	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
17	BCR	j	104	-	41,41,41	1.15	3 (7%)	56,56,56	1.33	7 (12%)
14	CLA	В	831	-	65,73,73	1.37	8 (12%)	76,113,113	1.48	6 (7%)
20	LMG	В	803	-	$35,\!35,\!55$	0.94	1 (2%)	43,43,63	1.24	4 (9%)
17	BCR	a	849	-	41,41,41	1.21	3 (7%)	$56,\!56,\!56$	1.29	4 (7%)
13	CL0	a	801	1	65,73,73	2.36	18 (27%)	76,113,113	2.61	22 (28%)
16	SF4	С	101	-	0,12,12	-	-	-		
14	CLA	А	802	-	65,73,73	1.47	9 (13%)	76,113,113	1.52	11 (14%)
14	CLA	b	821	3	65,73,73	1.35	9 (13%)	76,113,113	1.56	13 (17%)
14	CLA	J	101	-	$45,\!53,\!73$	1.73	8 (17%)	52,89,113	1.71	8 (15%)
14	CLA	В	806	-	65,73,73	1.46	8 (12%)	76,113,113	2.08	13 (17%)
14	CLA	А	836	1	45,53,73	1.68	7 (15%)	52,89,113	1.84	8 (15%)
14	CLA	a	812	-	60,68,73	1.54	9 (15%)	70,107,113	1.41	7 (10%)
15	PQN	b	844	-	34,34,34	1.41	2 (5%)	42,45,45	1.38	7 (16%)
14	CLA	a	823	1	45,53,73	1.64	6 (13%)	52,89,113	1.83	9 (17%)
14	CLA	В	804	-	65,73,73	1.39	7 (10%)	76,113,113	1.53	12 (15%)
14	CLA	b	841	3	47,55,73	1.65	9 (19%)	54,91,113	1.59	9 (16%)
14	CLA	В	813	-	60,68,73	1.52	9 (15%)	70,107,113	1.41	9 (12%)
14	CLA	L	1503	-	45,53,73	1.65	6 (13%)	52,89,113	1.88	9 (17%)
14	CLA	В	801	-	65,73,73	1.38	7 (10%)	76,113,113	1.71	11 (14%)
18	LHG	a	851	14	48,48,48	0.93	5 (10%)	51,54,54	0.98	2 (3%)
17	BCR	i	101	-	41,41,41	1.08	1 (2%)	56,56,56	1.43	9 (16%)
14	CLA	В	840	3	65,73,73	1.40	8 (12%)	76,113,113	1.60	12 (15%)
14	CLA	А	834	-	65,73,73	1.37	7 (10%)	76,113,113	1.69	14 (18%)
14	CLA	b	812	3	65,73,73	1.51	9 (13%)	76,113,113	1.65	10 (13%)
14	CLA	b	814	-	54,62,73	1.54	7 (12%)	62,99,113	1.66	9 (14%)
17	BCR	f	204	_	41,41,41	1.11	2 (4%)	56,56,56	1.31	8 (14%)
16	SF4	с	102	-	0,12,12	_	-	-		
14	CLA	a	813	-	54,62,73	1.55	7 (12%)	62,99,113	1.65	7 (11%)
14	CLA	А	823	1	54,62,73	1.52	7 (12%)	62,99,113	1.72	10 (16%)
14	CLA	J	102	-	38,45,73	1.87	7 (18%)	43,78,113	1.71	7 (16%)
14	CLA	В	837	-	45,53,73	1.68	7 (15%)	52,89,113	1.96	11 (21%)
14	CLA	a	834	1	54,62,73	1.59	9 (16%)	62,99,113	1.58	6 (9%)
14	CLA	А	817	-	59,67,73	1.56	8 (13%)	68,105,113	1.57	9 (13%)
14	CLA	В	810	3	65,73,73	1.31	7 (10%)	76,113,113	1.46	7(9%)
14	CLA	a	825	-	54,62,73	1.54	7 (12%)	62,99,113	1.60	9 (14%)

Mol	Tuno	Chain	Dog	Link	Bond lengths		Bond angles			
	туре	Chan	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
14	CLA	b	802	-	65,73,73	1.28	7 (10%)	76,113,113	1.67	7 (9%)
17	BCR	М	101	-	41,41,41	1.08	2 (4%)	$56,\!56,\!56$	1.32	9 (16%)
14	CLA	В	816	-	65,73,73	1.42	9 (13%)	76,113,113	1.48	8 (10%)
14	CLA	b	810	3	65,73,73	1.34	7 (10%)	76,113,113	1.57	9 (11%)
20	LMG	b	851	-	55,55,55	0.92	2 (3%)	63,63,63	1.49	11 (17%)
17	BCR	J	105	-	41,41,41	1.12	2 (4%)	56,56,56	1.33	9 (16%)
16	SF4	С	102	-	0,12,12	-	-	-		
14	CLA	а	803	-	$54,\!62,\!73$	1.56	6 (11%)	62,99,113	1.65	6 (9%)
14	CLA	b	842	-	65,73,73	1.44	6 (9%)	76,113,113	1.47	8 (10%)
14	CLA	b	818	-	49,57,73	1.62	9 (18%)	55,93,113	1.71	8 (14%)
14	CLA	В	817	-	50,58,73	1.57	7 (14%)	58,95,113	1.62	9 (15%)
14	CLA	А	804	-	54,62,73	1.55	8 (14%)	62,99,113	1.70	7 (11%)
17	BCR	F	203	-	41,41,41	1.17	2 (4%)	56,56,56	1.35	8 (14%)
16	SF4	a	843	-	0,12,12	-	-	-		
17	BCR	a	844	-	41,41,41	1.18	4 (9%)	$56,\!56,\!56$	1.32	8 (14%)
17	BCR	А	851	-	41,41,41	1.19	3 (7%)	56,56,56	1.22	4 (7%)
14	CLA	a	805	1	65,73,73	1.40	8 (12%)	76,113,113	1.53	8 (10%)
14	CLA	А	831	1	54,62,73	1.54	8 (14%)	62,99,113	1.62	10 (16%)
14	CLA	В	809	3	65,73,73	1.40	9 (13%)	76,113,113	1.59	10 (13%)
17	BCR	В	850	-	41,41,41	1.16	3 (7%)	56,56,56	1.19	3(5%)
17	BCR	b	845	-	41,41,41	1.12	2 (4%)	56,56,56	1.17	3 (5%)
14	CLA	f	201	-	59,67,73	1.55	8 (13%)	68,105,113	1.35	7 (10%)
14	CLA	А	803	-	65,73,73	1.39	7 (10%)	76,113,113	1.62	8 (10%)
14	CLA	А	824	1	45,53,73	1.69	8 (17%)	52,89,113	1.70	8 (15%)
14	CLA	А	828	_	65,73,73	1.34	7 (10%)	76,113,113	1.64	11 (14%)
16	SF4	С	101	-	0,12,12	-	-	-		
18	LHG	i	103	-	42,42,48	0.64	0	45,48,54	1.26	6 (13%)
15	PQN	В	844	-	34,34,34	1.50	2 (5%)	42,45,45	1.26	4 (9%)
14	CLA	А	820	-	54,62,73	1.58	8 (14%)	62,99,113	1.61	10 (16%)
16	SF4	А	845	_	0,12,12	-	-	-		
14	CLA	А	814	1	54,62,73	1.55	7 (12%)	62,99,113	1.80	9 (14%)
14	CLA	b	809	3	65,73,73	1.37	8 (12%)	76,113,113	1.54	9 (11%)
14	CLA	a	817	-	60,68,73	1.56	10 (16%)	70,107,113	1.52	10 (14%)
13	CL0	А	801	-	65,73,73	2.35	18 (27%)	76,113,113	2.61	22 (28%)
14	CLA	b	829	-	65,73,73	1.42	8 (12%)	76,113,113	1.61	9 (11%)

Mal	Trune	Chain	Dec	Tinle	Bond lengths		Bond angles			
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
14	CLA	b	830	-	65,73,73	1.39	8 (12%)	76,113,113	1.49	10 (13%)
14	CLA	a	822	1	54,62,73	1.61	8 (14%)	62,99,113	1.47	12 (19%)
14	CLA	b	834	-	60,68,73	1.48	8 (13%)	70,107,113	1.54	8 (11%)
14	CLA	А	842	-	65,73,73	1.46	9 (13%)	76,113,113	1.66	10 (13%)
17	BCR	Ι	101	-	41,41,41	1.07	1 (2%)	56,56,56	1.30	8 (14%)
17	BCR	b	846	-	41,41,41	1.08	2 (4%)	56,56,56	1.26	7 (12%)
14	CLA	Х	1701	2	49,57,73	1.63	8 (16%)	55,93,113	1.73	10 (18%)
14	CLA	А	809	1	65,73,73	1.42	6 (9%)	76,113,113	1.58	10 (13%)
14	CLA	a	829	-	65,73,73	1.50	9 (13%)	76,113,113	1.81	13 (17%)
18	LHG	F	201	-	42,42,48	0.73	1 (2%)	45,48,54	1.18	4 (8%)
20	LMG	В	851	-	55,55,55	0.91	2 (3%)	63,63,63	1.44	8 (12%)
17	BCR	m	1202	-	41,41,41	1.15	2 (4%)	56,56,56	1.31	10 (17%)
14	CLA	В	821	3	65,73,73	1.44	8 (12%)	76,113,113	1.36	7(9%)
14	CLA	В	839	3	60,68,73	1.53	10 (16%)	70,107,113	1.45	11 (15%)
14	CLA	b	840	3	65,73,73	1.34	7 (10%)	76,113,113	1.61	10 (13%)
14	CLA	В	824	3	45,53,73	1.69	7 (15%)	52,89,113	1.74	8 (15%)
14	CLA	В	841	3	47,55,73	1.73	8 (17%)	54,91,113	1.57	8 (14%)
14	CLA	a	828	-	65,73,73	1.39	8 (12%)	76,113,113	1.53	8 (10%)
14	CLA	В	820	3	65,73,73	1.43	9 (13%)	76,113,113	1.54	7(9%)
14	CLA	b	817	3	50,58,73	1.65	8 (16%)	58,95,113	1.69	8 (13%)
14	CLA	k	102	-	49,57,73	1.67	8 (16%)	55,93,113	1.74	10 (18%)
17	BCR	a	845	-	41,41,41	1.09	2 (4%)	56,56,56	1.28	3(5%)
18	LHG	А	853	14	48,48,48	0.77	2 (4%)	51,54,54	1.21	6 (11%)
14	CLA	1	203	11	45,53,73	1.68	7 (15%)	52,89,113	1.93	11 (21%)
17	BCR	L	1504	-	41,41,41	1.07	3 (7%)	56,56,56	1.32	7 (12%)
14	CLA	a	820	-	65,73,73	1.45	7 (10%)	76,113,113	1.64	10 (13%)
17	BCR	1	207	-	41,41,41	1.11	2 (4%)	56,56,56	1.44	7 (12%)
14	CLA	В	843	3	65,73,73	1.39	9 (13%)	76,113,113	1.63	14 (18%)
14	CLA	a	814	-	45,53,73	1.69	7 (15%)	52,89,113	1.86	7 (13%)
14	CLA	a	824	-	65,73,73	1.39	6 (9%)	76,113,113	1.65	10 (13%)
14	CLA	b	823	3	45,53,73	1.72	9 (20%)	52,89,113	1.64	7 (13%)
19	SQD	1	202	-	53,54,54	0.97	6 (11%)	62,65,65	2.03	14 (22%)
14	CLA	В	802	1	65,73,73	1.40	9 (13%)	76,113,113	1.48	9 (11%)
17	BCR	b	848	-	41,41,41	1.15	2 (4%)	56,56,56	1.45	5 (8%)
14	CLA	b	816	-	65,73,73	1.45	8 (12%)	76,113,113	1.50	10 (13%)

Mal	Trune	Chain	Dec	Tinle	Bond lengths		hs	Bond angles			
	туре	Chain	nes		Counts	RMSZ		# Z >2	Counts	RMSZ	# Z >2
19	SQD	x	1702	-	53,54,54	0.97		5 (9%)	62,65,65	1.76	9 (14%)
14	CLA	А	838	1	65,73,73	1.35		7 (10%)	76,113,113	1.62	10 (13%)
14	CLA	b	833	-	54,62,73	1.61		10 (18%)	62,99,113	1.53	7 (11%)
14	CLA	b	820	-	65,73,73	1.44		10 (15%)	76,113,113	1.43	8 (10%)
14	CLA	А	829	-	65,73,73	1.36		8 (12%)	76,113,113	1.61	13 (17%)
17	BCR	1	206	-	41,41,41	1.09		1 (2%)	56,56,56	1.56	12 (21%)
14	CLA	L	1501	11	51,59,73	1.76		9 (17%)	59,96,113	1.60	10 (16%)
14	CLA	b	806	3	65,73,73	1.39		9 (13%)	76,113,113	1.54	8 (10%)
15	PQN	А	844	-	34,34,34	1.50		2 (5%)	42,45,45	1.08	4 (9%)
14	CLA	В	842	-	65,73,73	1.38		7 (10%)	76,113,113	1.49	9 (11%)
14	CLA	В	818	3	49,57,73	1.52		7 (14%)	55,93,113	1.69	9 (16%)
14	CLA	a	835	1	45,53,73	1.69		7 (15%)	52,89,113	1.73	7 (13%)
14	CLA	a	839	1	65,73,73	1.40		9 (13%)	76,113,113	1.49	8 (10%)
14	CLA	b	819	-	45,53,73	1.67		7 (15%)	52,89,113	1.80	8 (15%)
14	CLA	b	826	-	65,73,73	1.35		6 (9%)	76,113,113	1.56	10 (13%)
17	BCR	Ι	102	-	41,41,41	1.20		4 (9%)	56,56,56	1.46	8 (14%)
17	BCR	А	846	-	41,41,41	1.17		2 (4%)	56,56,56	1.27	7 (12%)
14	CLA	В	830	3	65,73,73	1.46	T	8 (12%)	76,113,113	1.54	11 (14%)
14	CLA	k	101	-	42,49,73	1.78		7 (16%)	48,83,113	1.62	5 (10%)
18	LHG	А	852	-	48,48,48	0.83	T	3 (6%)	51,54,54	1.33	7 (13%)
14	CLA	А	808	1	65,73,73	1.38		7 (10%)	76,113,113	1.57	10 (13%)
14	CLA	А	833	1	65,73,73	1.45		8 (12%)	76,113,113	1.46	9 (11%)
14	CLA	А	839	-	65,73,73	1.41		8 (12%)	76,113,113	1.51	10 (13%)
14	CLA	В	828	-	65,73,73	1.37		5 (7%)	76,113,113	1.74	19 (25%)
18	LHG	a	850	-	48,48,48	0.76		1 (2%)	51,54,54	1.33	6 (11%)
14	CLA	А	832	1	65,73,73	1.38		8 (12%)	76,113,113	1.62	7(9%)
17	BCR	В	845	-	41,41,41	1.12	1	3 (7%)	56,56,56	1.25	6 (10%)
14	CLA	a	831	1	65,73,73	1.42		9 (13%)	76,113,113	1.57	11 (14%)
17	BCR	1	201	-	41,41,41	1.07	1	2 (4%)	56,56,56	1.30	8 (14%)
14	CLA	b	808	-	65,73,73	1.36		10 (15%)	76,113,113	1.76	11 (14%)
14	CLA	b	825	-	55,63,73	1.54		7 (12%)	64,101,113	1.57	7 (10%)
14	CLA	А	827	1	65,73,73	1.42		6 (9%)	76,113,113	1.52	7 (9%)
14	CLA	a	841	18	45,53,73	1.61		7 (15%)	52,89,113	4.16	9 (17%)
17	BCR	J	104	-	41,41,41	1.18	T	3 (7%)	56,56,56	1.39	9 (16%)
14	CLA	В	835	-	58,66,73	1.52	T	9 (15%)	67,104,113	1.51	7 (10%)

Mol	Type	Chain	Bos	Link	B	Bond lengths			Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2		
14	CLA	1	204	11	60,68,73	1.46	8 (13%)	70,107,113	1.64	9 (12%)		
17	BCR	b	849	-	41,41,41	1.21	4 (9%)	$56,\!56,\!56$	1.42	8 (14%)		
14	CLA	a	840	1	65,73,73	1.47	9 (13%)	76,113,113	1.52	8 (10%)		
14	CLA	b	805	-	65,73,73	1.43	7 (10%)	76,113,113	1.57	11 (14%)		
14	CLA	a	809	1	45,53,73	1.68	7 (15%)	52,89,113	1.80	5 (9%)		
14	CLA	K	101	-	42,49,73	1.77	7 (16%)	48,83,113	1.55	7 (14%)		
14	CLA	b	843	3	65,73,73	1.47	9 (13%)	76,113,113	1.94	15 (19%)		
17	BCR	j	106	-	41,41,41	1.15	2 (4%)	56,56,56	1.37	6 (10%)		
14	CLA	В	808	-	65,73,73	1.51	10 (15%)	76,113,113	2.02	20 (26%)		
14	CLA	А	840	-	59,67,73	1.50	9 (15%)	68,105,113	1.35	7 (10%)		
14	CLA	В	822	-	65,73,73	1.43	7 (10%)	76,113,113	1.55	8 (10%)		
14	CLA	a	838	-	65,73,73	1.43	8 (12%)	76,113,113	1.40	7 (9%)		
14	CLA	b	835	3	65,73,73	1.48	8 (12%)	76,113,113	1.37	11 (14%)		
14	CLA	b	839	-	60,68,73	1.56	9 (15%)	70,107,113	1.47	11 (15%)		
14	CLA	А	807	-	60,68,73	1.51	8 (13%)	70,107,113	5.15	11 (15%)		
19	SQD	Х	1702	-	53,54,54	0.98	5 (9%)	62,65,65	1.74	12 (19%)		
14	CLA	А	826	-	54,62,73	1.51	7 (12%)	62,99,113	1.68	12 (19%)		
14	CLA	b	822	-	65,73,73	1.49	7 (10%)	76,113,113	1.64	9 (11%)		
14	CLA	А	811	-	65,73,73	1.50	8 (12%)	76,113,113	1.66	12 (15%)		
14	CLA	a	808	1	65,73,73	1.41	8 (12%)	76,113,113	1.59	10 (13%)		
14	CLA	a	833	1	65,73,73	1.44	7 (10%)	76,113,113	1.83	17 (22%)		
14	CLA	F	202	3	65,73,73	1.46	7 (10%)	76,113,113	1.52	9 (11%)		
14	CLA	b	828	-	65,73,73	1.40	5 (7%)	76,113,113	1.74	14 (18%)		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
14	CLA	a	807	-	1/1/15/20	20/37/115/115	-
14	CLA	Κ	102	-	1/1/11/20	2/18/96/115	-
14	CLA	a	836	-	1/1/12/20	8/21/99/115	-
14	CLA	В	826	-	1/1/15/20	9/37/115/115	-
14	CLA	b	827	3	-	13/37/115/115	-
17	BCR	j	105	_	_	11/29/63/63	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
14	CLA	b	815	-	1/1/12/20	9/24/102/115	-
14	CLA	А	843	18	1/1/11/20	7/13/91/115	-
14	CLA	b	804	-	1/1/15/20	21/37/115/115	-
14	CLA	m	1201	3	1/1/13/20	9/25/103/115	-
14	CLA	b	831	-	1/1/15/20	12/37/115/115	-
17	BCR	i	102	-	-	12/29/63/63	0/2/2/2
14	CLA	А	835	1	1/1/12/20	8/24/102/115	-
14	CLA	a	827	-	1/1/15/20	9/37/115/115	-
14	CLA	В	823	3	1/1/11/20	7/13/91/115	-
14	CLA	a	830	1	1/1/12/20	7/24/102/115	-
14	CLA	А	821	-	1/1/15/20	12/37/115/115	-
14	CLA	А	841	1	1/1/15/20	21/37/115/115	_
14	CLA	F	204	-	1/1/11/20	1/13/91/115	-
14	CLA	a	832	1	1/1/15/20	8/37/115/115	-
17	BCR	В	848	-	-	12/29/63/63	0/2/2/2
17	BCR	a	847	-	-	17/29/63/63	0/2/2/2
14	CLA	a	837	1	1/1/15/20	16/37/115/115	-
14	CLA	j	102	-	1/1/11/20	9/13/91/115	-
14	CLA	В	838	-	1/1/11/20	6/13/91/115	-
14	CLA	b	813	-	1/1/14/20	16/31/109/115	-
17	BCR	a	846	-	-	15/29/63/63	0/2/2/2
14	CLA	В	829	3	1/1/15/20	10/37/115/115	-
17	BCR	В	847	-	-	13/29/63/63	0/2/2/2
14	CLA	А	815	-	1/1/11/20	3/13/91/115	-
14	CLA	В	819	-	1/1/11/20	1/13/91/115	-
14	CLA	В	807	3	1/1/13/20	6/25/103/115	-
14	CLA	a	816	-	1/1/13/20	9/30/108/115	-
17	BCR	В	846	-	-	9/29/63/63	0/2/2/2
14	CLA	b	824	3	1/1/11/20	2/13/91/115	-
17	BCR	K	103	-	-	12/29/63/63	0/2/2/2
14	CLA	А	837	-	1/1/12/20	11/21/99/115	-
14	CLA	a	804	1	1/1/15/20	17/37/115/115	-
14	CLA	В	815	3	1/1/12/20	5/24/102/115	-
14	CLA	a	806	-	1/1/14/20	8/31/109/115	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
14	CLA	j	101	-	1/1/13/20	10/29/107/115	-
15	PQN	a	842	-	-	5/23/43/43	0/2/2/2
14	CLA	a	826	-	-	7/37/115/115	-
14	CLA	В	814	3	1/1/12/20	9/24/102/115	-
14	CLA	В	836	3	1/1/12/20	11/24/102/115	_
14	CLA	a	811	-	1/1/13/20	11/30/108/115	_
14	CLA	А	810	1	1/1/11/20	3/13/91/115	-
14	CLA	b	838	-	1/1/11/20	5/13/91/115	-
17	BCR	b	847	-	-	10/29/63/63	0/2/2/2
14	CLA	В	832	3	1/1/15/20	9/37/115/115	-
14	CLA	А	816	-	1/1/11/20	0/13/91/115	-
14	CLA	А	818	1	1/1/14/20	8/31/109/115	_
14	CLA	В	825	-	1/1/13/20	11/25/103/115	-
19	SQD	b	801	-	_	22/49/69/69	0/1/1/1
14	CLA	А	806	1	1/1/15/20	14/37/115/115	-
14	CLA	b	807	-	1/1/15/20	12/37/115/115	-
14	CLA	А	822	-	1/1/11/20	6/13/91/115	_
14	CLA	b	836	3	1/1/12/20	8/24/102/115	-
14	CLA	В	827	3	1/1/15/20	7/37/115/115	-
14	CLA	А	812	-	1/1/13/20	7/30/108/115	-
14	CLA	a	821	1	1/1/11/20	4/13/91/115	-
17	BCR	В	849	-	_	12/29/63/63	0/2/2/2
14	CLA	А	813	-	1/1/14/20	14/31/109/115	_
14	CLA	В	812	-	1/1/15/20	13/37/115/115	-
14	CLA	В	805	-	1/1/15/20	12/37/115/115	-
14	CLA	b	803	-	1/1/15/20	9/37/115/115	-
14	CLA	b	832	3	1/1/15/20	11/37/115/115	-
17	BCR	k	103	-	-	7/29/63/63	0/2/2/2
14	CLA	j	103	-	1/1/8/20	0/2/76/115	-
17	BCR	А	850	-	-	13/29/63/63	0/2/2/2
14	CLA	b	837	-	1/1/11/20	2/13/91/115	-
14	CLA	a	815	_	1/1/11/20	0/13/91/115	-
17	BCR	J	103	-	-	12/29/63/63	0/2/2/2
14	CLA	a	819	-	1/1/12/20	9/24/102/115	-
14	CLA	L	1502	11	_	8/31/109/115	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
14	CLA	a	802	1	1/1/15/20	10/37/115/115	-
14	CLA	f	203	-	1/1/11/20	5/13/91/115	-
14	CLA	В	833	3	1/1/12/20	6/24/102/115	-
17	BCR	F	205	-	-	10/29/63/63	0/2/2/2
17	BCR	А	848	-	-	12/29/63/63	0/2/2/2
14	CLA	А	825	-	1/1/15/20	16/37/115/115	-
14	CLA	1	205	-	1/1/11/20	4/13/91/115	-
14	CLA	В	811	3	1/1/15/20	7/37/115/115	_
17	BCR	b	850	-	_	10/29/63/63	0/2/2/2
14	CLA	x	1701	2	1/1/11/20	7/18/96/115	_
17	BCR	f	202	-	_	16/29/63/63	0/2/2/2
14	CLA	В	834	-	1/1/14/20	16/31/109/115	_
14	CLA	А	830	1	1/1/15/20	9/37/115/115	-
17	BCR	А	847	-	-	10/29/63/63	0/2/2/2
14	CLA	a	810	-	1/1/15/20	7/37/115/115	-
14	CLA	А	819	-	1/1/15/20	12/37/115/115	_
17	BCR	А	849	-	_	15/29/63/63	0/2/2/2
17	BCR	a	848	-	_	9/29/63/63	0/2/2/2
14	CLA	А	805	1	1/1/15/20	16/37/115/115	_
14	CLA	a	818	-	1/1/15/20	13/37/115/115	-
14	CLA	b	811	-	1/1/15/20	7/37/115/115	-
17	BCR	j	104	-	-	14/29/63/63	0/2/2/2
14	CLA	В	831	-	1/1/15/20	11/37/115/115	-
20	LMG	В	803	-	-	12/30/50/70	0/1/1/1
17	BCR	a	849	-	-	15/29/63/63	0/2/2/2
13	CL0	a	801	1	3/3/20/25	4/37/135/135	-
16	SF4	с	101	-	-	-	0/6/5/5
14	CLA	А	802	-	1/1/15/20	8/37/115/115	-
14	CLA	b	821	3	1/1/15/20	9/37/115/115	-
14	CLA	J	101	-	1/1/11/20	8/13/91/115	-
14	CLA	В	806	-	1/1/15/20	12/37/115/115	-
14	CLA	А	836	1	1/1/11/20	3/13/91/115	-
14	CLA	a	812	-	1/1/14/20	15/31/109/115	-
15	PQN	b	844	_	_	5/23/43/43	0/2/2/2

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
14	CLA	a	823	1	1/1/11/20	4/13/91/115	-
14	CLA	В	804	-	1/1/15/20	15/37/115/115	-
14	CLA	b	841	3	1/1/11/20	7/16/94/115	-
14	CLA	В	813	-	1/1/14/20	13/31/109/115	-
14	CLA	L	1503	-	1/1/11/20	6/13/91/115	_
14	CLA	В	801	-	1/1/15/20	10/37/115/115	_
18	LHG	a	851	14	_	24/53/53/53	_
17	BCR	i	101	-	_	14/29/63/63	0/2/2/2
14	CLA	В	840	3	1/1/15/20	9/37/115/115	_
14	CLA	А	834	-	1/1/15/20	13/37/115/115	_
14	CLA	b	812	3	1/1/15/20	19/37/115/115	_
14	CLA	b	814	-	1/1/12/20	11/24/102/115	_
17	BCR	f	204	-	_	15/29/63/63	0/2/2/2
16	SF4	с	102	-	-	-	0/6/5/5
14	CLA	a	813	-	1/1/12/20	2/24/102/115	-
14	CLA	А	823	1	1/1/12/20	9/24/102/115	-
14	CLA	J	102	-	1/1/8/20	0/2/76/115	-
14	CLA	В	837	-	1/1/11/20	2/13/91/115	-
14	CLA	a	834	1	1/1/12/20	4/24/102/115	-
14	CLA	А	817	-	1/1/13/20	6/30/108/115	-
14	CLA	В	810	3	1/1/15/20	9/37/115/115	-
14	CLA	a	825	-	1/1/12/20	6/24/102/115	-
14	CLA	b	802	-	1/1/15/20	10/37/115/115	-
17	BCR	М	101	-	-	12/29/63/63	0/2/2/2
14	CLA	В	816	-	1/1/15/20	13/37/115/115	-
14	CLA	b	810	3	1/1/15/20	7/37/115/115	-
20	LMG	b	851	-	-	23/50/70/70	0/1/1/1
17	BCR	J	105	-	_	9/29/63/63	0/2/2/2
16	SF4	С	102	-	-	-	0/6/5/5
14	CLA	a	803	-	1/1/12/20	5/24/102/115	-
14	CLA	b	842	-	1/1/15/20	6/37/115/115	-
14	CLA	b	818	-	1/1/11/20	5/18/96/115	-
14	CLA	В	817	-	1/1/12/20	2/19/97/115	-
14	CLA	А	804	-	1/1/12/20	4/24/102/115	-
17	BCR	F	203	-	-	14/29/63/63	0/2/2/2

Mol	Type	Chain	Res	Link Chirals		Torsions	Rings
17	BCR	a	844	-	-	11/29/63/63	0/2/2/2
16	SF4	a	843	-	-	-	0/6/5/5
17	BCR	А	851	-	-	16/29/63/63	0/2/2/2
14	CLA	a	805	1	1/1/15/20	16/37/115/115	-
14	CLA	А	831	1	1/1/12/20	6/24/102/115	-
14	CLA	В	809	3	1/1/15/20	16/37/115/115	-
17	BCR	В	850	-	-	9/29/63/63	0/2/2/2
17	BCR	b	845	-	-	12/29/63/63	0/2/2/2
14	CLA	f	201	-	1/1/13/20	7/30/108/115	-
14	CLA	А	803	-	1/1/15/20	9/37/115/115	-
14	CLA	А	824	1	1/1/11/20	2/13/91/115	-
14	CLA	А	828	-	1/1/15/20	16/37/115/115	-
16	SF4	С	101	-	_	_	0/6/5/5
18	LHG	i	103	-	-	28/47/47/53	-
15	PQN	В	844	-	-	4/23/43/43	0/2/2/2
14	CLA	А	820	-	1/1/12/20	9/24/102/115	-
16	SF4	А	845	-	-	-	0/6/5/5
14	CLA	А	814	1	1/1/12/20	5/24/102/115	-
14	CLA	b	809	3	1/1/15/20	20/37/115/115	-
14	CLA	a	817	-	1/1/14/20	13/31/109/115	-
13	CL0	А	801	-	3/3/20/25	4/37/135/135	-
14	CLA	b	829	-	1/1/15/20	10/37/115/115	-
14	CLA	b	830	-	1/1/15/20	16/37/115/115	-
14	CLA	a	822	1	1/1/12/20	9/24/102/115	-
14	CLA	b	834	-	1/1/14/20	16/31/109/115	-
14	CLA	А	842	-	1/1/15/20	20/37/115/115	-
17	BCR	Ι	101	-	-	11/29/63/63	0/2/2/2
17	BCR	b	846	-	_	12/29/63/63	0/2/2/2
14	CLA	Х	1701	2	1/1/11/20	9/18/96/115	_
14	CLA	А	809	1	1/1/15/20	12/37/115/115	_
14	CLA	a	829	-	1/1/15/20	11/37/115/115	-
18	LHG	F	201	-	-	27/47/47/53	-
20	LMG	В	851	-	-	28/50/70/70	0/1/1/1
17	BCR	m	1202	-	-	11/29/63/63	0/2/2/2
14	CLA	В	821	3	1/1/15/20	11/37/115/115	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
14	CLA	В	839	3	1/1/14/20	7/31/109/115	-
14	CLA	b	840	3	1/1/15/20	9/37/115/115	-
14	CLA	В	824	3	1/1/11/20	2/13/91/115	-
14	CLA	В	841	3	1/1/11/20	3/16/94/115	-
14	CLA	a	828	-	1/1/15/20	15/37/115/115	-
14	CLA	В	820	3	1/1/15/20	15/37/115/115	-
14	CLA	b	817	3	1/1/12/20	3/19/97/115	-
14	CLA	k	102	-	1/1/11/20	4/18/96/115	-
17	BCR	a	845	-	-	7/29/63/63	0/2/2/2
18	LHG	А	853	14	-	21/53/53/53	-
14	CLA	1	203	11	1/1/11/20	8/13/91/115	-
17	BCR	L	1504	-	-	13/29/63/63	0/2/2/2
14	CLA	a	820	-	1/1/15/20	16/37/115/115	-
17	BCR	1	207	-	-	6/29/63/63	0/2/2/2
14	CLA	В	843	3	1/1/15/20	15/37/115/115	-
14	CLA	a	814	-	1/1/11/20	6/13/91/115	-
14	CLA	a	824	-	1/1/15/20	13/37/115/115	-
14	CLA	b	823	3	1/1/11/20	6/13/91/115	-
19	SQD	1	202	-	-	25/49/69/69	0/1/1/1
14	CLA	В	802	1	1/1/15/20	12/37/115/115	-
17	BCR	b	848	-	-	15/29/63/63	0/2/2/2
14	CLA	b	816	-	-	16/37/115/115	-
19	SQD	х	1702	-	-	14/49/69/69	0/1/1/1
14	CLA	А	838	1	1/1/15/20	13/37/115/115	-
14	CLA	b	833	-	1/1/12/20	7/24/102/115	-
14	CLA	b	820	-	1/1/15/20	5/37/115/115	-
14	CLA	А	829	-	1/1/15/20	10/37/115/115	-
17	BCR	1	206	-	-	10/29/63/63	0/2/2/2
14	CLA	L	1501	11	1/1/12/20	5/21/99/115	-
14	CLA	b	806	3	1/1/15/20	9/37/115/115	-
15	PQN	А	844	-	-	5/23/43/43	0/2/2/2
14	CLA	В	842	-	1/1/15/20	5/37/115/115	-
14	CLA	В	818	3	1/1/11/20	5/18/96/115	-
14	CLA	a	835	1	1/1/11/20	7/13/91/115	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
14	CLA	a	839	1	1/1/15/20	5/37/115/115	-
14	CLA	b	819	-	1/1/11/20	2/13/91/115	-
14	CLA	b	826	-	1/1/15/20	8/37/115/115	-
17	BCR	Ι	102	-	-	11/29/63/63	0/2/2/2
17	BCR	А	846	-	-	10/29/63/63	0/2/2/2
14	CLA	В	830	3	1/1/15/20	12/37/115/115	-
14	CLA	k	101	-	1/1/9/20	2/7/81/115	-
18	LHG	А	852	-	-	21/53/53/53	-
14	CLA	А	808	1	1/1/15/20	21/37/115/115	-
14	CLA	А	833	1	1/1/15/20	10/37/115/115	-
14	CLA	В	828	-	1/1/15/20	12/37/115/115	-
14	CLA	А	839	-	-	16/37/115/115	-
18	LHG	a	850	-	-	17/53/53/53	-
14	CLA	А	832	1	1/1/15/20	18/37/115/115	-
17	BCR	В	845	-	-	12/29/63/63	0/2/2/2
14	CLA	a	831	1	1/1/15/20	15/37/115/115	-
17	BCR	l	201	-	-	9/29/63/63	0/2/2/2
14	CLA	b	808	-	1/1/15/20	13/37/115/115	-
14	CLA	b	825	-	1/1/13/20	13/25/103/115	-
14	CLA	А	827	1	1/1/15/20	14/37/115/115	-
14	CLA	a	841	18	1/1/11/20	8/13/91/115	-
17	BCR	J	104	-	-	13/29/63/63	0/2/2/2
14	CLA	В	835	-	1/1/13/20	12/29/107/115	-
14	CLA	l	204	11	-	9/31/109/115	-
17	BCR	b	849	-	-	8/29/63/63	0/2/2/2
14	CLA	a	840	1	1/1/15/20	6/37/115/115	-
14	CLA	b	805	-	1/1/15/20	18/37/115/115	-
14	CLA	a	809	1	1/1/11/20	7/13/91/115	-
14	CLA	К	101	-	1/1/9/20	5/7/81/115	-
14	CLA	b	843	3	-	12/37/115/115	-
17	BCR	j	106	-	-	15/29/63/63	0/2/2/2
14	CLA	В	808	-	1/1/15/20	17/37/115/115	-
14	CLA	А	840	-	1/1/13/20	7/30/108/115	-
14	CLA	В	822	-	1/1/15/20	10/37/115/115	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
14	CLA	a	838	-	1/1/15/20	11/37/115/115	-
14	CLA	b	835	3	1/1/15/20	15/37/115/115	-
14	CLA	b	839	-	1/1/14/20	8/31/109/115	-
14	CLA	А	807	-	1/1/14/20	17/31/109/115	-
19	SQD	Х	1702	-	-	17/49/69/69	0/1/1/1
14	CLA	А	826	-	1/1/12/20	6/24/102/115	-
14	CLA	b	822	-	1/1/15/20	9/37/115/115	-
14	CLA	А	811	-	1/1/15/20	10/37/115/115	-
14	CLA	a	808	1	1/1/15/20	13/37/115/115	-
14	CLA	a	833	1	1/1/15/20	16/37/115/115	-
14	CLA	F	202	3	1/1/15/20	17/37/115/115	-
14	CLA	b	828	-	1/1/15/20	15/37/115/115	-

The worst 5 of 1676 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
13	a	801	CL0	MG-NA	9.30	2.28	2.06
13	А	801	CL0	MG-NA	9.30	2.28	2.06
14	А	821	CLA	C4B-NB	7.66	1.42	1.35
14	В	838	CLA	C4B-NB	7.58	1.42	1.35
14	А	811	CLA	C4B-NB	7.57	1.42	1.35

The worst 5 of 2279 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
14	А	807	CLA	O2D-CGD-CBD	25.81	157.13	111.27
14	А	807	CLA	O2D-CGD-O1D	-24.58	75.78	123.84
14	А	807	CLA	O1D-CGD-CBD	-21.05	81.42	124.48
14	a	841	CLA	O2A-CGA-O1A	-20.37	72.52	123.30
14	a	841	CLA	O2A-CGA-CBA	13.87	158.58	114.03

5 of 187 chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
13	А	801	CL0	NC
13	А	801	CL0	NA
13	А	801	CL0	ND
13	a	801	CL0	NC
13	a	801	CL0	NA

Mol	Chain	\mathbf{Res}	Type	Atoms
14	А	804	CLA	C1A-C2A-CAA-CBA
14	А	804	CLA	C3A-C2A-CAA-CBA
14	А	805	CLA	CBA-CGA-O2A-C1
14	А	805	CLA	O1A-CGA-O2A-C1
14	А	805	CLA	CHA-CBD-CGD-O1D

5 of 2625 torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-9918. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 200

Y Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 219

Y Index: 171

Z Index: 223

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.019. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 790 $\rm nm^3;$ this corresponds to an approximate mass of 714 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.422 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-9918 and PDB model 6K61. Per-residue inclusion information can be found in section 3 on page 28.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.019 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.019).

9.4 Atom inclusion (i)

At the recommended contour level, 98% of all backbone atoms, 94% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.019) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9350	0.6500
А	0.9500	0.6610
В	0.9670	0.6840
С	0.9600	0.6560
D	0.9190	0.6340
Е	0.8790	0.5980
F	0.8910	0.6090
Ι	0.9600	0.6630
J	0.9220	0.6240
K	0.7810	0.5180
L	0.9470	0.6660
М	0.9380	0.6720
Х	0.8740	0.6140
a	0.9410	0.6510
b	0.9500	0.6590
С	0.9630	0.6480
d	0.9070	0.6180
е	0.8470	0.5610
f	0.8470	0.5680
i	0.9140	0.6670
j	0.8710	0.5820
k	0.7880	0.5380
1	0.9300	0.6700
m	0.9480	0.6580
Х	0.7690	0.5330

