

# wwPDB EM Validation Summary Report (i)

Nov 6, 2023 – 11:17 AM JST

| PDB ID       | : | 8IDY                                               |
|--------------|---|----------------------------------------------------|
| EMDB ID      | : | EMD-35371                                          |
| Title        | : | human nuclear pre-60S ribosomal particle - State F |
| Authors      | : | Zhang, Y.; Gao, N.                                 |
| Deposited on | : | 2023-02-14                                         |
| Resolution   | : | 3.00  Å(reported)                                  |
|              |   |                                                    |

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1. dev 70                                                      |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| MolProbity                     | : | 4.02b-467                                                          |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | 1.9.9                                                              |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.36                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f EM} {f structures} \ (\#{f Entries})$ |
|-----------------------|----------------------------------------------------------------------|-------------------------------------------|
| Ramachandran outliers | 154571                                                               | 4023                                      |
| Sidechain outliers    | 154315                                                               | 3826                                      |
| RNA backbone          | 4643                                                                 | 859                                       |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain              |       |
|-----|-------|--------|-------------------------------|-------|
| 1   | 5     | 120    | 74%                           | 25% • |
| 2   | 6     | 245    | 99%                           | ·     |
| 3   | 7     | 163    | 83%                           | 17%   |
| 4   | 8     | 156    | 65% 31°                       | % •   |
| 5   | 9     | 134    | 69% ·                         | 28%   |
| 6   | В     | 403    | 99%                           | ·     |
| 7   | С     | 159    | <b>6%</b><br><b>58%</b> • 429 | %     |
| 8   | D     | 427    | 83%                           | • 16% |

Continued on next page...



| Mol | Chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Length | Quality of chain    |     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|-----|
| 0   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115    | 12%                 |     |
| 9   | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110    | 84% • 15%           |     |
| 10  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117    | 92%                 | 7%  |
| 11  | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 266    | 15%                 |     |
| 11  | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200    | 90% 9%              | 0   |
| 12  | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123    | 99%                 | •   |
| 13  | Ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 192    | 96%                 | ••• |
| 14  | Κ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105    | 97%                 | ·   |
| 15  | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 148    | 99%                 | -   |
| 16  | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 07     | 000/                |     |
| 10  | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51     | 42%                 | /0  |
| 17  | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 178    | 90%                 | 7%  |
| 18  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70     | 97%                 | ••  |
| 19  | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51     | 98%                 | •   |
| 20  | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 211    | <mark>6%</mark> 99% | _   |
|     | , and the second | 0.1 ×  |                     |     |
| 21  | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 215    | 61% · 37%           |     |
| 22  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 204    | 100%                |     |
| 23  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 203    | 99%                 |     |
| 24  | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 106    | 8%                  | 6%  |
| 25  | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02     | 7%                  |     |
| 20  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52     | 99%                 | •   |
| 26  | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 188    | 99%                 | •   |
| 27  | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 196    | • 74% • 24%         |     |
| 28  | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 176    | 100%                | _   |
| 29  | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160    | <b>•</b><br>96%     | ••• |
| 30  | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140    | 91%                 | 5%  |
| 31  | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 156    | 76%                 |     |
| 20  | 5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 145    | 1070 Z4%            |     |
| 32  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 145    | 92% 8               | 3%  |
| 33  | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 136    | 98%                 | ••  |

Continued from previous page...

Continued on next page...



| Mol | Chain | Length | Quality of chain    |
|-----|-------|--------|---------------------|
| 34  | 1     | 137    | 91% 9%              |
| 35  | m     | 257    | 95% • •             |
| 36  | n     | 110    | 96%                 |
| 37  | О     | 288    | 10%<br>81% • 18%    |
| 38  | р     | 248    | 91% 9%              |
| 39  | r     | 297    | 97%                 |
| 40  | А     | 731    | 7%<br>42%<br>58%    |
| 41  | R     | 203    |                     |
| 42  | J     | 239    | 87%<br>92% • 7%     |
| 43  | Т     | 99     | 44% 56%             |
| 44  | 2     | 5054   | 8%<br>46% 23% • 28% |
| 45  | У     | 165    | 95%<br>99%          |
| 46  | 4     | 634    | 94%                 |
| 47  | d     | 128    | 5%<br>• 19%         |
| 48  | j     | 125    | 88% • 11%           |
| 49  | k     | 135    | 95% • •             |
| 50  | Υ     | 184    | 6%<br>89% ·· 9%     |
| 51  | Z     | 129    | 16%<br>50% • 48%    |
| 52  | t     | 217    | 98%<br>96% · ·      |
| 53  | u     | 687    | 75%<br>79% • 19%    |
| 54  | v     | 260    | 13%                 |

Continued from previous page...



# 2 Entry composition (i)

There are 57 unique types of molecules in this entry. The entry contains 155910 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 5S rRNA.

| Mol | Chain | Residues |               | A         | AltConf  | Trace    |          |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|----------|---|---|
| 1   | 5     | 120      | Total<br>2558 | C<br>1141 | N<br>456 | 0<br>842 | Р<br>119 | 0 | 0 |

• Molecule 2 is a protein called Eukaryotic translation initiation factor 6.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 2   | 6     | 244      | Total<br>1852 | C<br>1149 | N<br>318 | 0<br>372 | S<br>13 | 0       | 0     |

• Molecule 3 is a protein called Probable ribosome biogenesis protein RLP24.

| Mol | Chain | Residues |               | A        | toms     | AltConf  | Trace   |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------|---|---|
| 3   | 7     | 135      | Total<br>1159 | C<br>737 | N<br>225 | 0<br>187 | S<br>10 | 0 | 0 |

• Molecule 4 is a RNA chain called 5.8S rRNA.

| Mol | Chain | Residues | Atoms         |           |          |           |          | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|-----------|----------|---------|-------|
| 4   | 8     | 156      | Total<br>3315 | C<br>1481 | N<br>585 | O<br>1094 | Р<br>155 | 0       | 0     |

• Molecule 5 is a protein called Zinc finger protein 593.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace                                          |   |   |
|-----|-------|----------|--------------|----------|----------|----------|------------------------------------------------|---|---|
| 5   | 9     | 97       | Total<br>793 | C<br>484 | N<br>171 | 0<br>134 | $\begin{array}{c} \mathrm{S} \\ 4 \end{array}$ | 0 | 0 |

• Molecule 6 is a protein called 60S ribosomal protein L3.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 6   | В     | 402      | Total<br>3244 | C<br>2065 | N<br>609 | O<br>556 | S<br>14 | 1       | 0     |



• Molecule 7 is a protein called 60S ribosomal protein L29.

| Mol | Chain | Residues |              | At       | $\mathbf{oms}$ |          |               | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------------|----------|---------------|---------|-------|
| 7   | С     | 93       | Total<br>764 | C<br>476 | N<br>167       | 0<br>117 | ${S \atop 4}$ | 0       | 0     |

• Molecule 8 is a protein called 60S ribosomal protein L4.

| Mol | Chain | Residues |               | At        | oms      |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 8   | D     | 358      | Total<br>2853 | C<br>1797 | N<br>570 | 0<br>473 | S<br>13 | 0       | 0     |

• Molecule 9 is a protein called 60S ribosomal protein L30.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 9   | Е     | 98       | Total<br>764 | C<br>485 | N<br>135 | 0<br>138 | S<br>6 | 0 | 0 |

• Molecule 10 is a protein called 60S ribosomal protein L34.

| Mol | Chain | Residues |              | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 10  | F     | 109      | Total<br>868 | C<br>544 | N<br>179 | 0<br>139 | S<br>6 | 0       | 0     |

• Molecule 11 is a protein called 60S ribosomal protein L7a.

| Mol | Chain | Residues |               | Ate       | AltConf  | Trace    |        |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---|---|
| 11  | G     | 241      | Total<br>1935 | C<br>1233 | N<br>374 | 0<br>324 | S<br>4 | 1 | 0 |

• Molecule 12 is a protein called 60S ribosomal protein L35.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|---------------|----------|----------|----------|--------|---|---|
| 12  | Н     | 122      | Total<br>1015 | C<br>641 | N<br>205 | 0<br>168 | S<br>1 | 0 | 0 |

• Molecule 13 is a protein called 60S ribosomal protein L9.

| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 13  | Ι     | 190      | Total<br>1518 | C<br>956 | N<br>284 | 0<br>272 | S<br>6 | 0       | 0     |

• Molecule 14 is a protein called 60S ribosomal protein L36.



| Mol | Chain | Residues |              | At       | oms      |          |            | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|------------|---------|-------|
| 14  | K     | 102      | Total<br>832 | C<br>521 | N<br>177 | O<br>129 | ${f S}{5}$ | 0       | 0     |

• Molecule 15 is a protein called 60S ribosomal protein L27a.

| Mol | Chain | Residues |               | At       | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---------|-------|
| 15  | L     | 147      | Total<br>1162 | C<br>736 | N<br>237 | 0<br>186 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 16 is a protein called 60S ribosomal protein L37.

| Mol | Chain | Residues |              | At       | oms      |          |            | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|------------|---------|-------|
| 16  | М     | 86       | Total<br>705 | С<br>434 | N<br>155 | 0<br>111 | ${f S}{5}$ | 0       | 0     |

• Molecule 17 is a protein called 60S ribosomal protein L11.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace          |   |   |
|-----|-------|----------|---------------|----------|----------|----------|----------------|---|---|
| 17  | Ν     | 165      | Total<br>1319 | C<br>836 | N<br>245 | O<br>233 | ${ m S}{ m 5}$ | 0 | 0 |

• Molecule 18 is a protein called 60S ribosomal protein L38.

| Mol | Chain | Residues |              | Ate      | oms      | Atoms   |        |   |   |  |  |
|-----|-------|----------|--------------|----------|----------|---------|--------|---|---|--|--|
| 18  | О     | 69       | Total<br>569 | C<br>366 | N<br>103 | O<br>99 | S<br>1 | 0 | 0 |  |  |

• Molecule 19 is a protein called 60S ribosomal protein L39.

| Mol | Chain | Residues |       | Atc | $\mathbf{ms}$ |    |              | AltConf | Trace |
|-----|-------|----------|-------|-----|---------------|----|--------------|---------|-------|
| 10  | р     | 50       | Total | С   | Ν             | Ο  | $\mathbf{S}$ | 0       | 0     |
| 15  | 1     | 50       | 444   | 281 | 98            | 64 | 1            | 0       | 0     |

• Molecule 20 is a protein called 60S ribosomal protein L13.

| Mol | Chain | Residues |               | Ate       | oms      |          |            | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|------------|---------|-------|
| 20  | Q     | 210      | Total<br>1701 | C<br>1064 | N<br>352 | 0<br>281 | ${f S}{4}$ | 0       | 0     |

• Molecule 21 is a protein called 60S ribosomal protein L14.



| Mol | Chain | Residues |               | At       | oms      |          |           | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|-----------|---------|-------|
| 21  | S     | 135      | Total<br>1111 | C<br>713 | N<br>213 | 0<br>178 | ${f S}$ 7 | 0       | 0     |

• Molecule 22 is a protein called 60S ribosomal protein L15.

| Mol | Chain | Residues |               | Ate       | AltConf  | Trace    |               |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------------|---|---|
| 22  | U     | 203      | Total<br>1701 | C<br>1072 | N<br>359 | O<br>266 | $\frac{S}{4}$ | 0 | 0 |

• Molecule 23 is a protein called 60S ribosomal protein L13a.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |               |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------------|---|---|
| 23  | V     | 201      | Total<br>1650 | C<br>1063 | N<br>321 | 0<br>261 | $\frac{S}{5}$ | 0 | 0 |

• Molecule 24 is a protein called 60S ribosomal protein L36a.

| Mol | Chain | Residues |              | Atoms    |          |          |        |   | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|-------|
| 24  | W     | 100      | Total<br>818 | C<br>512 | N<br>168 | 0<br>132 | S<br>6 | 0 | 0     |

• Molecule 25 is a protein called 60S ribosomal protein L37a.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 25  | Х     | 91       | Total<br>708 | C<br>445 | N<br>136 | 0<br>120 | S<br>7 | 0 | 0 |

• Molecule 26 is a protein called 60S ribosomal protein L18.

| Mol | Chain | Residues |               | At       | oms      |          |                | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------------|---------|-------|
| 26  | Z     | 187      | Total<br>1513 | C<br>944 | N<br>314 | O<br>250 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 27 is a protein called 60S ribosomal protein L19.

| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 27  | a     | 148      | Total<br>1239 | С<br>772 | N<br>266 | 0<br>192 | S<br>9 | 0       | 0     |

• Molecule 28 is a protein called 60S ribosomal protein L18a.



| Mol | Chain | Residues |               | $\mathbf{A}$ | toms     |          |         | AltConf | Trace |
|-----|-------|----------|---------------|--------------|----------|----------|---------|---------|-------|
| 28  | b     | 176      | Total<br>1461 | C<br>930     | N<br>284 | O<br>236 | S<br>11 | 0       | 0     |

• Molecule 29 is a protein called 60S ribosomal protein L21.

| Mol | Chain | Residues |               | Atoms    |          |          |               |   | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---|-------|
| 29  | с     | 155      | Total<br>1264 | C<br>801 | N<br>248 | 0<br>210 | ${S \atop 5}$ | 0 | 0     |

• Molecule 30 is a protein called 60S ribosomal protein L23.

| Mol | Chain | Residues |              | At       | oms      |          |                | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|----------------|---------|-------|
| 30  | е     | 131      | Total<br>979 | C<br>618 | N<br>184 | 0<br>172 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 31 is a protein called 60S ribosomal protein L23a.

| Mol | Chain | Residues |       | At       | oms      |     |        | AltConf | Trace |
|-----|-------|----------|-------|----------|----------|-----|--------|---------|-------|
| 31  | g     | 118      | Total | C<br>619 | N<br>101 | 0   | S<br>1 | 0       | 0     |
|     | _     |          | 907   | 018      | 181      | 107 | T      |         |       |

• Molecule 32 is a protein called 60S ribosomal protein L26.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace           |   |   |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---|---|
| 32  | h     | 134      | Total<br>1115 | C<br>700 | N<br>226 | 0<br>186 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 33 is a protein called 60S ribosomal protein L27.

| Mol | Chain | Residues |               | At       | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---------|-------|
| 33  | i     | 135      | Total<br>1107 | С<br>714 | N<br>208 | 0<br>182 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 34 is a protein called 60S ribosomal protein L28.

| Mol | Chain | Residues |               | At       | oms      |          |            | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|------------|---------|-------|
| 34  | 1     | 125      | Total<br>1002 | C<br>622 | N<br>207 | 0<br>168 | ${f S}{5}$ | 0       | 0     |

• Molecule 35 is a protein called 60S ribosomal protein L8.



| Mol | Chain | Residues |       | At   | oms |     |   | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|---|---------|-------|
| 35  | m     | 248      | Total | С    | N   | 0   | S | 0       | 0     |
|     |       |          | 1898  | 1189 | 389 | 314 | 6 |         |       |

• Molecule 36 is a protein called 60S ribosomal protein L35a.

| Mol | Chain | Residues |              | At                                               | oms      |          | Atoms           |   |   |  |  |  |
|-----|-------|----------|--------------|--------------------------------------------------|----------|----------|-----------------|---|---|--|--|--|
| 36  | n     | 109      | Total<br>876 | $\begin{array}{c} \mathrm{C} \\ 555 \end{array}$ | N<br>174 | 0<br>144 | ${ m S} { m 3}$ | 0 | 0 |  |  |  |

• Molecule 37 is a protein called 60S ribosomal protein L6.

| Mol | Chain | Residues |               | Ate       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------------|---------|-------|
| 37  | О     | 235      | Total<br>1897 | C<br>1217 | N<br>360 | O<br>316 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 38 is a protein called 60S ribosomal protein L7.

| Mol | Chain | Residues |               | Ate       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 38  | р     | 225      | Total<br>1878 | C<br>1207 | N<br>361 | O<br>301 | S<br>9 | 1       | 0     |

• Molecule 39 is a protein called 60S ribosomal protein L5.

| Mol | Chain | Residues |               | At        | oms      |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 39  | r     | 293      | Total<br>2382 | C<br>1507 | N<br>434 | O<br>427 | S<br>14 | 0       | 0     |

• Molecule 40 is a protein called G Protein Nucleolar 2.

| Mol | Chain | Residues |               | At        | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 40  | А     | 307      | Total<br>2460 | C<br>1576 | N<br>419 | O<br>457 | S<br>8 | 0       | 0     |

• Molecule 41 is a protein called Translation machinery-associated protein 16.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---|---|
| 41  | R     | 153      | Total<br>1296 | C<br>810 | N<br>248 | 0<br>233 | ${S \atop 5}$ | 0 | 0 |

• Molecule 42 is a protein called mRNA turnover protein 4 homolog.



| Mol | Chain | Residues |               | At        | oms      |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 42  | J     | 223      | Total<br>1809 | C<br>1140 | N<br>309 | O<br>349 | S<br>11 | 0       | 0     |

• Molecule 43 is a protein called Leydig cell tumor 10 kDa protein homolog.

| Mol | Chain | Residues |              | Atc      | $\mathbf{ms}$ | AltConf | Trace  |   |   |
|-----|-------|----------|--------------|----------|---------------|---------|--------|---|---|
| 43  | Т     | 44       | Total<br>343 | C<br>215 | N<br>71       | O<br>56 | S<br>1 | 0 | 0 |

• Molecule 44 is a RNA chain called 28S rRNA.

| Mol | Chain | Residues |                |            | Atoms      |            |           | AltConf | Trace |
|-----|-------|----------|----------------|------------|------------|------------|-----------|---------|-------|
| 44  | 2     | 3641     | Total<br>77442 | C<br>34506 | N<br>14094 | O<br>25202 | Р<br>3640 | 0       | 0     |

• Molecule 45 is a protein called 60S ribosomal protein L12.

| Mol | Chain | Residues |               | At       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---------|-------|
| 45  | У     | 165      | Total<br>1250 | C<br>779 | N<br>232 | 0<br>234 | ${S \atop 5}$ | 0       | 0     |

• Molecule 46 is a protein called GTP-binding protein 4.

| Mol | Chain | Residues |               | At        | oms      |          |                | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|----------------|---------|-------|
| 46  | 4     | 611      | Total<br>5016 | C<br>3151 | N<br>918 | 0<br>920 | $\frac{S}{27}$ | 0       | 0     |

• Molecule 47 is a protein called 60S ribosomal protein L22.

| Mol | Chain | Residues |              | At       | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---------|-------|
| 47  | d     | 104      | Total<br>850 | С<br>542 | N<br>149 | 0<br>157 | ${ m S} { m 2}$ | 0       | 0     |

• Molecule 48 is a protein called 60S ribosomal protein L31.

| Mol | Chain | Residues |              | At       | oms      |          |                        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|------------------------|---------|-------|
| 48  | j     | 111      | Total<br>918 | C<br>578 | N<br>178 | 0<br>160 | $\frac{\mathrm{S}}{2}$ | 0       | 0     |

• Molecule 49 is a protein called 60S ribosomal protein L32.



| Mol | Chain | Residues |               | At       | oms      |          |                | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------------|---------|-------|
| 49  | k     | 129      | Total<br>1064 | C<br>673 | N<br>220 | O<br>166 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 50 is a protein called 60S ribosomal protein L17.

| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 50  | Y     | 167      | Total<br>1355 | C<br>848 | N<br>260 | O<br>238 | S<br>9 | 0       | 0     |

• Molecule 51 is a protein called Protein LLP homolog.

| Mol | Chain | Residues |              | At       | oms      |         |                                                         | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|---------|---------------------------------------------------------|---------|-------|
| 51  | Z     | 67       | Total<br>581 | C<br>363 | N<br>128 | O<br>88 | $\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$ | 0       | 0     |

• Molecule 52 is a protein called 60S ribosomal protein L10a.

| Mol | Chain | Residues |               | At        | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 52  | t     | 212      | Total<br>1708 | C<br>1092 | N<br>308 | O<br>300 | S<br>8 | 0       | 0     |

• Molecule 53 is a protein called Protein SDA1 homolog.

| Mol | Chain | Residues |               | At        | oms      |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 53  | u     | 554      | Total<br>4536 | C<br>2890 | N<br>810 | 0<br>804 | S<br>32 | 0       | 0     |

• Molecule 54 is a protein called Ribosome biogenesis protein NSA2 homolog.

| Mol | Chain | Residues |              | Aton     | ıs      |         | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------|---------|---------|-------|
| 54  | v     | 35       | Total<br>316 | C<br>196 | N<br>68 | O<br>52 | 0       | 0     |

• Molecule 55 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula:  $C_{10}H_{15}N_5O_{11}P_2$ ).





| Mol  | Chain | Residues | Residues Atoms |    |   |    |   |   |  |  |  |  |  |  |
|------|-------|----------|----------------|----|---|----|---|---|--|--|--|--|--|--|
| 55   | А     | 1        | Total          | С  | Ν | 0  | Р | 0 |  |  |  |  |  |  |
| - 55 | Π     |          | 28             | 10 | 5 | 11 | 2 | 0 |  |  |  |  |  |  |

• Molecule 56 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| Mol | Chain | Residues | Atoms           | AltConf |
|-----|-------|----------|-----------------|---------|
| 56  | А     | 1        | Total Mg<br>1 1 | 0       |

• Molecule 57 is POTASSIUM ION (three-letter code: K) (formula: K).

| Mol | Chain | Residues | Atoms          | AltConf |  |  |  |
|-----|-------|----------|----------------|---------|--|--|--|
| 57  | А     | 1        | Total K<br>1 1 | 0       |  |  |  |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

 $\bullet$  Molecule 1: 5S rRNA







| • Molecule 11: 60S ribo                                                                                                    | osomal protein L7a                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chain G:                                                                                                                   | 90%                                                                                                                                                                                    | 9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MET<br>PRO<br>LLYS<br>LLYS<br>LLYS<br>LLYS<br>LLYS<br>LLYS<br>LLYS<br>LLY                                                  | VAL<br>VAL<br>LYS<br>LYS<br>GLN<br>GLN<br>GLN<br>K26<br>V27<br>V26<br>V27<br>V27<br>V28<br>K11<br>A114<br>A114<br>A114<br>A113<br>K120<br>K120<br>K120<br>K120<br>K120<br>K120<br>K120 | K125<br>K126<br>G126<br>P129<br>P129<br>K131<br>K131<br>F130<br>F130<br>F130<br>F130<br>F130<br>F130<br>F130<br>F130<br>F130<br>F130<br>F130<br>F130<br>F130<br>F130<br>F130<br>F130<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120<br>F120 |
| A266<br>K257<br>A258<br>K259<br>E260<br>E260<br>L261<br>A262<br>T263<br>K264<br>L265<br>C265<br>C265<br>C266               |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • Molecule 12: 60S ribo                                                                                                    | osomal protein L35                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chain H:                                                                                                                   | 99%                                                                                                                                                                                    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MET A2                                                                                                                     |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • Molecule 13: 60S ribo                                                                                                    | osomal protein L9                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chain I:                                                                                                                   | 96%                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M1<br>K50<br>K51<br>K53<br>K53<br>R54<br>R93<br>R93<br>L111<br>U104<br>0138                                                | K141<br>L176<br>Q189<br>A190<br>ASP<br>GLU                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • Molecule 14: 60S ribo                                                                                                    | osomal protein L36                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chain K:                                                                                                                   | 97%                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MET<br>A2<br>L3<br>R4<br>R98<br>R98<br>A100<br>A100<br>A101<br>A101<br>A101<br>A102<br>K102<br>K102<br>K102<br>K102<br>ASP |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • Molecule 15: 60S ribo                                                                                                    | osomal protein L27a                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chain L:                                                                                                                   | 99%                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MET<br>P2<br>K94<br>A148                                                                                                   |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • Molecule 16: 60S ribo                                                                                                    | osomal protein L37                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chain M:                                                                                                                   | 89%                                                                                                                                                                                    | 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MET<br>172<br>K87<br>ARG<br>ARA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>SER<br>SER<br>SER<br>SER                      |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

 $\bullet$  Molecule 17: 60S ribosomal protein L11



|                                                                                         | 42%                                                                                                                         |                                                                                                              |                                                                                                                              |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Chain N:                                                                                | 90%                                                                                                                         |                                                                                                              | • 7%                                                                                                                         |
| MET<br>ALA<br>ALA<br>ASP<br>ASP<br>GLN<br>GLV<br>GLV<br>GLV<br>GLU<br>ASN<br>AND<br>AND | RIG<br>FIL<br>FIL<br>FIL<br>FIL<br>FIL<br>FIL<br>FIL<br>FIL                                                                 | A36<br>A37<br>K38<br>V39<br>E41<br>E41<br>E41<br>645<br>645<br>C45<br>C45<br>S51<br>K52<br>K52               | I62<br>R63<br>R63<br>R64<br>N65<br>E66<br>K76<br>K76<br>K76<br>K78<br>K78<br>K78<br>E80<br>E80<br>E81<br>I83<br>L83          |
| E84<br>K85<br>C86<br>L87<br>K88<br>K98<br>K98<br>K92<br>E91<br>E93                      | L94<br>R95<br>R110<br>E111<br>E111<br>L115<br>C116<br>G116<br>G116<br>C116<br>C116<br>C116<br>Y119<br>Y119<br>Y119          | 5122<br>1123<br>1125<br>1126<br>1126<br>1128<br>1128<br>1128<br>1128<br>1128<br>1128                         | E160<br>M163<br>M163<br>0167<br>0167<br>0168<br>K169<br>M171<br>0171<br>0171<br>1174<br>1174<br>1174<br>1175<br>6177<br>K178 |
| • Molecule 18: 60                                                                       | 0S ribosomal protein L38                                                                                                    |                                                                                                              |                                                                                                                              |
| Chain O:                                                                                | 97                                                                                                                          | %                                                                                                            |                                                                                                                              |
| MET<br>P2<br>E7<br>R16<br>K29<br>D30<br>D49                                             | K50<br>E51<br>F61<br>P61<br>P62<br>C63<br>C63<br>K70                                                                        |                                                                                                              |                                                                                                                              |
| • Molecule 19: 60                                                                       | 0S ribosomal protein L39                                                                                                    |                                                                                                              |                                                                                                                              |
| Chain P:                                                                                | 98                                                                                                                          | %                                                                                                            | ·                                                                                                                            |
| MET<br>22<br>L51                                                                        |                                                                                                                             |                                                                                                              |                                                                                                                              |
| • Molecule 20: 60                                                                       | 0S ribosomal protein L13                                                                                                    |                                                                                                              |                                                                                                                              |
| Chain Q:                                                                                | 99                                                                                                                          | 9%                                                                                                           |                                                                                                                              |
| MET<br>A.2<br>K.1 45<br>V.1 54<br>A.202<br>A.203<br>E.204                               | q205<br>D206<br>V207<br>E208<br>K209<br>K210<br>K211                                                                        |                                                                                                              |                                                                                                                              |
| • Molecule 21: 60                                                                       | 0S ribosomal protein L14                                                                                                    |                                                                                                              |                                                                                                                              |
| Chain S:                                                                                | 61%                                                                                                                         | • 37%                                                                                                        |                                                                                                                              |
| MET<br>V2<br>D32<br>L130<br>A131<br>A133<br>A133<br>A133<br>A133<br>A133<br>A133<br>A   | LYS<br>LYS<br>SER<br>SER<br>PRO<br>PRO<br>LYS<br>CLY<br>THR<br>CLY<br>CLYS<br>CLY<br>THR<br>THR<br>ALA<br>ALA<br>ALA<br>ALA | ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CYS<br>ALA<br>ALA<br>CYS<br>SER<br>CYS<br>SER<br>ALA<br>ALA | ALA<br>ALA<br>GLN<br>CLYS<br>ALA<br>PRO<br>ALA<br>ALA<br>ALA<br>ALA<br>THR<br>THR                                            |
| GLY<br>GLN<br>GLN<br>LLYS<br>ALA<br>ALA<br>PRO<br>PRO<br>CLY<br>CLYS<br>CLN<br>CLYS     | GLN<br>LYS<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>PRO<br>CLYS<br>CLYS<br>CLYS<br>CLYS<br>CLYS<br>CLYS<br>CLYS<br>CLYS        |                                                                                                              |                                                                                                                              |
| • Molecule 22: 60                                                                       | 0S ribosomal protein L15                                                                                                    | -                                                                                                            |                                                                                                                              |
| Chain U:                                                                                | 10                                                                                                                          | 00%                                                                                                          |                                                                                                                              |
| MET<br>G2<br>R204                                                                       |                                                                                                                             |                                                                                                              |                                                                                                                              |

• Molecule 23: 60S ribosomal protein L13a



| Chain V: 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • Molecule 24: 60S ribosomal protein L36a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Chain W: 94% 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V2<br>N76<br>C77<br>R78<br>R96<br>K96<br>K98<br>K99<br>C101<br>C101<br>C101<br>C101<br>C101<br>C101<br>C101<br>C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • Molecule 25: 60S ribosomal protein L37a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Chain X: 99% .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • Molecule 26: 60S ribosomal protein L18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain Z: 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • Molecule 27: 60S ribosomal protein L19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain a: 74% • 24%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Radia and a constraint of the |
| • Molecule 28: 60S ribosomal protein L18a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Chain b: 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| There are no outlier residues recorded for this chain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| • Molecule 29: 60S ribosomal protein L21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain c: 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| T2<br>V8<br>V123<br>C123<br>PHE<br>ALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

• Molecule 30: 60S ribosomal protein L23



| Chain e:                                                                                                                                                                                                        | 91%                                                                                                         | • 6% |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------|
| MET<br>SER<br>LYS<br>LYS<br>ARG<br>ARG<br>GLY<br>SER<br>SER<br>SIO<br>RH8                                                                                                                                       | 196<br>11 00<br>140                                                                                         |      |
| • Molecule 31: 60                                                                                                                                                                                               | S ribosomal protein L23a                                                                                    |      |
| Chain g:                                                                                                                                                                                                        | 76%                                                                                                         | 24%  |
| MET<br>PRO<br>PRO<br>LYS<br>LYS<br>LYS<br>GLU<br>GLU<br>PRO<br>PRO<br>PRO                                                                                                                                       | LYS<br>ALA<br>ALA<br>GLU<br>GLU<br>CYS<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL |      |
| • Molecule 32: 60                                                                                                                                                                                               | S ribosomal protein L26                                                                                     |      |
| Chain h:                                                                                                                                                                                                        | 92%                                                                                                         | 8%   |
| M<br>K132<br>6133<br>K134<br>K134<br>K134<br>CLU<br>CLU<br>CLU<br>CLU                                                                                                                                           | NET RET GLU                                                                                                 |      |
| • Molecule 33: 60                                                                                                                                                                                               | S ribosomal protein L27                                                                                     |      |
| Chain i:                                                                                                                                                                                                        | 98%                                                                                                         |      |
| MET<br>G2<br>D30<br>B30<br>B88<br>R102<br>R103<br>E113                                                                                                                                                          | F136                                                                                                        |      |
| • Molecule 34: 60                                                                                                                                                                                               | S ribosomal protein L28                                                                                     |      |
| Chain l:                                                                                                                                                                                                        | 91%                                                                                                         | 9%   |
| MET<br>22<br>22<br>22<br>22<br>12<br>17<br>25<br>17<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>29<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | LIVE<br>SER<br>SER                                                                                          |      |
| • Molecule 35: 60                                                                                                                                                                                               | S ribosomal protein L8                                                                                      |      |
| Chain m:                                                                                                                                                                                                        | 95%                                                                                                         |      |
| MET<br>G2<br>R54<br>L102<br>N132<br>T143<br>G248                                                                                                                                                                | 1245<br>LYS<br>THR<br>GLN<br>GLU<br>GLU<br>ASN<br>ASN                                                       |      |
| • Molecule 36: 60                                                                                                                                                                                               | S ribosomal protein L35a                                                                                    |      |
| Chain n:                                                                                                                                                                                                        | 96%                                                                                                         |      |
| MET<br>82<br>15<br>1106<br>11106<br>1110                                                                                                                                                                        |                                                                                                             |      |



| $\bullet$ Molecule 37: 60S $\bullet$                                                                                       | ribosomal protein I                                                                                                                          | L6                                                                                                           |                                                             |                                                      |                                                    |                              |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|------------------------------|
| 10%                                                                                                                        |                                                                                                                                              |                                                                                                              |                                                             |                                                      |                                                    |                              |
| Chain o:                                                                                                                   | 81%                                                                                                                                          |                                                                                                              | ·                                                           | 18%                                                  |                                                    |                              |
| MET<br>ALA<br>ALA<br>GLU<br>CLYS<br>GLU<br>CLYS<br>PRO<br>ASP<br>THR<br>THR<br>THR<br>CLU<br>CLY<br>CLU<br>CLYS<br>CLU     | PRO<br>GLU<br>GLU<br>LYS<br>LYS<br>LYS<br>VAL<br>ALA<br>ALA<br>GLY<br>GLY<br>CYS<br>CVS                                                      | LYS<br>GLY<br>ASN<br>ASN<br>LEU<br>LYS<br>LYS<br>LYS<br>LYS<br>CLY                                           | LYS<br>P42<br>R56<br>A75<br>A75<br>LYS<br>CVS               | JEN<br>VAL<br>GLU<br>CYS<br>LYS<br>LYS<br>LYS<br>LYS | GLU<br>LYS<br>VAL<br>L89                           |                              |
| G97<br>G98<br>G98<br>G103<br>T104<br>K207<br>K207                                                                          | L222<br>R223<br>P225<br>P225<br>P225<br>Q228<br>Q228<br>C229<br>C230<br>C230<br>C231<br>C231<br>C231<br>C231<br>C231<br>C231<br>C231<br>C231 | 1232<br>F233<br>D234<br>D234<br>E236<br>K237<br>K237<br>K239<br>K239<br>K239                                 |                                                             |                                                      |                                                    |                              |
| • Molecule 38: 60S 1                                                                                                       | ribosomal protein I                                                                                                                          | L7                                                                                                           | •                                                           |                                                      |                                                    |                              |
| Chain p:                                                                                                                   | 9                                                                                                                                            | 1%                                                                                                           |                                                             | 9%                                                   |                                                    |                              |
| MET<br>GLU<br>GLU<br>GLU<br>CLU<br>CLU<br>CLU<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV        | GLU<br>THR<br>LEU<br>LYS<br>LYS<br>LYS<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG                                                                    |                                                                                                              |                                                             |                                                      |                                                    |                              |
| • Molecule 39: 60S 1                                                                                                       | ribosomal protein I                                                                                                                          | L5                                                                                                           |                                                             |                                                      |                                                    |                              |
| Chain r:                                                                                                                   |                                                                                                                                              | 97%                                                                                                          |                                                             | ••                                                   |                                                    |                              |
| MET<br>G2<br>F3<br>F3<br>K5<br>K5<br>V7<br>V7<br>V86<br>K89                                                                | L104<br>E124<br>D128<br>E133<br>S134<br>L135<br>D136<br>0137                                                                                 | L146<br>D147<br>E186<br>\$187<br>K188<br>A205<br>A205                                                        | r207<br>R209<br>Y210<br>L211<br>M212<br>E213<br>E213        | D215<br>E216<br>D217<br>A218<br>Y219<br>K220         | K221<br>1227<br>S230<br>D234                       | M235<br>M236<br>E237<br>E238 |
| K241<br>K242<br>E254<br>K255<br>K255<br>K255<br>F257<br>K258<br>K258<br>K259<br>E260<br>V261                               | K263<br>K264<br>R265<br>R265<br>P269<br>K270<br>L273                                                                                         | K277<br>D278<br>K279<br>V280<br>A281<br>Q282<br>K283<br>K283<br>K283                                         | 5286<br>F287<br>L288<br>R289<br>A290<br>Q291<br>E292        | A294<br>ALA<br>GLU<br>SER                            |                                                    |                              |
| • Molecule 40: G Pr                                                                                                        | otein Nucleolar 2                                                                                                                            |                                                                                                              |                                                             |                                                      |                                                    |                              |
| Chain A:                                                                                                                   | 42%                                                                                                                                          |                                                                                                              | 58%                                                         |                                                      |                                                    |                              |
| MET<br>VAL<br>LYS<br>LYS<br>PRO<br>LYS<br>GLY<br>GLY<br>GLY<br>ARG<br>SER<br>THR<br>THR<br>THR<br>THR<br>THR<br>SER<br>SER | LYS<br>ALA<br>SER<br>THR<br>ASP<br>ASP<br>ASP<br>ASP<br>GLY<br>GLY<br>GLY<br>GLY                                                             | GLY<br>GLN<br>ASN<br>ASP<br>ASP<br>ASP<br>ASP<br>ALA<br>ALA<br>ALA<br>ALA<br>ARG<br>ARG                      | LEU<br>ASN<br>MET<br>TYR<br>ARG<br>GLN<br>LYS<br>GLU<br>ARG | ARG<br>ASN<br>SER<br>ARG<br>GLY<br>ILE<br>TLE        | LEU                                                |                              |
| GLN<br>TYR<br>GLN<br>GLN<br>SER<br>SER<br>VAL<br>ALA<br>SER<br>SER<br>SER<br>ALA<br>ALA<br>ALA<br>ALA<br>OLU               | PRO<br>ASN<br>ILLE<br>LYS<br>TRP<br>PHE<br>PHE<br>GLY<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN                  | GLM<br>SER<br>SER<br>SER<br>SER<br>CLU<br>CLU<br>GLU<br>GLU<br>MET<br>ASP                                    | THR<br>VAL<br>MET<br>LYS<br>ASP<br>PRO<br>TYR<br>LYS<br>VAL | VAL<br>MET<br>LYS<br>GLN<br>SER<br>LYS<br>LEU<br>PRU | MET<br>SER<br>LEU                                  |                              |
| LEU<br>HIS<br>AKSP<br>AKSP<br>ARG<br>ARG<br>ARG<br>ARG<br>ARSN<br>HILE<br>ULL<br>LLL<br>LLL<br>LLL<br>LLL                  | ASP<br>THR<br>THR<br>SER<br>SER<br>SER<br>HHE<br>HHE<br>HHE<br>HHE<br>CYS<br>CYS<br>SER                                                      | ARG<br>ARG<br>ARG<br>ARG<br>ARN<br>ASN<br>ASN<br>ALA<br>ARA<br>ARA<br>ARA<br>ARA<br>ARA<br>ARA<br>ARA<br>ARA | 1161<br>5162<br>1163<br>1164<br>1164<br>1165                | ALO(<br>E168<br>5170<br>5171<br>E172<br>E172         | 51/3<br>174<br>0175<br>176<br>3177<br>K178<br>K178 | R180                         |
| •• •••• • •                                                                                                                |                                                                                                                                              | • • •• • •                                                                                                   | •• •• •                                                     | ••                                                   |                                                    |                              |
| D181<br>1182<br>1184<br>1184<br>E185<br>E185<br>D186<br>R197<br>A193                                                       | E196<br>K200<br>G201<br>Q202<br>D228<br>G302<br>K303<br>K303<br>B307                                                                         | K308<br>K309<br>Q310<br>B371<br>D371<br>D375<br>L398                                                         | E399<br>R400<br>D413<br>S414<br>E419                        | L432<br>N464<br>A465<br>GLU<br>PRO                   | VAL<br>ALA<br>PRO<br>GLN<br>LEU<br>PRO<br>SER      | SER<br>LEU                   |
| GLU<br>VAL<br>VAL<br>PRO<br>PRO<br>GLU<br>ALA<br>ALA<br>ALA<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>VAL<br>VAL | THR<br>GLU<br>THR<br>ALA<br>GLU<br>GLU<br>SER<br>SER<br>SER<br>ILE<br>ILE                                                                    | GLU<br>THR<br>GLU<br>GLU<br>GLU<br>GLU<br>GLU<br>ASN<br>ASN<br>ASP<br>ASN                                    | THR<br>GLU<br>GLU<br>GLN<br>GLN<br>ILE<br>LEU<br>THR<br>ARG | VAL<br>ARG<br>GLN<br>ASN<br>PHE<br>GLY<br>LYS<br>TTE | ASN<br>VAL<br>VAL                                  |                              |
| PRO<br>GLN<br>GLN<br>SER<br>SER<br>GLY<br>ASP<br>LEU<br>VAL<br>PRO<br>GLU<br>VAL<br>SER<br>SP                              | LEU<br>GLU<br>GLU<br>GLU<br>GLU<br>SER<br>SER<br>SER<br>GLU<br>GLU<br>GLU                                                                    | GLU<br>GLU<br>GLU<br>GLU<br>GLU<br>ASP<br>ALS<br>ALS<br>GLU<br>GLU<br>GLU                                    | SER<br>SER<br>SER<br>GLU<br>GLU<br>GLU<br>ASN               | VAL<br>GLY<br>ASN<br>ASP<br>THR<br>LYS<br>ALA<br>VAL | ILE<br>LYS<br>ALA                                  |                              |



#### LEU LYS LYS CHURNER CHURNER CHURNER LYS CHURNER LYS CHURNER LYS CHURNER CHURNE

#### LLYS ARIG GLUU GLUU GLUU GLUU GLUU HHISS ARIG GLUU LLYS ARIG GLUU LLYS ARIG GLUU LLYS ARIG GLUU LLYS ARIG GLUV VAL LLINS ARIG GLUV VAL LLINS ARIG GLUV VAL ARIG GLUV VAL LLINS ARIG GLUV VAL ARIG CUV VAL ARIG VAL A VAL A VAL VAL VAL VAL V

#### GLN LYS HIS LYS LYS LYS LYS PHE ARG GLN CLNS GLN

• Molecule 41: Translation machinery-associated protein 16



• Molecule 42: mRNA turnover protein 4 homolog

| Chain J:       92%       7%         Statistics       Statistics< |                                                                                                                                          | 87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                      |                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chain J:                                                                                                                                 | 92%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • 7%                                                                                                                 | ]                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          | ••• ••••• ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • •• •••••                                                                                                           | •                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MET<br>PRO<br>LYS<br>SER<br>LYS<br>ARC<br>ASP<br>LYS<br>VAC<br>VAC<br>CEU<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR                      | K17<br>K18<br>G19<br>C21<br>L20<br>L22<br>K23<br>Q24<br>N26<br>C33<br>C33<br>C33<br>C33<br>C33<br>C33<br>C33<br>C33<br>C33<br>C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T36<br>Y37<br>K38<br>K38<br>Y39<br>F41<br>F41<br>F42<br>F43<br>F43<br>S44<br>V45<br>S44<br>V45<br>N47<br>M48         | R49<br>N50<br>L53<br>K54<br>D55<br>R57<br>R57<br>N58<br>N58<br>N58<br>N59<br>N60<br>N60<br>N60                                                                                            |
| <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ••• •• • ••••                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *** *******                                                                                                          | ******                                                                                                                                                                                    |
| ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S63<br>R64<br>M65<br>F66<br>F67<br>G68<br>K71<br>V72<br>M73<br>M74<br>V75<br>A76                                                         | L77<br>G78<br>R79<br>S80<br>P81<br>P81<br>P81<br>P81<br>F84<br>K86<br>B83<br>E84<br>N88<br>N88<br>N88<br>N88<br>N88<br>S93<br>S93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R95<br>L96<br>R97<br>G98<br>E99<br>C100<br>L102<br>L102<br>L103<br>F104<br>F104<br>T105<br>N106                      | T108<br>K109<br>E110<br>E111<br>V112<br>V112<br>F115<br>F115<br>F115<br>T117<br>T120<br>F112<br>T120<br>F121<br>M122<br>D123                                                              |
| • Molecule 43: Leydig cell tumor 10 kDa protein homolog         10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                           |
| • Molecule 43: Leydig cell tumor 10 kDa protein homolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y124<br>A125<br>R126<br>A127<br>G128<br>G128<br>K130<br>A131<br>A131<br>A132<br>F133<br>T134<br>V135                                     | <pre>\$136 \$1137 \$1137 \$1139 \$1139 \$1140 \$1141 \$1142 \$1142 \$1142 \$1144 \$1144 \$1144 \$1144 \$1144 \$1144 \$1144 \$1144 \$1144 \$1146 \$1151 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1153 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1155 \$1</pre> | R154<br>Q155<br>L156<br>G157<br>G157<br>L156<br>P159<br>P159<br>P159<br>A161<br>L162<br>K163<br>R164<br>R164<br>G165 | V166<br>V167<br>L1168<br>L1169<br>L1170<br>L1170<br>L1170<br>S171<br>S171<br>S171<br>S171<br>C176<br>K177<br>K177<br>E178<br>G179<br>G179<br>D180<br>V181<br>V181<br>V181<br>V182<br>C176 |
| • Molecule 43: Leydig cell tumor 10 kDa protein homolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                           |
| Molecule 43: Leydig cell tumor 10 kDa protein homolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P184<br>E185<br>Q186<br>A187<br>A187<br>R188<br>V189<br>L190<br>L192<br>F193<br>F193<br>F193<br>G194<br>G194                             | E196<br>M197<br>A198<br>E199<br>E199<br>F200<br>F200<br>T203<br>T203<br>T203<br>T204<br>V205<br>W205<br>W205<br>W205<br>W205<br>W206<br>W205<br>W206<br>W201<br>S213<br>S210<br>S213<br>S213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R214<br>F215<br>Q216<br>Q217<br>M218<br>G219<br>D220<br>D221<br>L222<br>P223<br>F223<br>F223<br>F223<br>S225         | A.220<br>5227<br>5228<br>5229<br>5233<br>5233<br>5233<br>5233<br>5233<br>5233<br>5233                                                                                                     |
| 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • Molecule 43: Levdig                                                                                                                    | g cell tumor 10 kDa protein hor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | molog                                                                                                                |                                                                                                                                                                                           |
| Chain T: 56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10%                                                                                                                                      | <b>J</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                    |                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chain T:                                                                                                                                 | 44%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56%                                                                                                                  |                                                                                                                                                                                           |
| • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                          | • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • • • • •                                                                                                            |                                                                                                                                                                                           |
| MET<br>MET<br>ARG<br>GLN<br>GLN<br>GLN<br>GLN<br>GLN<br>GLN<br>GLN<br>GLN<br>GLN<br>GL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MET<br>ALA<br>GLN<br>GLN<br>GLN<br>GLN<br>GLN<br>FLS<br>PHE<br>CLN<br>HIS<br>PHE<br>CLN<br>HIS<br>TLS<br>SER<br>SER                      | LYS<br>THR<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 149<br>153<br>153<br>153<br>153<br>153<br>153<br>854<br>857<br>153<br>150<br>150<br>150<br>150<br>150                | ALA<br>LEU<br>LYS<br>LYS<br>ALA<br>PRO<br>ALA<br>LYS                                                                                                                                      |
| LLYS<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>THR<br>SER<br>SER<br>SER<br>SER<br>SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LYS<br>LYS<br>GLY<br>GLY<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>THR<br>THR<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                           |
| - Malanda 44, 200 - DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - Malassila 44, 200 T                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                           |















| G3839<br>U3840 | <mark>U3851</mark> | A3852<br>U3853              | C3858                       | C3866          | A3867<br>G3868 | C3869           | A3871                                   | A3876          | A3877<br>C3878 | G3879<br>G3880 | G3881<br>C3882 | C3887          | COOCII         | 03893<br>C3893 | G3897          | 63899<br>63899 | G3900<br>A3901 | A3902<br>A3903  | G3904<br>A3905 | A3906          | C3909            | C3911<br>C3911 | 63913<br>63913 | U3914<br>U3915 | C3919          | A3923          | <mark>c3926</mark> | <mark>U3932</mark>      | <mark>C3935</mark> | 63938<br>63939          |                |                |                |                |                |                |                |       |
|----------------|--------------------|-----------------------------|-----------------------------|----------------|----------------|-----------------|-----------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|------------------|----------------|----------------|----------------|----------------|----------------|--------------------|-------------------------|--------------------|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|
| A3942          | A3943<br>G3944     | A3945                       |                             | C3948<br>A3949 | U3950          | G3951           | G3953                                   | A3954          | 63956<br>(3956 | U3957          | G3958<br>U3959 | A3960          | G3961          | A3963          | U3964          | A3966          | G3967          | 0.3969<br>G3969 | G3970          | G3971<br>A3972 | G3973            | G3974<br>C3975 | C3976          | C3977          | C3979          | G3980<br>G3981 | C3982              | C3984                   | C3985              | C3987                   | C3389          | G3991          | G 3992         | G3994          | U3995<br>C3996 | C3997<br>C3998 | C3999<br>G4000 |       |
| C4001          | 44003              | G4004 <b>G</b> 4005         | G4006                       | G4007<br>C4008 | C4009          | C4010           | G4011<br>G4012                          | G4013          | G4014<br>C4015 | G4016          | G4017<br>G4018 | G4019          | U4020          | C4021<br>C4022 | G4023          | C4025          | G4026          | G4027<br>C4028  | C4029          | C4030          | G4032            | C4033          | G4035          | G4036          | C4038          | G4039<br>C4040 | C4041              | G4042<br>G4043          | U4044              | A4046                   | A4041<br>A4048 | 04049<br>A4050 | C4051          | C4052<br>A4053 | C4054          | A4056          | U4058          | U4060 |
| G4061          | U4063              | C4064                       | U4066                       | U4067          | VLOVJ          | 04074<br>U4075  | G4076<br>A4077                          | C4078          | U4083<br>G4084 | C4088          |                | G4094<br>G4095 | C4096          | G4097<br>A4098 | G4099          | C4100<br>C4101 | C4102          | C4103           | A4105          | G4106<br>G4107 | G4108            | G4109          |                | C4112          | C4114          | G4115<br>C4116 | U4117<br>U4118     | C4119<br>U4120          | C4123              | G4129                   | C4133<br>C4134 | G4135          | G4136<br>C4137 | C4138          | C4140          |                |                |       |
| G4141          | G4143              | C4144 C4145                 | G4146                       | G4147<br>C4148 | C4149          | 00155           | C4162<br>U4163                          | A4170          | C4171          | G4183<br>G4184 | G4185          | U4189          | 04190<br>G4191 | A4192<br>C4193 | U4194<br>G4195 | G4196<br>G4197 | G4198          | C4199           | G4200<br>G4201 | U4202<br>A4203 | C4204<br>A4205   | C4206          | A4212<br>A2213 | A4214          | 44220          | C4221          | 64225<br>64226     | 04227<br>04228<br>64228 | U4229              | A4233<br>A4234          | C4243          | G4247          |                |                |                |                |                |       |
| A4248<br>G4249 | G4250<br>A4251     | C4252<br>A4253              | G4254<br>A4255              | A4256<br>A4257 | C4258          | 04260<br>U4260  | C4261<br>C4262                          | C4263<br>G4264 | U4265          | A4268          | A4271          | A4273          | A4279          | A4280<br>A4281 | C4284          | U4285<br>C4286 | U4289          | U4290<br>C4291  | 44292<br>A4292 | 04293<br>C4294 | 04295<br>U4296   | G4297<br>A4298 | U4299          | C4303<br>A4304 | G4305<br>U4306 | A4307<br>C4308 | C4314              | C4319                   | G4329              | 64330<br>64331<br>C4332 |                |                |                |                |                |                |                |       |
| C4335          | A4339              | U4340<br>C4341              | C4342                       | C4349<br>C4350 | U4351<br>U4352 | U4353<br>114254 | 04355<br>G4355                          | U4360          | U4361          | G4364<br>C4365 | G4370          | G4371<br>U4372 | G4373          | G4377          | A4379          | A4380<br>A4381 | G4382          | C4387           | U4395<br>A4396 | C P            |                  | 500            | C4402          | 04406          | C4413<br>A4414 | G4415          | C4417<br>G4418     | U4419                   | C4421              | A4422<br>U4423          | A4424<br>G4425 |                |                |                |                |                |                |       |
| C4426<br>G4427 | A4428              | C4423                       | U4435                       | U4436<br>U4437 | n              | G               | 4 D U                                   | 00             | o D            | С<br>G4448     | G4451          | U4452<br>C4453 | C4456          |                | C4461          | A4464          | 04465<br>C4466 | U4469           | G4470<br>U4471 | G4472          | G4475<br>C4476   | A4477          | U4481          | C4483          | A4404          | 64489<br>64489 |                    | 114498                  | G4499              | C4502<br>A4503          | C4504          |                |                |                |                |                |                |       |
| C4505          | C4508              | U4512<br>A4513              | A4518                       | C4519          | G4522<br>A4523 | G4524           | G4529                                   |                | A4535<br>C4536 | C4537          | G4545<br>A4546 | C4547          | 64549<br>64549 | G4550          | U4555<br>U4556 | U4557<br>U4558 | A4559<br>C4560 | C4561<br>C4562  | 04563<br>N4563 | 1001H          | G4570            | A4571          | G4575          | A4584          | A4589<br>A4590 | U4594          | G4595<br>C4596     | U4597<br>C4598          | 64600<br>64600     |                         |                |                |                |                |                |                |                |       |
| A4607<br>G4608 | C4612              | C4613<br>G4614              | U4620                       | G4623          | U4627          | U4628           | A4635                                   | 04637<br>G4637 | 04638<br>G4639 | A4656          | U4657          | C4662<br>G4663 | A4664          | C4667          | 04000<br>A4669 | C4671<br>C4671 | A4672<br>U4673 | C4674           | G4678          | U4682          | U4685<br>C4686   | A4687          | G4690          | C4693          | G4694<br>C4695 | 04697<br>04697 | C4698<br>U4699     | A4/00<br>A4701          | A4708<br>114709    | C4710<br>C4711<br>C4711 |                |                |                |                |                |                |                |       |
| C4712<br>G4713 | C4714              | G4719<br>C4720              | <mark>G4721</mark><br>G4722 | C4730          | G4731          | C4733           | A4734<br>G4735                          | C4738          | C4739          | C4741          | G4742          | G4745<br>C4746 | C4747          | U4752          | G4754          | C4757          | 04759<br>C4759 | G4760<br>G4761  | A4764          | G4765<br>C4766 | C4771            | C4772          | C4774          | C4775<br>G4776 | ი ი            | υυ             | 50                 | 00                      | ບບ                 | υυυ                     | 00             |                |                |                |                |                |                |       |
| o a            | A C                | ບອ                          | 0 5                         | 00             | υυ             | 00              | טטני                                    | ט ט ז          | U U            | ප ප            | 5 5            | A<br>G         | 000            | 500            | 500            | e c            | ი ი            | ບບ              | 0 5            | 00             | ) <del>(</del> ) |                | 5 5 5          | 500            | 9 9 8          | A<br>A<br>A    | C4858              | U4864                   | G4870<br>C4871     | G4872<br>G4873          |                |                |                |                |                |                |                |       |
| A4874          | G4877<br>C4878     | <mark>C4879</mark><br>C4880 | U4881<br>U4882              | C4883          | C4886<br>C4887 | U4888           | 000 00 00 00 00 00 00 00 00 00 00 00 00 |                | C4900<br>G4901 | G4910          | A4911<br>64912 | 64913<br>64913 | G4915<br>G4915 | C4923          | C4926          | G4927<br>C4928 | A4934          | 44938           | C4939          | G4941          | C4942<br>A4943   | C4944<br>G4945 | G4949          | G4960          | C4969          | C4970<br>A4971 | U4972<br>U4973     | U4976                   | G4981              | A4962<br>C4983          | •              |                |                |                |                |                |                |       |









• Molecule 53: Protein SDA1 homolog







LEU LYVAL LYVAL CILY GULY GULY ALL LLYS CULYS CU

ALA THR THR PPRO CUU CLUEU CLUEU CLUEU PPRO CLUEU THR PPRO CLUEU C

TYR ALA GLN VAL THR ASN THR ASN PRO GLU PRO GLU ASN ASP ASP ASP ASP LLEU VAL LLEU VAL LLEU VAL



# 4 Experimental information (i)

| Property                           | Value                        | Source    |
|------------------------------------|------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE              | Depositor |
| Imposed symmetry                   | POINT, Not provided          |           |
| Number of particles used           | 41193                        | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF            | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE | Depositor |
|                                    | CORRECTION                   |           |
| Microscope                         | FEI TITAN KRIOS              | Depositor |
| Voltage (kV)                       | 300                          | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 1.8                          | Depositor |
| Minimum defocus (nm)               | 1200                         | Depositor |
| Maximum defocus (nm)               | 1800                         | Depositor |
| Magnification                      | Not provided                 |           |
| Image detector                     | GATAN K2 QUANTUM (4k x 4k)   | Depositor |
| Maximum map value                  | 0.223                        | Depositor |
| Minimum map value                  | -0.065                       | Depositor |
| Average map value                  | 0.001                        | Depositor |
| Map value standard deviation       | 0.006                        | Depositor |
| Recommended contour level          | 0.0365                       | Depositor |
| Map size (Å)                       | 548.0, 548.0, 548.0          | wwPDB     |
| Map dimensions                     | 400, 400, 400                | wwPDB     |
| Map angles (°)                     | 90.0, 90.0, 90.0             | wwPDB     |
| Pixel spacing (Å)                  | 1.37, 1.37, 1.37             | Depositor |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: M7A, 6MZ, B9H, B8H, I4U, P7G, 7MG, A2M, B8W, 1MA, GDP, E7G, E6G, K, B8K, B9B, OMG, MHG, B8T, 2MG, B8Q, UR3, P4U, 5MU, BGH, MG, 5MC, OMC, OMU

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain   | Bo   | ond lengths |      | Bond angles                 |
|-----|---------|------|-------------|------|-----------------------------|
|     | Ullalli | RMSZ | # Z  > 5    | RMSZ | # Z  > 5                    |
| 1   | 5       | 0.43 | 0/2858      | 1.35 | 38/4455~(0.9%)              |
| 2   | 6       | 0.34 | 0/1877      | 0.75 | 2/2554~(0.1%)               |
| 3   | 7       | 0.37 | 0/1181      | 0.68 | 0/1563                      |
| 4   | 8       | 0.45 | 0/3679      | 1.40 | 64/5732~(1.1%)              |
| 5   | 9       | 0.34 | 0/808       | 0.84 | 3/1076~(0.3%)               |
| 6   | В       | 0.32 | 0/3315      | 0.70 | 3/4435~(0.1%)               |
| 7   | С       | 0.29 | 0/777       | 0.77 | 1/1026~(0.1%)               |
| 8   | D       | 0.31 | 0/2907      | 0.75 | 4/3905~(0.1%)               |
| 9   | Ε       | 0.32 | 0/774       | 0.67 | 1/1038~(0.1%)               |
| 10  | F       | 0.29 | 0/878       | 0.72 | 0/1170                      |
| 11  | G       | 0.34 | 0/1971      | 0.73 | 2/2651~(0.1%)               |
| 12  | Н       | 0.35 | 0/1023      | 0.71 | 0/1351                      |
| 13  | Ι       | 0.33 | 0/1537      | 0.75 | 3/2066~(0.1%)               |
| 14  | Κ       | 0.30 | 0/843       | 0.65 | 0/1115                      |
| 15  | L       | 0.29 | 0/1191      | 0.65 | 0/1591                      |
| 16  | М       | 0.31 | 0/720       | 0.70 | 0/952                       |
| 17  | Ν       | 0.39 | 0/1341      | 0.88 | 2/1793~(0.1%)               |
| 18  | 0       | 0.37 | 0/575       | 0.90 | 2/761~(0.3%)                |
| 19  | Р       | 0.31 | 0/454       | 0.66 | 0/599                       |
| 20  | Q       | 0.33 | 0/1732      | 0.70 | 0/2315                      |
| 21  | S       | 0.36 | 0/1133      | 0.76 | 3/1516~(0.2%)               |
| 22  | U       | 0.29 | 0/1746      | 0.66 | 0/2338                      |
| 23  | V       | 0.31 | 0/1682      | 0.67 | 1/2250~(0.0%)               |
| 24  | W       | 0.33 | 0/831       | 0.70 | 0/1095                      |
| 25  | Х       | 0.30 | 0/718       | 0.61 | 0/953                       |
| 26  | Ζ       | 0.30 | 0/1537      | 0.68 | 0/2052                      |
| 27  | a       | 0.33 | 0/1255      | 0.75 | 2/1662~(0.1%)               |
| 28  | b       | 0.32 | 0/1501      | 0.65 | 0/2013                      |
| 29  | с       | 0.33 | 0/1291      | 0.71 | $2\overline{/1725}~(0.1\%)$ |
| 30  | е       | 0.33 | 0/993       | 0.75 | 1/1332~(0.1%)               |
| 31  | g       | 0.29 | 0/984       | 0.60 | 0/1323                      |



| Mal | Chain | Bo   | ond lengths     | Bond angles |                                   |
|-----|-------|------|-----------------|-------------|-----------------------------------|
|     | Unain | RMSZ | # Z  > 5        | RMSZ        | # Z  > 5                          |
| 32  | h     | 0.31 | 0/1132          | 0.68        | 0/1504                            |
| 33  | i     | 0.35 | 0/1130          | 0.70        | 1/1507~(0.1%)                     |
| 34  | 1     | 0.30 | 0/1017          | 0.69        | 0/1364                            |
| 35  | m     | 0.32 | 0/1936          | 0.71        | 1/2596~(0.0%)                     |
| 36  | n     | 0.30 | 0/895           | 0.76        | 3/1198~(0.3%)                     |
| 37  | 0     | 0.31 | 0/1935          | 0.69        | 0/2596                            |
| 38  | р     | 0.34 | 0/1916          | 0.69        | 0/2553                            |
| 39  | r     | 0.33 | 0/2428          | 0.70        | 3/3252~(0.1%)                     |
| 40  | А     | 0.31 | 0/2515          | 0.60        | 3/3403~(0.1%)                     |
| 41  | R     | 0.36 | 0/1317          | 0.72        | 2/1757~(0.1%)                     |
| 42  | J     | 0.39 | 0/1844          | 0.72        | 1/2476~(0.0%)                     |
| 43  | Т     | 0.29 | 0/345           | 0.77        | 0/455                             |
| 44  | 2     | 0.44 | 7/84533~(0.0%)  | 1.36        | 1230/131714~(0.9%)                |
| 45  | У     | 0.31 | 0/1269          | 0.71        | 1/1712~(0.1%)                     |
| 46  | 4     | 0.33 | 0/5099          | 0.77        | 12/6840~(0.2%)                    |
| 47  | d     | 0.37 | 0/864           | 0.78        | 2/1160~(0.2%)                     |
| 48  | j     | 0.34 | 0/933           | 0.73        | 0/1256                            |
| 49  | k     | 0.31 | 0/1082          | 0.71        | 1/1443~(0.1%)                     |
| 50  | Y     | 0.30 | 0/1383          | 0.66        | 2/1856~(0.1%)                     |
| 51  | Z     | 0.33 | 0/587           | 0.84        | 1/767~(0.1%)                      |
| 52  | t     | 0.31 | 0/1736          | 0.62        | 2/2328~(0.1%)                     |
| 53  | u     | 0.39 | 2/4614~(0.0%)   | 0.65        | 4/6191~(0.1%)                     |
| 54  | V     | 0.31 | 0/321           | 0.55        | 0/418                             |
| All | All   | 0.39 | 9/164943~(0.0%) | 1.14        | $14\overline{03/240753}\ (0.6\%)$ |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 6   | В     | 0                   | 1                   |
| 11  | G     | 0                   | 1                   |
| 17  | Ν     | 0                   | 1                   |
| 20  | Q     | 0                   | 1                   |
| 29  | с     | 0                   | 1                   |
| 30  | е     | 0                   | 1                   |
| 35  | m     | 0                   | 2                   |
| 36  | n     | 0                   | 1                   |
| 42  | J     | 0                   | 1                   |
| 50  | Y     | 0                   | 1                   |
| 53  | u     | 0                   | 3                   |
| All | All   | 0                   | 14                  |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|----------------|------|---------|-------|-------------|----------|
| 53  | u     | 668            | PHE  | CD2-CE2 | 11.13 | 1.61        | 1.39     |
| 53  | u     | 668            | PHE  | CE2-CZ  | 9.61  | 1.55        | 1.37     |
| 44  | 2     | 4060           | U    | O3'-P   | 7.15  | 1.69        | 1.61     |
| 44  | 2     | 4062           | А    | O3'-P   | 6.91  | 1.69        | 1.61     |
| 44  | 2     | 4061           | G    | O3'-P   | 6.69  | 1.69        | 1.61     |

The worst 5 of 9 bond length outliers are listed below:

The worst 5 of 1403 bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 44  | 2     | 485 | C    | C2-N1-C1' | 14.89 | 135.18           | 118.80        |
| 18  | 0     | 30  | ASP  | CB-CG-OD1 | 12.50 | 129.55           | 118.30        |
| 44  | 2     | 753 | C    | N1-C2-O2  | 12.46 | 126.38           | 118.90        |
| 44  | 2     | 485 | С    | N1-C2-O2  | 12.20 | 126.22           | 118.90        |
| 4   | 8     | 128 | С    | N1-C2-O2  | 12.03 | 126.12           | 118.90        |

There are no chirality outliers.

5 of 14 planarity outliers are listed below:

| Mol | Chain | Res | Type | Group   |
|-----|-------|-----|------|---------|
| 6   | В     | 16  | PHE  | Peptide |
| 11  | G     | 162 | ASP  | Peptide |
| 17  | N     | 117 | ILE  | Peptide |
| 20  | Q     | 154 | VAL  | Peptide |
| 29  | с     | 80  | VAL  | Peptide |

## 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

## 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.



| Mol | Chain | Analysed       | Favoured  | Allowed  | Outliers | Perce | ntiles |
|-----|-------|----------------|-----------|----------|----------|-------|--------|
| 2   | 6     | 242/245~(99%)  | 225~(93%) | 17 (7%)  | 0        | 100   | 100    |
| 3   | 7     | 133/163~(82%)  | 129~(97%) | 4 (3%)   | 0        | 100   | 100    |
| 5   | 9     | 93/134~(69%)   | 81 (87%)  | 12 (13%) | 0        | 100   | 100    |
| 6   | В     | 401/403~(100%) | 376 (94%) | 25 (6%)  | 0        | 100   | 100    |
| 7   | С     | 89/159~(56%)   | 87 (98%)  | 2 (2%)   | 0        | 100   | 100    |
| 8   | D     | 356/427~(83%)  | 331 (93%) | 25 (7%)  | 0        | 100   | 100    |
| 9   | Е     | 96/115~(84%)   | 92 (96%)  | 4 (4%)   | 0        | 100   | 100    |
| 10  | F     | 107/117~(92%)  | 104 (97%) | 3 (3%)   | 0        | 100   | 100    |
| 11  | G     | 240/266~(90%)  | 229 (95%) | 11 (5%)  | 0        | 100   | 100    |
| 12  | Н     | 120/123~(98%)  | 116 (97%) | 4 (3%)   | 0        | 100   | 100    |
| 13  | Ι     | 188/192~(98%)  | 178 (95%) | 10 (5%)  | 0        | 100   | 100    |
| 14  | К     | 100/105~(95%)  | 95 (95%)  | 5 (5%)   | 0        | 100   | 100    |
| 15  | L     | 145/148~(98%)  | 135 (93%) | 10 (7%)  | 0        | 100   | 100    |
| 16  | М     | 84/97~(87%)    | 78 (93%)  | 6 (7%)   | 0        | 100   | 100    |
| 17  | Ν     | 163/178~(92%)  | 140 (86%) | 21 (13%) | 2 (1%)   | 13    | 48     |
| 18  | Ο     | 67/70~(96%)    | 63 (94%)  | 4 (6%)   | 0        | 100   | 100    |
| 19  | Р     | 48/51~(94%)    | 47 (98%)  | 1 (2%)   | 0        | 100   | 100    |
| 20  | Q     | 208/211~(99%)  | 195 (94%) | 13 (6%)  | 0        | 100   | 100    |
| 21  | S     | 133/215~(62%)  | 127 (96%) | 6 (4%)   | 0        | 100   | 100    |
| 22  | U     | 201/204~(98%)  | 192 (96%) | 9 (4%)   | 0        | 100   | 100    |
| 23  | V     | 199/203~(98%)  | 193 (97%) | 6 (3%)   | 0        | 100   | 100    |
| 24  | W     | 98/106~(92%)   | 94 (96%)  | 4 (4%)   | 0        | 100   | 100    |
| 25  | Х     | 89/92~(97%)    | 85 (96%)  | 4 (4%)   | 0        | 100   | 100    |
| 26  | Z     | 185/188~(98%)  | 180 (97%) | 5 (3%)   | 0        | 100   | 100    |
| 27  | a     | 146/196~(74%)  | 140 (96%) | 6 (4%)   | 0        | 100   | 100    |
| 28  | b     | 174/176~(99%)  | 168 (97%) | 6 (3%)   | 0        | 100   | 100    |
| 29  | с     | 153/160~(96%)  | 149 (97%) | 4 (3%)   | 0        | 100   | 100    |
| 30  | е     | 129/140~(92%)  | 114 (88%) | 15 (12%) | 0        | 100   | 100    |
| 31  | g     | 116/156~(74%)  | 113 (97%) | 3 (3%)   | 0        | 100   | 100    |
| 32  | h     | 132/145~(91%)  | 130 (98%) | 2 (2%)   | 0        | 100   | 100    |
| 33  | i     | 133/136~(98%)  | 121 (91%) | 12 (9%)  | 0        | 100   | 100    |
| 34  | 1     | 123/137~(90%)  | 117 (95%) | 6 (5%)   | 0        | 100   | 100    |

Continued on next page...



| Mol | Chain | Analysed         | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|------------------|------------|----------|----------|-------|--------|
| 35  | m     | 246/257~(96%)    | 216 (88%)  | 30 (12%) | 0        | 100   | 100    |
| 36  | n     | 107/110~(97%)    | 103 (96%)  | 3~(3%)   | 1 (1%)   | 17    | 55     |
| 37  | 0     | 231/288~(80%)    | 215~(93%)  | 16 (7%)  | 0        | 100   | 100    |
| 38  | р     | 224/248~(90%)    | 213~(95%)  | 11 (5%)  | 0        | 100   | 100    |
| 39  | r     | 291/297~(98%)    | 278~(96%)  | 13~(4%)  | 0        | 100   | 100    |
| 40  | А     | 305/731~(42%)    | 296 (97%)  | 8(3%)    | 1 (0%)   | 41    | 76     |
| 41  | R     | 151/203~(74%)    | 143~(95%)  | 7 (5%)   | 1 (1%)   | 22    | 60     |
| 42  | J     | 221/239~(92%)    | 209 (95%)  | 12 (5%)  | 0        | 100   | 100    |
| 43  | Т     | 42/99~(42%)      | 42 (100%)  | 0        | 0        | 100   | 100    |
| 45  | У     | 163/165~(99%)    | 159 (98%)  | 4 (2%)   | 0        | 100   | 100    |
| 46  | 4     | 607/634~(96%)    | 559~(92%)  | 45 (7%)  | 3~(0%)   | 29    | 68     |
| 47  | d     | 102/128~(80%)    | 94 (92%)   | 8 (8%)   | 0        | 100   | 100    |
| 48  | j     | 109/125~(87%)    | 103 (94%)  | 6 (6%)   | 0        | 100   | 100    |
| 49  | k     | 127/135~(94%)    | 121 (95%)  | 6 (5%)   | 0        | 100   | 100    |
| 50  | Y     | 165/184~(90%)    | 154 (93%)  | 11 (7%)  | 0        | 100   | 100    |
| 51  | Z     | 63/129~(49%)     | 60~(95%)   | 2(3%)    | 1 (2%)   | 9     | 40     |
| 52  | t     | 210/217~(97%)    | 201 (96%)  | 9 (4%)   | 0        | 100   | 100    |
| 53  | u     | 546/687~(80%)    | 515 (94%)  | 30 (6%)  | 1 (0%)   | 47    | 82     |
| 54  | v     | 33/260~(13%)     | 33 (100%)  | 0        | 0        | 100   | 100    |
| All | All   | 8834/10594 (83%) | 8338 (94%) | 486 (6%) | 10 (0%)  | 54    | 85     |

Continued from previous page...

5 of 10 Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 17  | Ν     | 176 | PRO  |
| 36  | n     | 106 | TYR  |
| 40  | А     | 160 | MET  |
| 53  | u     | 326 | GLY  |
| 17  | N     | 21  | CYS  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.



| Mol | Chain | Analysed       | Rotameric  | Outliers | Perce | ntiles |
|-----|-------|----------------|------------|----------|-------|--------|
| 2   | 6     | 212/213~(100%) | 212 (100%) | 0        | 100   | 100    |
| 3   | 7     | 126/149~(85%)  | 126 (100%) | 0        | 100   | 100    |
| 5   | 9     | 82/114~(72%)   | 80~(98%)   | 2(2%)    | 49    | 79     |
| 6   | В     | 349/349~(100%) | 348 (100%) | 1 (0%)   | 92    | 97     |
| 7   | С     | 78/126~(62%)   | 78 (100%)  | 0        | 100   | 100    |
| 8   | D     | 298/348~(86%)  | 297 (100%) | 1 (0%)   | 92    | 97     |
| 9   | Е     | 83/97~(86%)    | 83 (100%)  | 0        | 100   | 100    |
| 10  | F     | 94/100~(94%)   | 93~(99%)   | 1 (1%)   | 73    | 90     |
| 11  | G     | 204/223~(92%)  | 204 (100%) | 0        | 100   | 100    |
| 12  | Н     | 109/110 (99%)  | 109 (100%) | 0        | 100   | 100    |
| 13  | Ι     | 169/171~(99%)  | 167 (99%)  | 2 (1%)   | 71    | 90     |
| 14  | К     | 86/89~(97%)    | 86 (100%)  | 0        | 100   | 100    |
| 15  | L     | 120/121 (99%)  | 120 (100%) | 0        | 100   | 100    |
| 16  | М     | 73/80~(91%)    | 73 (100%)  | 0        | 100   | 100    |
| 17  | Ν     | 138/149~(93%)  | 138 (100%) | 0        | 100   | 100    |
| 18  | О     | 64/65~(98%)    | 64 (100%)  | 0        | 100   | 100    |
| 19  | Р     | 47/48~(98%)    | 47 (100%)  | 0        | 100   | 100    |
| 20  | Q     | 176/177~(99%)  | 176 (100%) | 0        | 100   | 100    |
| 21  | S     | 115/161 (71%)  | 114 (99%)  | 1 (1%)   | 78    | 92     |
| 22  | U     | 171/172~(99%)  | 171 (100%) | 0        | 100   | 100    |
| 23  | V     | 173/174 (99%)  | 173 (100%) | 0        | 100   | 100    |
| 24  | W     | 88/94~(94%)    | 88 (100%)  | 0        | 100   | 100    |
| 25  | Х     | 74/75~(99%)    | 74 (100%)  | 0        | 100   | 100    |
| 26  | Z     | 164/165~(99%)  | 164 (100%) | 0        | 100   | 100    |
| 27  | a     | 133/175~(76%)  | 133 (100%) | 0        | 100   | 100    |
| 28  | b     | 157/157~(100%) | 157 (100%) | 0        | 100   | 100    |
| 29  | с     | 136/140~(97%)  | 136 (100%) | 0        | 100   | 100    |
| 30  | е     | 101/107~(94%)  | 100 (99%)  | 1 (1%)   | 76    | 91     |
| 31  | g     | 106/133~(80%)  | 106 (100%) | 0        | 100   | 100    |
| 32  | h     | 124/135~(92%)  | 124 (100%) | 0        | 100   | 100    |

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Continued on next page...



| Mol | Chain | Analysed                    | Rotameric   | Outliers | Perce | ntiles | 3 |
|-----|-------|-----------------------------|-------------|----------|-------|--------|---|
| 33  | i     | 117/118~(99%)               | 116 (99%)   | 1 (1%)   | 78    | 92     |   |
| 34  | 1     | 109/121~(90%)               | 109 (100%)  | 0        | 100   | 100    |   |
| 35  | m     | 190/199~(96%)               | 190 (100%)  | 0        | 100   | 100    |   |
| 36  | n     | 88/89~(99%)                 | 88 (100%)   | 0        | 100   | 100    |   |
| 37  | 0     | 208/252~(82%)               | 206 (99%)   | 2 (1%)   | 76    | 91     |   |
| 38  | р     | 195/215~(91%)               | 195 (100%)  | 0        | 100   | 100    |   |
| 39  | r     | 246/250~(98%)               | 245 (100%)  | 1 (0%)   | 91    | 97     |   |
| 40  | А     | 272/654~(42%)               | 272 (100%)  | 0        | 100   | 100    |   |
| 41  | R     | 141/184~(77%)               | 140 (99%)   | 1 (1%)   | 84    | 94     |   |
| 42  | J     | 199/214~(93%)               | 199 (100%)  | 0        | 100   | 100    |   |
| 43  | Т     | 37/76~(49%)                 | 37~(100%)   | 0        | 100   | 100    |   |
| 45  | У     | 137/137~(100%)              | 137 (100%)  | 0        | 100   | 100    |   |
| 46  | 4     | 554/574~(96%)               | 553~(100%)  | 1 (0%)   | 93    | 98     |   |
| 47  | d     | 94/115~(82%)                | 93~(99%)    | 1 (1%)   | 73    | 90     |   |
| 48  | j     | 101/110~(92%)               | 100 (99%)   | 1 (1%)   | 76    | 91     |   |
| 49  | k     | 115/121~(95%)               | 115 (100%)  | 0        | 100   | 100    |   |
| 50  | Y     | 147/163~(90%)               | 146 (99%)   | 1 (1%)   | 84    | 94     |   |
| 51  | Z     | 61/115~(53%)                | 60~(98%)    | 1 (2%)   | 62    | 86     |   |
| 52  | t     | 191/196~(97%)               | 189 (99%)   | 2 (1%)   | 76    | 91     |   |
| 53  | u     | 509/629~(81%)               | 507 (100%)  | 2(0%)    | 91    | 97     |   |
| 54  | v     | $\overline{32/228}\ (14\%)$ | 31 (97%)    | 1 (3%)   | 40    | 75     |   |
| All | All   | 7793/9177 (85%)             | 7769 (100%) | 24 (0%)  | 92    | 97     |   |

Continued from previous page...

5 of 24 residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 46  | 4     | 385 | ARG  |
| 50  | Y     | 97  | ASN  |
| 48  | j     | 100 | ASN  |
| 51  | Z     | 112 | ARG  |
| 13  | Ι     | 93  | ARG  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 7 such sidechains are listed below:



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 48  | j     | 100 | ASN  |
| 52  | t     | 171 | HIS  |
| 54  | V     | 10  | HIS  |
| 53  | u     | 155 | ASN  |
| 35  | m     | 215 | ASN  |

#### 5.3.3 RNA (i)

| Mol | Chain | Analysed        | Backbone Outliers | Pucker Outliers |
|-----|-------|-----------------|-------------------|-----------------|
| 1   | 5     | 119/120~(99%)   | 14 (11%)          | 0               |
| 4   | 8     | 155/156~(99%)   | 28~(18%)          | 0               |
| 44  | 2     | 3543/5054~(70%) | 868~(24%)         | 22~(0%)         |
| All | All   | 3817/5330~(71%) | 910~(23%)         | 22~(0%)         |

5 of 910 RNA backbone outliers are listed below:

| Mol | Chain | $\operatorname{Res}$ | Type |
|-----|-------|----------------------|------|
| 1   | 5     | 11                   | А    |
| 1   | 5     | 22                   | А    |
| 1   | 5     | 24                   | С    |
| 1   | 5     | 33                   | U    |
| 1   | 5     | 40                   | U    |

5 of 22 RNA pucker outliers are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 44  | 2     | 4202 | U    |
| 44  | 2     | 4382 | G    |
| 44  | 2     | 4380 | А    |
| 44  | 2     | 4498 | U    |
| 44  | 2     | 2760 | G    |

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

78 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection.



| Mol | Type | Chain | Res  | Link  | B        | Bond lengths<br>Counts $  BMSZ   \#  Z  > 2$ |                             |          | Bond angles<br>Counts   $BMSZ   \#  Z  > 2$ |                                |  |
|-----|------|-------|------|-------|----------|----------------------------------------------|-----------------------------|----------|---------------------------------------------|--------------------------------|--|
| 44  | A2M  | 2     | 1871 | 53,44 | 18,25,26 | 3.58                                         | $\frac{1}{2} = \frac{1}{2}$ | 18,36,39 | 3.47                                        | $\frac{\pi}{2} > 2$<br>3 (16%) |  |
| 44  | A2M  | 2     | 2401 | 44    | 18,25,26 | 3.62                                         | 8 (44%)                     | 18,36,39 | 3.37                                        | 3 (16%)                        |  |
| 44  | OMG  | 2     | 1883 | 44    | 18,26,27 | 2.90                                         | 8 (44%)                     | 19,38,41 | 1.56                                        | 4 (21%)                        |  |
| 44  | OMG  | 2     | 1316 | 44    | 18,26,27 | 2.85                                         | 8 (44%)                     | 19,38,41 | 1.54                                        | 5 (26%)                        |  |
| 44  | A2M  | 2     | 1326 | 44    | 18,25,26 | 3.63                                         | 8 (44%)                     | 18,36,39 | <b>3.53</b>                                 | 4 (22%)                        |  |
| 44  | B9B  | 2     | 1574 | 44    | 21,28,29 | 1.95                                         | 3 (14%)                     | 23,40,43 | 6.43                                        | 5 (21%)                        |  |
| 44  | OMG  | 2     | 4637 | 44    | 18,26,27 | 2.86                                         | 8 (44%)                     | 19,38,41 | 1.54                                        | 4 (21%)                        |  |
| 44  | A2M  | 2     | 3718 | 44    | 18,25,26 | 3.58                                         | 8 (44%)                     | 18,36,39 | <b>3.39</b>                                 | 4 (22%)                        |  |
| 44  | B8W  | 2     | 4129 | 44    | 18,26,27 | 2.11                                         | 2 (11%)                     | 21,38,41 | 2.42                                        | 7 (33%)                        |  |
| 44  | A2M  | 2     | 398  | 44    | 18,25,26 | 3.61                                         | 8 (44%)                     | 18,36,39 | 3.44                                        | 4 (22%)                        |  |
| 44  | B8H  | 2     | 1860 | 44    | 20,22,23 | 6.60                                         | 6 (30%)                     | 21,32,35 | 2.36                                        | 5 (23%)                        |  |
| 44  | 2MG  | 2     | 978  | 44    | 18,26,27 | 2.72                                         | 6 (33%)                     | 16,38,41 | 1.38                                        | 4 (25%)                        |  |
| 44  | 5MC  | 2     | 4335 | 44    | 18,22,23 | <mark>3.59</mark>                            | 7 (38%)                     | 26,32,35 | 1.11                                        | 2 (7%)                         |  |
| 44  | OMU  | 2     | 4620 | 44    | 19,22,23 | 2.97                                         | 8 (42%)                     | 26,31,34 | 1.69                                        | 4 (15%)                        |  |
| 44  | 5MU  | 2     | 4083 | 44    | 19,22,23 | 7.22                                         | 8 (42%)                     | 28,32,35 | 3.42                                        | 10 (35%)                       |  |
| 44  | OMG  | 2     | 4370 | 44    | 18,26,27 | 2.87                                         | 8 (44%)                     | 19,38,41 | 1.50                                        | 5 (26%)                        |  |
| 44  | OMG  | 2     | 2424 | 44    | 18,26,27 | 2.87                                         | 8 (44%)                     | 19,38,41 | 1.50                                        | 4 (21%)                        |  |
| 44  | OMC  | 2     | 4536 | 44    | 19,22,23 | 2.98                                         | 8 (42%)                     | 26,31,34 | 1.13                                        | 3 (11%)                        |  |
| 44  | E6G  | 2     | 4355 | 44    | 20,27,28 | 2.81                                         | 3 (15%)                     | 22,39,42 | <b>3.26</b>                                 | 7 (31%)                        |  |
| 44  | OMC  | 2     | 3869 | 44    | 19,22,23 | <mark>3.06</mark>                            | 8 (42%)                     | 26,31,34 | 1.56                                        | 4 (15%)                        |  |
| 44  | OMG  | 2     | 4494 | 44    | 18,26,27 | 2.85                                         | 8 (44%)                     | 19,38,41 | 1.45                                        | 4 (21%)                        |  |
| 44  | B8W  | 2     | 2380 | 44    | 18,26,27 | 2.09                                         | 2 (11%)                     | 21,38,41 | 2.46                                        | 7 (33%)                        |  |
| 44  | B8W  | 2     | 4529 | 44    | 18,26,27 | 2.13                                         | 2 (11%)                     | 21,38,41 | 2.71                                        | 7 (33%)                        |  |
| 44  | A2M  | 2     | 3825 | 44    | 18,25,26 | 3.58                                         | 8 (44%)                     | 18,36,39 | <mark>3.38</mark>                           | 3 (16%)                        |  |
| 44  | OMC  | 2     | 2804 | 44    | 19,22,23 | 2.91                                         | 8 (42%)                     | 26,31,34 | 1.36                                        | 3 (11%)                        |  |
| 44  | B8W  | 2     | 4185 | 44    | 18,26,27 | 2.12                                         | 2 (11%)                     | 21,38,41 | 2.49                                        | 6 (28%)                        |  |
| 44  | B9B  | 2     | 2754 | 44    | 21,28,29 | 2.00                                         | 3 (14%)                     | 23,40,43 | <mark>6.39</mark>                           | 5 (21%)                        |  |
| 44  | 2MG  | 2     | 1517 | 44    | 18,26,27 | 2.71                                         | 6 (33%)                     | 16,38,41 | 1.55                                        | 4 (25%)                        |  |
| 44  | 7MG  | 2     | 2522 | 44    | 22,26,27 | <mark>3.73</mark>                            | 10 (45%)                    | 29,39,42 | 1.96                                        | 9 (31%)                        |  |
| 44  | OMG  | 2     | 373  | 44    | 18,26,27 | 2.88                                         | 8 (44%)                     | 19,38,41 | 1.59                                        | 5 (26%)                        |  |
| 44  | OMC  | 2     | 3701 | 44    | 19,22,23 | 2.99                                         | 8 (42%)                     | 26,31,34 | 0.78                                        | 0                              |  |
| 44  | OMC  | 2     | 2861 | 44    | 19,22,23 | 3.06                                         | 8 (42%)                     | 26,31,34 | 1.18                                        | 3 (11%)                        |  |
| 44  | B8T  | 2     | 4483 | 44    | 19,22,23 | <mark>3.65</mark>                            | 8 (42%)                     | 26,31,34 | 1.31                                        | 3 (11%)                        |  |

RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).



| Mal  | Turne | Chain | Dec  | Tink  | B              | ond leng           | gths                 | Bond angles |      |                      |
|------|-------|-------|------|-------|----------------|--------------------|----------------------|-------------|------|----------------------|
| WIOI | туре  | Chain | nes  | LIIIK | Counts         | RMSZ               | # Z >2               | Counts      | RMSZ | # Z >2               |
| 44   | B8W   | 2     | 4472 | 44    | $18,\!26,\!27$ | 2.15               | 2 (11%)              | 21,38,41    | 2.59 | 7 (33%)              |
| 44   | A2M   | 2     | 1534 | 44    | 18,25,26       | <mark>3.58</mark>  | 8 (44%)              | 18,36,39    | 3.56 | 4 (22%)              |
| 44   | OMG   | 2     | 1522 | 44    | 18,26,27       | 2.81               | 8 (44%)              | 19,38,41    | 1.50 | 5 (26%)              |
| 44   | OMG   | 2     | 2364 | 44    | 18,26,27       | 2.85               | 8 (44%)              | 19,38,41    | 1.50 | 5 (26%)              |
| 44   | UR3   | 2     | 1866 | 53,44 | 19,22,23       | 2.95               | <mark>6 (31%)</mark> | 26,32,35    | 2.11 | <mark>6 (23%)</mark> |
| 44   | M7A   | 2     | 4564 | 44    | 20,25,26       | 1.99               | 3(15%)               | 28,37,40    | 3.87 | 7 (25%)              |
| 44   | A2M   | 2     | 3867 | 44    | 18,25,26       | <mark>-3.57</mark> | 8 (44%)              | 18,36,39    | 3.45 | 4 (22%)              |
| 44   | B8K   | 2     | 3897 | 44    | 24,28,29       | <b>3.43</b>        | 11 (45%)             | 30,42,45    | 2.51 | 11 (36%)             |
| 44   | E7G   | 2     | 1797 | 44    | 24,27,28       | 4.07               | 11 (45%)             | 30,40,43    | 2.18 | <mark>9 (30%)</mark> |
| 44   | OMG   | 2     | 4870 | 44    | 18,26,27       | 2.87               | 8 (44%)              | 19,38,41    | 1.56 | 4 (21%)              |
| 44   | OMC   | 2     | 3887 | 44    | 19,22,23       | <mark>3.03</mark>  | 8 (42%)              | 26,31,34    | 0.83 | 1 (3%)               |
| 44   | 2MG   | 2     | 729  | 44    | 18,26,27       | 2.68               | <mark>6 (33%)</mark> | 16,38,41    | 1.42 | 4 (25%)              |
| 44   | B8Q   | 2     | 1456 | 44    | 17,22,23       | 2.95               | <mark>5 (29%)</mark> | 22,32,35    | 2.30 | <mark>6 (27%)</mark> |
| 44   | 2MG   | 2     | 4872 | 44    | 18,26,27       | <mark>2.61</mark>  | 6 (33%)              | 16,38,41    | 1.72 | 4 (25%)              |
| 44   | UR3   | 2     | 4597 | 44    | 19,22,23       | 2.78               | 7 (36%)              | 26,32,35    | 1.93 | 4 (15%)              |
| 44   | OMC   | 2     | 2365 | 44    | 19,22,23       | 3.00               | 8 (42%)              | 26,31,34    | 0.76 | 0                    |
| 44   | P7G   | 2     | 3880 | 44    | 24,28,29       | 4.09               | 11 (45%)             | 27,41,44    | 1.47 | 4 (14%)              |
| 44   | 7MG   | 2     | 1605 | 44    | 22,26,27       | 3.82               | 10 (45%)             | 29,39,42    | 1.96 | 9 (31%)              |
| 44   | MHG   | 2     | 4371 | 44    | 29,32,33       | <mark>3.93</mark>  | 11 (37%)             | 34,46,49    | 2.37 | 12 (35%)             |
| 44   | A2M   | 2     | 3723 | 44    | 18,25,26       | 3.56               | 8 (44%)              | 18,36,39    | 3.37 | 4 (22%)              |
| 44   | 1MA   | 2     | 4415 | 44    | 16,25,26       | 4.38               | 5 (31%)              | 18,37,40    | 1.67 | 3 (16%)              |
| 44   | B8H   | 2     | 4296 | 44    | 20,22,23       | <mark>6.62</mark>  | <mark>6 (30%)</mark> | 21,32,35    | 2.39 | <mark>5 (23%)</mark> |
| 44   | UR3   | 2     | 4530 | 44    | 19,22,23       | 2.86               | <mark>6 (31%)</mark> | 26,32,35    | 1.28 | 2 (7%)               |
| 44   | E7G   | 2     | 2297 | 44    | 24,27,28       | 4.02               | 11 (45%)             | 30,40,43    | 2.15 | 10 (33%)             |
| 44   | P4U   | 2     | 1348 | 44    | 21,24,25       | <mark>3.62</mark>  | 8 (38%)              | 27,33,36    | 1.06 | 1 (3%)               |
| 44   | BGH   | 2     | 3899 | 44    | 25,29,30       | 4.62               | 17 (68%)             | 31,43,46    | 2.59 | 12 (38%)             |
| 44   | B9B   | 2     | 237  | 44    | 21,28,29       | 2.00               | 3 (14%)              | 23,40,43    | 6.42 | <b>5</b> (21%)       |
| 44   | 7MG   | 2     | 4550 | 44    | 22,26,27       | <mark>3.82</mark>  | 10 (45%)             | 29,39,42    | 1.92 | 8 (27%)              |
| 44   | B8T   | 2     | 4671 | 44    | 19,22,23       | <mark>3.59</mark>  | 8 (42%)              | 26,31,34    | 0.93 | 1 (3%)               |
| 44   | OMU   | 2     | 4306 | 44    | 19,22,23       | <mark>3.04</mark>  | 8 (42%)              | 26,31,34    | 1.69 | 4 (15%)              |
| 44   | OMG   | 2     | 2050 | 44    | 18,26,27       | 2.83               | 8 (44%)              | 19,38,41    | 1.49 | 4 (21%)              |
| 44   | 6MZ   | 2     | 4220 | 44    | 18,25,26       | 1.87               | 3 (16%)              | 16,36,39    | 3.75 | 3 (18%)              |
| 44   | B8K   | 2     | 4690 | 44    | 24,28,29       | 3.42               | 11 (45%)             | 30,42,45    | 2.59 | 11 (36%)             |
| 44   | P7G   | 2     | 1909 | 44    | 24,28,29       | 4.05               | 11 (45%)             | 27,41,44    | 1.55 | 3 (11%)              |
| 44   | I4U   | 2     | 1659 | 44    | 21,24,25       | 3.59               | 9 (42%)              | 27,34,37    | 1.20 | 1 (3%)               |



| Mal   | Turne | Chain | Dec  | Tinle | B        | ond leng           | gths    | Bond angles |      |          |
|-------|-------|-------|------|-------|----------|--------------------|---------|-------------|------|----------|
| IVIOI | туре  | Chain | nes  | LIIIK | Counts   | RMSZ               | # Z >2  | Counts      | RMSZ | # Z  > 2 |
| 44    | A2M   | 2     | 2363 | 44    | 18,25,26 | <mark>3.60</mark>  | 8 (44%) | 18,36,39    | 3.40 | 4 (22%)  |
| 44    | B9H   | 2     | 2786 | 44    | 20,25,26 | 3.28               | 5 (25%) | 22,35,38    | 2.40 | 7 (31%)  |
| 44    | A2M   | 2     | 4571 | 44    | 18,25,26 | <mark>3.58</mark>  | 8 (44%) | 18,36,39    | 3.42 | 4 (22%)  |
| 44    | A2M   | 2     | 4523 | 44    | 18,25,26 | <mark>-3.57</mark> | 8 (44%) | 18,36,39    | 3.45 | 4 (22%)  |
| 44    | A2M   | 2     | 1524 | 44    | 18,25,26 | 3.62               | 8 (44%) | 18,36,39    | 3.44 | 4 (22%)  |
| 44    | OMC   | 2     | 3909 | 44    | 19,22,23 | 3.01               | 8 (42%) | 26,31,34    | 1.24 | 5 (19%)  |
| 44    | OMG   | 2     | 2773 | 44    | 18,26,27 | 2.91               | 8 (44%) | 19,38,41    | 1.54 | 5 (26%)  |
| 4     | OMU   | 8     | 14   | 4,44  | 19,22,23 | 2.99               | 8 (42%) | 26,31,34    | 1.78 | 5 (19%)  |
| 44    | OMG   | 2     | 1625 | 44    | 18,26,27 | 2.91               | 8 (44%) | 19,38,41    | 1.50 | 4 (21%)  |
| 44    | OMG   | 2     | 4623 | 44    | 18,26,27 | 2.86               | 8 (44%) | 19,38,41    | 1.55 | 5 (26%)  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | $\mathbf{Res}$ | Link  | Chirals | Torsions  | Rings   |
|-----|------|-------|----------------|-------|---------|-----------|---------|
| 44  | A2M  | 2     | 1871           | 53,44 | -       | 0/5/27/28 | 0/3/3/3 |
| 44  | A2M  | 2     | 2401           | 44    | -       | 1/5/27/28 | 0/3/3/3 |
| 44  | OMG  | 2     | 1883           | 44    | -       | 2/5/27/28 | 0/3/3/3 |
| 44  | OMG  | 2     | 1316           | 44    | -       | 0/5/27/28 | 0/3/3/3 |
| 44  | A2M  | 2     | 1326           | 44    | -       | 3/5/27/28 | 0/3/3/3 |
| 44  | B9B  | 2     | 1574           | 44    | -       | 3/7/29/30 | 0/3/3/3 |
| 44  | OMG  | 2     | 4637           | 44    | -       | 3/5/27/28 | 0/3/3/3 |
| 44  | A2M  | 2     | 3718           | 44    | -       | 0/5/27/28 | 0/3/3/3 |
| 44  | B8W  | 2     | 4129           | 44    | -       | 2/5/27/28 | 0/3/3/3 |
| 44  | A2M  | 2     | 398            | 44    | -       | 2/5/27/28 | 0/3/3/3 |
| 44  | B8H  | 2     | 1860           | 44    | -       | 2/7/25/26 | 0/2/2/2 |
| 44  | 2MG  | 2     | 978            | 44    | -       | 0/5/27/28 | 0/3/3/3 |
| 44  | 5MC  | 2     | 4335           | 44    | -       | 0/7/25/26 | 0/2/2/2 |
| 44  | OMU  | 2     | 4620           | 44    | -       | 0/9/27/28 | 0/2/2/2 |
| 44  | 5MU  | 2     | 4083           | 44    | -       | 0/7/25/26 | 0/2/2/2 |
| 44  | OMG  | 2     | 4370           | 44    | -       | 1/5/27/28 | 0/3/3/3 |
| 44  | OMG  | 2     | 2424           | 44    | -       | 2/5/27/28 | 0/3/3/3 |
| 44  | OMC  | 2     | 4536           | 44    | -       | 0/9/27/28 | 0/2/2/2 |
| 44  | E6G  | 2     | 4355           | 44    | -       | 2/6/28/29 | 0/3/3/3 |
| 44  | OMC  | 2     | 3869           | 44    | -       | 4/9/27/28 | 0/2/2/2 |
| 44  | OMG  | 2     | 4494           | 44    | -       | 0/5/27/28 | 0/3/3/3 |

Continued on next page...



| Mol | Type | Chain | Res  | Link  | Chirals | Torsions   | Rings   |
|-----|------|-------|------|-------|---------|------------|---------|
| 44  | B8W  | 2     | 2380 | 44    | -       | 2/5/27/28  | 0/3/3/3 |
| 44  | B8W  | 2     | 4529 | 44    | -       | 0/5/27/28  | 0/3/3/3 |
| 44  | A2M  | 2     | 3825 | 44    | -       | 0/5/27/28  | 0/3/3/3 |
| 44  | OMC  | 2     | 2804 | 44    | -       | 0/9/27/28  | 0/2/2/2 |
| 44  | B8W  | 2     | 4185 | 44    | -       | 2/5/27/28  | 0/3/3/3 |
| 44  | B9B  | 2     | 2754 | 44    | -       | 2/7/29/30  | 0/3/3/3 |
| 44  | 2MG  | 2     | 1517 | 44    | -       | 0/5/27/28  | 0/3/3/3 |
| 44  | 7MG  | 2     | 2522 | 44    | -       | 0/7/37/38  | 0/3/3/3 |
| 44  | OMG  | 2     | 373  | 44    | -       | 1/5/27/28  | 0/3/3/3 |
| 44  | OMC  | 2     | 3701 | 44    | -       | 4/9/27/28  | 0/2/2/2 |
| 44  | OMC  | 2     | 2861 | 44    | -       | 0/9/27/28  | 0/2/2/2 |
| 44  | B8T  | 2     | 4483 | 44    | -       | 0/7/27/28  | 0/2/2/2 |
| 44  | B8W  | 2     | 4472 | 44    | -       | 2/5/27/28  | 0/3/3/3 |
| 44  | A2M  | 2     | 1534 | 44    | -       | 1/5/27/28  | 0/3/3/3 |
| 44  | OMG  | 2     | 1522 | 44    | -       | 0/5/27/28  | 0/3/3/3 |
| 44  | OMG  | 2     | 2364 | 44    | -       | 2/5/27/28  | 0/3/3/3 |
| 44  | UR3  | 2     | 1866 | 53,44 | -       | 3/7/25/26  | 0/2/2/2 |
| 44  | M7A  | 2     | 4564 | 44    | -       | 0/7/37/38  | 0/3/3/3 |
| 44  | A2M  | 2     | 3867 | 44    | -       | 2/5/27/28  | 0/3/3/3 |
| 44  | B8K  | 2     | 3897 | 44    | -       | 3/11/41/42 | 0/3/3/3 |
| 44  | E7G  | 2     | 1797 | 44    | -       | 2/9/39/40  | 0/3/3/3 |
| 44  | OMG  | 2     | 4870 | 44    | -       | 3/5/27/28  | 0/3/3/3 |
| 44  | OMC  | 2     | 3887 | 44    | -       | 1/9/27/28  | 0/2/2/2 |
| 44  | 2MG  | 2     | 729  | 44    | -       | 2/5/27/28  | 0/3/3/3 |
| 44  | B8Q  | 2     | 1456 | 44    | -       | 0/7/42/43  | 0/2/2/2 |
| 44  | 2MG  | 2     | 4872 | 44    | -       | 2/5/27/28  | 0/3/3/3 |
| 44  | UR3  | 2     | 4597 | 44    | -       | 0/7/25/26  | 0/2/2/2 |
| 44  | OMC  | 2     | 2365 | 44    | -       | 0/9/27/28  | 0/2/2/2 |
| 44  | P7G  | 2     | 3880 | 44    | -       | 4/10/40/41 | 0/3/3/3 |
| 44  | 7MG  | 2     | 1605 | 44    | -       | 0/7/37/38  | 0/3/3/3 |
| 44  | MHG  | 2     | 4371 | 44    | -       | 3/16/46/47 | 0/3/3/3 |
| 44  | A2M  | 2     | 3723 | 44    | -       | 2/5/27/28  | 0/3/3/3 |
| 44  | 1MA  | 2     | 4415 | 44    | -       | 3/3/25/26  | 0/3/3/3 |
| 44  | B8H  | 2     | 4296 | 44    | -       | 2/7/25/26  | 0/2/2/2 |
| 44  | UR3  | 2     | 4530 | 44    | -       | 0/7/25/26  | 0/2/2/2 |
| 44  | E7G  | 2     | 2297 | 44    | -       | 1/9/39/40  | 0/3/3/3 |
| 44  | P4U  | 2     | 1348 | 44    | -       | 1/10/29/30 | 0/2/2/2 |
| 44  | BGH  | 2     | 3899 | 44    | -       | 1/13/43/44 | 0/3/3/3 |

Continued from previous page...

Continued on next page...



| Mol | Type | Chain | Res  | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|------|------|---------|------------|---------|
| 44  | B9B  | 2     | 237  | 44   | -       | 5/7/29/30  | 0/3/3/3 |
| 44  | 7MG  | 2     | 4550 | 44   | -       | 0/7/37/38  | 0/3/3/3 |
| 44  | B8T  | 2     | 4671 | 44   | -       | 0/7/27/28  | 0/2/2/2 |
| 44  | OMU  | 2     | 4306 | 44   | -       | 0/9/27/28  | 0/2/2/2 |
| 44  | OMG  | 2     | 2050 | 44   | -       | 0/5/27/28  | 0/3/3/3 |
| 44  | 6MZ  | 2     | 4220 | 44   | -       | 1/5/27/28  | 0/3/3/3 |
| 44  | B8K  | 2     | 4690 | 44   | -       | 0/11/41/42 | 0/3/3/3 |
| 44  | P7G  | 2     | 1909 | 44   | -       | 3/10/40/41 | 0/3/3/3 |
| 44  | I4U  | 2     | 1659 | 44   | -       | 2/9/29/30  | 0/2/2/2 |
| 44  | A2M  | 2     | 2363 | 44   | -       | 0/5/27/28  | 0/3/3/3 |
| 44  | B9H  | 2     | 2786 | 44   | -       | 0/12/47/48 | 0/2/2/2 |
| 44  | A2M  | 2     | 4571 | 44   | -       | 0/5/27/28  | 0/3/3/3 |
| 44  | A2M  | 2     | 4523 | 44   | -       | 4/5/27/28  | 0/3/3/3 |
| 44  | A2M  | 2     | 1524 | 44   | -       | 1/5/27/28  | 0/3/3/3 |
| 44  | OMC  | 2     | 3909 | 44   | -       | 1/9/27/28  | 0/2/2/2 |
| 44  | OMG  | 2     | 2773 | 44   | -       | 0/5/27/28  | 0/3/3/3 |
| 4   | OMU  | 8     | 14   | 4,44 | -       | 1/9/27/28  | 0/2/2/2 |
| 44  | OMG  | 2     | 1625 | 44   | -       | 3/5/27/28  | 0/3/3/3 |
| 44  | OMG  | 2     | 4623 | 44   | -       | 1/5/27/28  | 0/3/3/3 |

Continued from previous page...

The worst 5 of 574 bond length outliers are listed below:

| Mol | Chain | Res  | Type | Atoms | Z      | $\operatorname{Observed}(\operatorname{\AA})$ | $\operatorname{Ideal}(\operatorname{\AA})$ |
|-----|-------|------|------|-------|--------|-----------------------------------------------|--------------------------------------------|
| 44  | 2     | 4083 | 5MU  | C4-C5 | 20.79  | 1.79                                          | 1.44                                       |
| 44  | 2     | 4296 | B8H  | C6-C5 | -16.51 | 1.11                                          | 1.34                                       |
| 44  | 2     | 1860 | B8H  | C6-C5 | -16.35 | 1.12                                          | 1.34                                       |
| 44  | 2     | 4415 | 1MA  | C2-N3 | 16.16  | 1.48                                          | 1.29                                       |
| 44  | 2     | 4083 | 5MU  | C6-N1 | 15.93  | 1.65                                          | 1.38                                       |

The worst 5 of 380 bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms     | Z      | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-----------|--------|---------------------------|---------------|
| 44  | 2     | 1574 | B9B  | O6-C6-N1  | -29.48 | 94.67                     | 120.12        |
| 44  | 2     | 237  | B9B  | O6-C6-N1  | -29.29 | 94.84                     | 120.12        |
| 44  | 2     | 2754 | B9B  | O6-C6-N1  | -29.20 | 94.92                     | 120.12        |
| 44  | 2     | 4564 | M7A  | C5-C6-N6  | 13.69  | 147.13                    | 123.74        |
| 44  | 2     | 4220 | 6MZ  | C1'-N9-C4 | -12.71 | 104.32                    | 126.64        |

There are no chirality outliers.

5 of 100 torsion outliers are listed below:



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 4   | 8     | 14  | OMU  | C1'-C2'-O2'-CM2 |
| 44  | 2     | 237 | B9B  | C5-C6-O6-C61    |
| 44  | 2     | 237 | B9B  | N1-C6-O6-C61    |
| 44  | 2     | 237 | B9B  | C3'-C4'-C5'-O5' |
| 44  | 2     | 237 | B9B  | O4'-C4'-C5'-O5' |

There are no ring outliers.

No monomer is involved in short contacts.

## 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

Of 3 ligands modelled in this entry, 2 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol  | Type           | Chain | Dog | Tink  | Bo       | ond leng | $\mathbf{ths}$ | В        | ond ang | les      |
|------|----------------|-------|-----|-------|----------|----------|----------------|----------|---------|----------|
| WIOI | Moi Type Chain |       | nes |       | Counts   | RMSZ     | # Z >2         | Counts   | RMSZ    | # Z  > 2 |
| 55   | GDP            | А     | 801 | 57,56 | 24,30,30 | 1.20     | 2 (8%)         | 30,47,47 | 1.41    | 5 (16%)  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link  | Chirals | Torsions   | Rings   |
|-----|------|-------|-----|-------|---------|------------|---------|
| 55  | GDP  | А     | 801 | 57,56 | -       | 2/12/32/32 | 0/3/3/3 |

All (2) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|-------|-------------|----------|
| 55  | А     | 801 | GDP  | C6-N1 | -3.47 | 1.32        | 1.37     |

Continued on next page...



Continued from previous page...

| Mol | Chain | Res | Type | Atoms   | $\mathbf{Z}$ | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|--------------|-------------|----------|
| 55  | А     | 801 | GDP  | C2'-C1' | -2.22        | 1.50        | 1.53     |

All (5) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 55  | А     | 801 | GDP  | PA-O3A-PB   | -3.52 | 120.74           | 132.83        |
| 55  | А     | 801 | GDP  | C3'-C2'-C1' | 3.26  | 105.89           | 100.98        |
| 55  | А     | 801 | GDP  | C8-N7-C5    | 2.47  | 107.69           | 102.99        |
| 55  | А     | 801 | GDP  | O3B-PB-O2B  | 2.35  | 116.63           | 107.64        |
| 55  | А     | 801 | GDP  | C5-C6-N1    | 2.32  | 118.05           | 113.95        |

There are no chirality outliers.

All (2) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms         |
|-----|-------|-----|------|---------------|
| 55  | А     | 801 | GDP  | PA-O3A-PB-O2B |
| 55  | А     | 801 | GDP  | PA-O3A-PB-O1B |

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sup Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.





# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-35371. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

# 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



6.1.2 Raw map



The images above show the map projected in three orthogonal directions.



## 6.2 Central slices (i)

#### 6.2.1 Primary map



X Index: 200



Y Index: 200



Z Index: 200

#### 6.2.2 Raw map



X Index: 200

Y Index: 200



The images above show central slices of the map in three orthogonal directions.



## 6.3 Largest variance slices (i)

#### 6.3.1 Primary map



X Index: 206



Y Index: 182



Z Index: 202

#### 6.3.2 Raw map



X Index: 205

Y Index: 189



The images above show the largest variance slices of the map in three orthogonal directions.



## 6.4 Orthogonal standard-deviation projections (False-color) (i)

#### 6.4.1 Primary map



#### 6.4.2 Raw map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.



#### 6.5 Orthogonal surface views (i)

#### 6.5.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.0365. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

#### 6.5.2 Raw map



These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

#### 6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

# 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



## 7.2 Volume estimate (i)



The volume at the recommended contour level is  $1145 \text{ nm}^3$ ; this corresponds to an approximate mass of 1034 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



# 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.333  ${\rm \AA^{-1}}$ 



# 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

#### 8.1 FSC (i)



\*Reported resolution corresponds to spatial frequency of 0.333  $\mathrm{\AA^{-1}}$ 



## 8.2 Resolution estimates (i)

| <b>Bosolution ostimato</b> $(\hat{\lambda})$ | Estim | Estimation criterion (FSC cut-off) |          |  |  |
|----------------------------------------------|-------|------------------------------------|----------|--|--|
| Resolution estimate (A)                      | 0.143 | 0.5                                | Half-bit |  |  |
| Reported by author                           | 3.00  | -                                  | -        |  |  |
| Author-provided FSC curve                    | -     | -                                  | -        |  |  |
| Unmasked-calculated*                         | 3.91  | 7.10                               | 4.01     |  |  |

\*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.91 differs from the reported value 3.0 by more than 10 %



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-35371 and PDB model 8IDY. Per-residue inclusion information can be found in section 3 on page 14.

# 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.0365 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



#### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0365).



## 9.4 Atom inclusion (i)



At the recommended contour level, 82% of all backbone atoms, 79% of all non-hydrogen atoms, are inside the map.



## 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0365) and Q-score for the entire model and for each chain.

| Chain | Atom inclusion | $\mathbf{Q}	extsf{-score}$ |
|-------|----------------|----------------------------|
| All   | 0.7920         | 0.4860                     |
| 2     | 0.8620         | 0.4910                     |
| 4     | 0.6540         | 0.4620                     |
| 5     | 0.9190         | 0.4800                     |
| 6     | 0.7350         | 0.5080                     |
| 7     | 0.8090         | 0.5400                     |
| 8     | 0.9440         | 0.5440                     |
| 9     | 0.5540         | 0.4670                     |
| А     | 0.6590         | 0.4950                     |
| В     | 0.9060         | 0.5680                     |
| С     | 0.7520         | 0.4750                     |
| D     | 0.9290         | 0.5640                     |
| Е     | 0.6830         | 0.5060                     |
| F     | 0.8820         | 0.5540                     |
| G     | 0.7040         | 0.4800                     |
| Н     | 0.8700         | 0.5420                     |
| Ι     | 0.8030         | 0.5240                     |
| J     | 0.1120         | 0.1850                     |
| Κ     | 0.8360         | 0.5280                     |
| L     | 0.9320         | 0.5790                     |
| Μ     | 0.9660         | 0.5810                     |
| Ν     | 0.4190         | 0.3070                     |
| Ο     | 0.6770         | 0.4920                     |
| Р     | 0.9760         | 0.5780                     |
| Q     | 0.8420         | 0.5250                     |
| R     | 0.4700         | 0.4450                     |
| S     | 0.8970         | 0.5510                     |
| Т     | 0.6060         | 0.4370                     |
| U     | 0.9680         | 0.5860                     |
| V     | 0.9220         | 0.5660                     |
| W     | 0.7290         | 0.5170                     |
| X     | 0.8050         | 0.5360                     |
| Y     | 0.8660         | 0.5560                     |
| Z     | 0.9480         | 0.5890                     |
| a     | 0.8740         | 0.5430                     |

0.0 <0.0

1.0

Continued on next page...



Continued from previous page...

| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| b     | 0.9330         | 0.5780  |
| С     | 0.8790         | 0.5320  |
| d     | 0.7520         | 0.5180  |
| е     | 0.8800         | 0.5480  |
| g     | 0.8960         | 0.5580  |
| h     | 0.8860         | 0.5570  |
| i     | 0.7600         | 0.5220  |
| j     | 0.8340         | 0.5350  |
| k     | 0.9400         | 0.5790  |
| 1     | 0.9250         | 0.5640  |
| m     | 0.9030         | 0.5600  |
| n     | 0.9530         | 0.5870  |
| О     | 0.7650         | 0.4980  |
| р     | 0.9150         | 0.5590  |
| r     | 0.6190         | 0.4250  |
| t     | 0.0010         | 0.1380  |
| u     | 0.0710         | 0.2110  |
| V     | 0.0860         | 0.2300  |
| У     | 0.1120         | 0.2100  |
| Z     | 0.5670         | 0.4230  |

