

# wwPDB X-ray Structure Validation Summary Report (i)

#### Oct 3, 2023 – 02:31 PM JST

| PDB ID       | : | 8H2W                                                                       |
|--------------|---|----------------------------------------------------------------------------|
| Title        | : | Cellodextrin phosphorylase from Clostridium thermocellum mutant - all cys- |
|              |   | teine residues were substituted with serines                               |
| Authors      | : | Kuga, T.; Sunagawa, N.; Igarashi, K.                                       |
| Deposited on | : | 2022-10-07                                                                 |
| Resolution   | : | 1.21 Å(reported)                                                           |
|              |   |                                                                            |

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | FAILED                                                             |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Ideal geometry (proteins)      | : | Engh & Huber $(2001)$                                              |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35.1                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 1.21 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | Whole archive $(\#Entries)$ | Similar resolution $(\#Entries, resolution range(Å))$ |
|-----------------------|-----------------------------|-------------------------------------------------------|
| Clashscore            | 141614                      | 1294 (1.24-1.20)                                      |
| Ramachandran outliers | 138981                      | 1251 (1.24-1.20)                                      |
| Sidechain outliers    | 138945                      | 1250 (1.24-1.20)                                      |

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

| Mol | Type | Chain | Res  | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|------|-----------|----------|---------|------------------|
| 2   | BGC  | D     | 1    | -         | -        | Х       | -                |
| 3   | ACT  | В     | 1002 | -         | -        | Х       | -                |
| 5   | SO4  | А     | 1007 | -         | -        | Х       | -                |
| 6   | PEG  | А     | 1008 | -         | -        | Х       | -                |
| 7   | GOL  | В     | 1018 | -         | -        | Х       | -                |
| 7   | GOL  | В     | 1019 | -         | -        | Х       | -                |



# 2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 34642 atoms, of which 15434 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Cellodextrin phosphorylase.

| Mol | Chain | Residues | Atoms          |           |           |           |           | ZeroOcc | AltConf | Trace |   |
|-----|-------|----------|----------------|-----------|-----------|-----------|-----------|---------|---------|-------|---|
| 1   | А     | 984      | Total<br>15858 | C<br>5311 | Н<br>7533 | N<br>1393 | O<br>1596 | S<br>25 | 177     | 55    | 0 |
| 1   | В     | 984      | Total<br>16079 | C<br>5395 | Н<br>7607 | N<br>1425 | O<br>1628 | S<br>24 | 188     | 71    | 0 |

| A1MET-initiating methionineUNP Q93A2GLY-expression tagUNP Q93A65SEBCYSengineered mutationUNP Q93 | BHT8<br>BHT8<br>BHT8<br>BHT8<br>BHT8 |
|--------------------------------------------------------------------------------------------------|--------------------------------------|
| A2GLY-expression tagUNP Q93A65SERCYSengineered mutationUNP Q93                                   | BHT8<br>BHT8<br>BHT8<br>BHT8         |
| A 65 SEB CYS engineered mutation UNP Q9:                                                         | BHT8<br>BHT8<br>BHT8                 |
|                                                                                                  | BHT8<br>BHT8                         |
| A 81 SER CYS engineered mutation UNP Q93                                                         | BHT8                                 |
| A 226 SER CYS engineered mutation UNP Q93                                                        |                                      |
| A 230 SER CYS engineered mutation UNP Q93                                                        | BHT8                                 |
| A 241 SER CYS engineered mutation UNP Q93                                                        | BHT8                                 |
| A 354 SER CYS engineered mutation UNP Q93                                                        | BHT8                                 |
| A 373 SER CYS engineered mutation UNP Q93                                                        | BHT8                                 |
| A 607 SER CYS engineered mutation UNP Q93                                                        | BHT8                                 |
| A 626 SER CYS engineered mutation UNP Q93                                                        | BHT8                                 |
| A 630 ASP ALA engineered mutation UNP Q93                                                        | BHT8                                 |
| A 873 SER CYS engineered mutation UNP Q93                                                        | BHT8                                 |
| A 935 SER CYS engineered mutation UNP Q93                                                        | BHT8                                 |
| A 986 LEU - expression tag UNP Q93                                                               | BHT8                                 |
| A 987 GLU - expression tag UNP Q93                                                               | BHT8                                 |
| A 988 HIS - expression tag UNP Q93                                                               | BHT8                                 |
| A 989 HIS - expression tag UNP Q93                                                               | BHT8                                 |
| A 990 HIS - expression tag UNP Q93                                                               | BHT8                                 |
| A 991 HIS - expression tag UNP Q93                                                               | BHT8                                 |
| A 992 HIS - expression tag UNP Q93                                                               | BHT8                                 |
| A 993 HIS - expression tag UNP Q93                                                               | BHT8                                 |
| B 1 MET - initiating methionine UNP Q93                                                          | BHT8                                 |
| B 2 GLY - expression tag UNP Q93                                                                 | BHT8                                 |
| B 65 SER CYS engineered mutation UNP Q93                                                         | BHT8                                 |

There are 44 discrepancies between the modelled and reference sequences:



| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| В     | 81      | SER      | CYS    | engineered mutation | UNP Q93HT8 |
| В     | 226     | SER      | CYS    | engineered mutation | UNP Q93HT8 |
| В     | 230     | SER      | CYS    | engineered mutation | UNP Q93HT8 |
| В     | 241     | SER      | CYS    | engineered mutation | UNP Q93HT8 |
| В     | 354     | SER      | CYS    | engineered mutation | UNP Q93HT8 |
| В     | 373     | SER      | CYS    | engineered mutation | UNP Q93HT8 |
| В     | 607     | SER      | CYS    | engineered mutation | UNP Q93HT8 |
| В     | 626     | SER      | CYS    | engineered mutation | UNP Q93HT8 |
| В     | 630     | ASP      | ALA    | engineered mutation | UNP Q93HT8 |
| В     | 873     | SER      | CYS    | engineered mutation | UNP Q93HT8 |
| В     | 935     | SER      | CYS    | engineered mutation | UNP Q93HT8 |
| В     | 986     | LEU      | -      | expression tag      | UNP Q93HT8 |
| В     | 987     | GLU      | -      | expression tag      | UNP Q93HT8 |
| В     | 988     | HIS      | -      | expression tag      | UNP Q93HT8 |
| В     | 989     | HIS      | -      | expression tag      | UNP Q93HT8 |
| В     | 990     | HIS      | -      | expression tag      | UNP Q93HT8 |
| В     | 991     | HIS      | -      | expression tag      | UNP Q93HT8 |
| В     | 992     | HIS      | -      | expression tag      | UNP Q93HT8 |
| В     | 993     | HIS      | -      | expression tag      | UNP Q93HT8 |

Continued from previous page...

• Molecule 2 is an oligosaccharide called beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose.



| Mol | Chain | Residues | At          | $\mathbf{oms}$ |         | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------------|----------------|---------|---------|---------|-------|
| 2   | С     | 3        | Total<br>34 | C<br>18        | O<br>16 | 0       | 0       | 0     |
| 2   | D     | 3        | Total<br>34 | C<br>18        | O<br>16 | 0       | 0       | 0     |

• Molecule 3 is ACETATE ION (three-letter code: ACT) (formula:  $C_2H_3O_2$ ).





| Mol | Chain | Residues | Atoms                                                                                             | ZeroOcc | AltConf |
|-----|-------|----------|---------------------------------------------------------------------------------------------------|---------|---------|
| 3   | А     | 1        | $\begin{array}{ccccc} \text{Total} & \text{C} & \text{H} & \text{O} \\ 7 & 2 & 3 & 2 \end{array}$ | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccccc} \text{Total} & \text{C} & \text{H} & \text{O} \\ 7 & 2 & 3 & 2 \end{array}$ | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccccc} \text{Total} & \text{C} & \text{H} & \text{O} \\ 7 & 2 & 3 & 2 \end{array}$ | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccccc} \text{Total} & \text{C} & \text{H} & \text{O} \\ 7 & 2 & 3 & 2 \end{array}$ | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccccc} \text{Total} & \text{C} & \text{H} & \text{O} \\ 7 & 2 & 3 & 2 \end{array}$ | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccccc} \text{Total} & \text{C} & \text{H} & \text{O} \\ 7 & 2 & 3 & 2 \end{array}$ | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccccc} \text{Total} & \text{C} & \text{H} & \text{O} \\ 7 & 2 & 3 & 2 \end{array}$ | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccccc} \text{Total} & \text{C} & \text{H} & \text{O} \\ 7 & 2 & 3 & 2 \end{array}$ | 0       | 0       |

• Molecule 4 is 2-AMINO-2-HYDROXYMETHYL-PROPANE-1, 3-DIOL (three-letter code: TRS) (formula:  $C_4H_{12}NO_3$ ).





| Mol | Chain | Residues | Atoms |   |    |   | ZeroOcc | AltConf |   |
|-----|-------|----------|-------|---|----|---|---------|---------|---|
| 4   | Λ     | 1        | Total | С | Η  | Ν | 0       | 0       | 0 |
| 4   | Л     | T        | 20    | 4 | 12 | 1 | 3       | 0       | 0 |
| 4   | В     | 1        | Total | С | Η  | Ν | 0       | 0       | 0 |
| 4   | D     | T        | 20    | 4 | 12 | 1 | 3       | 0       | 0 |
| 4   | В     | 1        | Total | С | Η  | Ν | 0       | 0       | 0 |
| 4   | D     | L        | 20    | 4 | 12 | 1 | 3       | 0       | 0 |

• Molecule 5 is SULFATE ION (three-letter code: SO4) (formula: O<sub>4</sub>S) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 5   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 5   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |

• Molecule 6 is DI(HYDROXYETHYL)ETHER (three-letter code: PEG) (formula:  $C_4H_{10}O_3$ ).



| Mol | Chain | Residues | Atoms         |   | ZeroOcc | AltConf |
|-----|-------|----------|---------------|---|---------|---------|
| 6   | Δ     | 1        | Total C H     | 0 | 0       | 0       |
| 0   | Π     | I        | 17 4 10       | 3 | 0       | 0       |
| 6   | Δ     | 1        | Total C H     | Ο | 0       | 0       |
| 0   | 11    | I        | 17 4 10       | 3 | 0       | 0       |
| 6   | Δ     | 1        | Total C H     | Ο | 0       | 0       |
| 0   | 11    | I        | 17 4 10       | 3 | 0       | 0       |
| 6   | В     | 1        | Total C H     | Ο | 0       | 0       |
| 0   | D     | T        | 17 4 10       | 3 | 0       | 0       |
| 6   | В     | 1        | Total C H     | 0 | 0       | 0       |
| 0   | D     | I        | $17 \ 4 \ 10$ | 3 | 0       | 0       |

• Molecule 7 is GLYCEROL (three-letter code: GOL) (formula:  $C_3H_8O_3$ ).





| Mol | Chain | Residues | Atoms |   |   |   | ZeroOcc | AltConf |
|-----|-------|----------|-------|---|---|---|---------|---------|
| 7   | Δ     | 1        | Total | С | Н | 0 | 0       | 0       |
| (   | A     | 1        | 14    | 3 | 8 | 3 | 0       | 0       |
| 7   | Δ     | 1        | Total | С | Η | 0 | 0       | 0       |
| 1   | A     | L        | 14    | 3 | 8 | 3 | 0       | 0       |
| 7   | Λ     | 1        | Total | С | Н | 0 | 0       | 0       |
| 1   | A     | L        | 14    | 3 | 8 | 3 | 0       | 0       |
| 7   | Λ     | 1        | Total | С | Н | 0 | 0       | 0       |
| 1   | Л     | T        | 14    | 3 | 8 | 3 | 0       | 0       |
| 7   | Δ     | 1        | Total | С | Н | 0 | 0       | 0       |
| 1   | Π     | T        | 14    | 3 | 8 | 3 | 0       | 0       |
| 7   | Δ     | 1        | Total | С | Н | 0 | 0       | 0       |
| 1   | Π     | T        | 14    | 3 | 8 | 3 | 0       | 0       |
| 7   | Δ     | 1        | Total | С | Н | 0 | 0       | 0       |
| 1   | Π     | T        | 14    | 3 | 8 | 3 | 0       | 0       |
| 7   | Δ     | 1        | Total | С | Η | 0 | 0       | 0       |
| 1   | Π     | T        | 14    | 3 | 8 | 3 | 0       | 0       |
| 7   | Δ     | 1        | Total | С | Н | 0 | 0       | 0       |
| 1   | Π     | 1        | 14    | 3 | 8 | 3 | 0       | 0       |
| 7   | Λ     | 1        | Total | С | Н | 0 | 0       | 0       |
| 1   | Л     | T        | 14    | 3 | 8 | 3 | 0       | 0       |
| 7   | Λ     | 1        | Total | С | Н | 0 | 0       | 0       |
| 1   | Π     | T        | 14    | 3 | 8 | 3 | 0       | 0       |
| 7   | В     | 1        | Total | С | Η | 0 | 0       | 0       |
| 1   | D     | T        | 14    | 3 | 8 | 3 | 0       | 0       |
| 7   | B     | 1        | Total | C | Η | 0 | 0       | 0       |
|     |       | 1        | 14    | 3 | 8 | 3 | 0       | U       |
| 7   | B     | 1        | Total | С | Η | 0 | 0       | 0       |
| '   |       | L 1      | 14    | 3 | 8 | 3 |         | U       |



| Mol | Chain | Residues | Atoms                                                            | ZeroOcc | AltConf |
|-----|-------|----------|------------------------------------------------------------------|---------|---------|
| 7   | В     | 1        | Total       C       H       O         14       3       8       3 | 0       | 0       |
| 7   | В     | 1        | Total       C       H       O         14       3       8       3 | 0       | 0       |
| 7   | В     | 1        | Total       C       H       O         14       3       8       3 | 0       | 0       |
| 7   | В     | 1        | Total       C       H       O         14       3       8       3 | 0       | 0       |
| 7   | В     | 1        | Total       C       H       O         14       3       8       3 | 0       | 0       |
| 7   | В     | 1        | Total       C       H       O         14       3       8       3 | 0       | 0       |
| 7   | В     | 1        | Total       C       H       O         14       3       8       3 | 0       | 0       |
| 7   | В     | 1        | Total       C       H       O         14       3       8       3 | 0       | 0       |
| 7   | В     | 1        | Total       C       H       O         14       3       8       3 | 0       | 0       |

Continued from previous page...

• Molecule 8 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 8   | А     | 2        | Total Cl<br>2 2 | 0       | 0       |
| 8   | В     | 3        | Total Cl<br>3 3 | 0       | 0       |

• Molecule 9 is water.

| Mol | Chain | Residues | Atoms                | ZeroOcc | AltConf |
|-----|-------|----------|----------------------|---------|---------|
| 9   | А     | 1053     | Total O<br>1053 1053 | 0       | 0       |
| 9   | В     | 1046     | Total O<br>1046 1046 | 0       | 0       |

SEQUENCE-PLOTS INFOmissingINFO



# 3 Data and refinement statistics (i)

| Property                               | Value                                             | Source    |
|----------------------------------------|---------------------------------------------------|-----------|
| Space group                            | P 1                                               | Depositor |
| Cell constants                         | 83.21Å $88.78$ Å $88.76$ Å                        | Dopositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$ | $98.58^{\circ}$ $110.55^{\circ}$ $110.56^{\circ}$ | Depositor |
| Resolution (Å)                         | 43.82 - 1.21                                      | Depositor |
| % Data completeness                    | 94 3 (43 82-1 21)                                 | Depositor |
| (in resolution range)                  | 54.5 (40.02 1.21)                                 | Depositor |
| R <sub>merge</sub>                     | 0.04                                              | Depositor |
| R <sub>sym</sub>                       | (Not available)                                   | Depositor |
| $< I/\sigma(I) > 1$                    | $1.40 (at 1.21 \text{\AA})$                       | Xtriage   |
| Refinement program                     | PHENIX 1.20_4459                                  | Depositor |
| $R, R_{free}$                          | 0.143 , $0.163$                                   | Depositor |
| Wilson B-factor ( $Å^2$ )              | 14.5                                              | Xtriage   |
| Anisotropy                             | 0.065                                             | Xtriage   |
| L-test for twinning <sup>2</sup>       | $<  L  > = 0.50, < L^2 > = 0.33$                  | Xtriage   |
| Estimated twinning fraction            | 0.447 for -h,-l,-k                                | Xtriage   |
| Total number of atoms                  | 34642                                             | wwPDB-VP  |
| Average B, all atoms $(Å^2)$           | 22.0                                              | wwPDB-VP  |

EDS failed to run properly - this section is therefore incomplete.

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.12% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 4 Model quality (i)

# 4.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PEG, CL, ACT, TRS, SO4, BGC, GOL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal   | Chain | Bond | lengths  | Bond angles |                |  |
|-------|-------|------|----------|-------------|----------------|--|
| INIOI | Chain | RMSZ | # Z  > 5 | RMSZ        | # Z  > 5       |  |
| 1     | А     | 0.41 | 0/8503   | 0.68        | 2/11495~(0.0%) |  |
| 1     | В     | 0.42 | 0/8651   | 0.69        | 1/11689~(0.0%) |  |
| All   | All   | 0.42 | 0/17154  | 0.68        | 3/23184~(0.0%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | А     | 0                   | 2                   |
| 1   | В     | 0                   | 4                   |
| All | All   | 0                   | 6                   |

There are no bond length outliers.

All (3) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms    |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|------------------|---------------|
| 1   | В     | 485 | MET  | CB-CG-SD | -5.58 | 95.67            | 112.40        |
| 1   | А     | 485 | MET  | CB-CG-SD | -5.41 | 96.17            | 112.40        |
| 1   | А     | 339 | MET  | CA-CB-CG | 5.06  | 121.90           | 113.30        |

There are no chirality outliers.

5 of 6 planarity outliers are listed below:

| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 1   | А     | 797 | ALA  | Peptide   |
| 1   | А     | 798 | ASN  | Peptide   |
| 1   | В     | 412 | SER  | Mainchain |



Continued from previous page...

| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 1   | В     | 503 | GLU  | Mainchain |

### 4.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 8325  | 7533     | 8157     | 69      | 0            |
| 1   | В     | 8472  | 7607     | 8277     | 100     | 0            |
| 2   | С     | 34    | 0        | 30       | 4       | 0            |
| 2   | D     | 34    | 0        | 30       | 6       | 0            |
| 3   | А     | 20    | 15       | 15       | 2       | 0            |
| 3   | В     | 12    | 9        | 9        | 9       | 0            |
| 4   | А     | 8     | 12       | 12       | 2       | 0            |
| 4   | В     | 16    | 24       | 24       | 5       | 0            |
| 5   | А     | 5     | 0        | 0        | 3       | 0            |
| 5   | В     | 5     | 0        | 0        | 0       | 0            |
| 6   | А     | 21    | 30       | 30       | 8       | 0            |
| 6   | В     | 14    | 20       | 20       | 0       | 0            |
| 7   | А     | 66    | 88       | 87       | 5       | 0            |
| 7   | В     | 72    | 96       | 95       | 19      | 0            |
| 8   | А     | 2     | 0        | 0        | 0       | 0            |
| 8   | В     | 3     | 0        | 0        | 0       | 0            |
| 9   | А     | 1053  | 0        | 0        | 11      | 0            |
| 9   | В     | 1046  | 0        | 0        | 13      | 0            |
| All | All   | 19208 | 15434    | 16786    | 172     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

The worst 5 of 172 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1            | Atom-2             | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|-------------------|--------------------|-----------------------------|----------------------|
| 1:A:956:GLU:OE1   | 1:A:963:LYS:NZ     | 1.87                        | 1.07                 |
| 1:B:632:ASN:HD21  | 7:B:1019:GOL:H11   | 1.38                        | 0.89                 |
| 1:B:772:VAL:HG12  | 1:B:776[A]:LYS:HE2 | 1.57                        | 0.86                 |
| 1:A:954[B]:GLU:CG | 1:A:985:LYS:HD2    | 2.06                        | 0.86                 |



Continued from previous page...

| Atom-1           | Atom-1 Atom-2   |      | Clash<br>overlap (Å) |  |
|------------------|-----------------|------|----------------------|--|
| 1:B:296[B]:PHE:O | 3:B:1002:ACT:H3 | 1.76 | 0.84                 |  |

There are no symmetry-related clashes.

## 4.3 Torsion angles (i)

#### 4.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed         | Favoured   | Allowed | Outliers | Perce | ntiles |
|-----|-------|------------------|------------|---------|----------|-------|--------|
| 1   | А     | 1039/993~(105%)  | 1011 (97%) | 27~(3%) | 1 (0%)   | 51    | 19     |
| 1   | В     | 1054/993~(106%)  | 1023~(97%) | 30~(3%) | 1 (0%)   | 51    | 19     |
| All | All   | 2093/1986~(105%) | 2034 (97%) | 57~(3%) | 2(0%)    | 51    | 19     |

All (2) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 798 | ASN  |
| 1   | А     | 799 | ASP  |

#### 4.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed         | Rotameric  | meric Outliers Percer |    | ntiles |
|-----|-------|------------------|------------|-----------------------|----|--------|
| 1   | А     | 906/859~(106%)   | 897~(99%)  | 9~(1%)                | 76 | 47     |
| 1   | В     | 922/859~(107%)   | 908~(98%)  | 14 (2%)               | 65 | 30     |
| All | All   | 1828/1718~(106%) | 1805~(99%) | 23~(1%)               | 73 | 34     |



8H2W

5 of 23 residues with a non-rotameric sidechain are listed below:

| Mol | Chain | $\operatorname{Res}$ | Type |
|-----|-------|----------------------|------|
| 1   | В     | 232                  | ARG  |
| 1   | В     | 715                  | PHE  |
| 1   | В     | 314[B]               | ASP  |
| 1   | В     | 766[A]               | GLU  |
| 1   | А     | 715                  | PHE  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (5) such sidechains are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | А     | 220            | ASN  |
| 1   | А     | 818            | HIS  |
| 1   | А     | 927            | ASN  |
| 1   | В     | 220            | ASN  |
| 1   | В     | 927            | ASN  |

#### 4.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 4.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 4.5 Carbohydrates (i)

6 monosaccharides are modelled in this entry.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.





### 4.6 Ligand geometry (i)

Of 46 ligands modelled in this entry, 5 are monoatomic - leaving 41 for Mogul analysis. There are no bond length outliers.



There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.









## 4.7 Other polymers (i)

There are no such residues in this entry.

## 4.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 5 Fit of model and data (i)

## 5.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

### 5.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

### 5.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.









### 5.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.









# 5.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

