

Full wwPDB X-ray Structure Validation Report (i)

Oct 21, 2023 – 02:20 PM EDT

:	8GBT
:	Time-resolve SFX structure of a photoproduct of carbon monoxide complex of
	bovine cytochrome c oxidase
:	Ishigami, I.; Yeh, SR.; Rousseau, D.L.
:	2023-02-28
:	2.80 Å(reported)
	::

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution
Metric	$(\# {\rm Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	3140 (2.80-2.80)
Clashscore	141614	3569(2.80-2.80)
Ramachandran outliers	138981	3498 (2.80-2.80)
Sidechain outliers	138945	3500 (2.80-2.80)
RSRZ outliers	127900	3078 (2.80-2.80)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	514	87%	13%	
1	Ν	514	77%	22%	
2	В	227	80%	18%	•
2	О	227	2% 78%	21%	•
3	С	261	85%	14%	•

Mol	Chain	Length	Quality of chain	
3	Р	261	80%	19% •
4	D	147	% 78%	18% ••
4	Q	147	5% 82%	14% ••
5	Е	109	80%	17% •
5	R	109	82%	15% ·
6	F	98	83%	15% ••
6	S	98	81%	17% ••
7	G	85	67%	28% ••
7	Т	85	75%	19% 5% •
8	Н	85	78%	13% •• 7%
8	U	85	79%	13% • 7%
9	Ι	73	81%	18% •
9	V	73	7% 79%	16% ••
10	J	59	90%	7% ••
10	W	59	81%	17% •
11	Κ	56	82%	•• 12%
11	Х	56	59% 23%	•• 12%
12	L	47	89%	9% •
12	Y	47	77%	21% ·
13	М	46	83%	11% 7%
13	Ζ	46	61% 30	0% • 7%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
19	PGV	Ζ	101	-	-	-	Х
25	PSC	R	201	-	-	-	Х

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
27	PEK	G	106	-	-	-	Х
27	PEK	Т	103	-	-	-	Х
28	DMU	G	102	Х	-	-	Х
28	DMU	М	102	Х	-	-	-
28	DMU	Q	201	Х	-	-	-
28	DMU	Т	102	Х	-	-	Х
29	SAC	Ι	102	-	-	-	Х
29	SAC	V	101	-	-	-	Х

Continued from previous page...

2 Entry composition (i)

There are 30 unique types of molecules in this entry. The entry contains 30981 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Cytochrome c oxidase subunit 1.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	А	514	Total 4027	C 2691	N 623	O 678	S 35	0	0	0
1	Ν	514	Total 4027	C 2691	N 623	O 678	$\begin{array}{c} \mathrm{S} \\ 35 \end{array}$	0	0	0

• Molecule 2 is a protein called Cytochrome c oxidase subunit 2.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
2	В	227	Total	С	Ν	0	\mathbf{S}	0	0	0
2 D	221	1824	1185	281	340	18	0	0	0	
9	0	227	Total	С	Ν	0	\mathbf{S}	0	0	0
2 0	0	221	1824	1185	281	340	18	0	0	0

• Molecule 3 is a protein called Cytochrome c oxidase subunit 3.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
3	С	259	Total 2110	C 1412	N 336	O 350	S 12	0	0	0
3	Р	259	Total 2110	C 1412	N 336	O 350	S 12	0	0	0

• Molecule 4 is a protein called Cytochrome c oxidase subunit 4 isoform 1, mitochondrial.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4		1.4.4	Total	С	Ν	Ο	S	0	0	0
4 D	144	1195	777	196	218	4	0	0	0	
4	0	144	Total	С	Ν	Ο	S	0	0	0
4	Q	144	1195	777	196	218	4	0	0	0

• Molecule 5 is a protein called Cytochrome c oxidase subunit 5A, mitochondrial.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
5	F	105	Total	С	Ν	0	S	0	0	0
5	Ľ	105	852	544	144	162	2	0	0	0
Б	D	105	Total	С	Ν	0	S	0	0	0
5	n	105	852	544	144	162	2		0	U

• Molecule 6 is a protein called Cytochrome c oxidase subunit 5B, mitochondrial.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
6	Б	08	Total	С	Ν	0	S	0	0	0
0	Г	90	748	464	134	145	5	0	0	0
6	C	08	Total	С	Ν	0	S	0	0	0
0	G	90	748	464	134	145	5	0	0	0

• Molecule 7 is a protein called Cytochrome c oxidase subunit 6A2, mitochondrial.

Mol	Chain	Residues		Atoms						AltConf	Trace
7	G	84	Total 675	C 431	N 129	0 113	Р 1	${f S}$ 1	0	0	0
7	Т	84	Total 675	C 431	N 129	0 113	Р 1	S 1	0	0	0

• Molecule 8 is a protein called Cytochrome c oxidase subunit 6B1.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
8	Ц	70	Total	С	Ν	0	\mathbf{S}	0	0	0
0	11	19	662	417	121	119	5	0	0	0
0	II	70	Total	С	Ν	0	S	0	0	0
0	U	19	662	417	121	119	5	0	0	0

• Molecule 9 is a protein called Cytochrome c oxidase subunit 6C.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
0	т	72	Total	С	Ν	Ο	\mathbf{S}	0	0	0
9	1	12	592	385	106	97	4	0	0	0
0	V	79	Total	С	Ν	Ο	S	0	0	0
9	v	12	592	385	106	97	4	0		

• Molecule 10 is a protein called Cytochrome c oxidase subunit 7A1, mitochondrial.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
10	J	58	Total 460	C 297	N 78	O 82	S 3	0	0	0

Continued from previous page...

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
10	W	58	Total 460	C 297	N 78	O 82	${ m S} { m 3}$	0	0	0

• Molecule 11 is a protein called Cytochrome c oxidase subunit 7B, mitochondrial.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
11	K	40	Total	С	Ν	Ο	S	0	0	0
11	Γ	49	384	250	65	67	2	0	0	0
11	v	40	Total	С	Ν	Ο	S	0	0	0
	Λ	49	384	250	65	67	2		0	U

• Molecule 12 is a protein called Cytochrome c oxidase subunit 7C, mitochondrial.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
19	т	46	Total	С	Ν	Ο	S	0	0	0
		40	380	254	64	60	2	0	0	0
10	V	46	Total	С	Ν	Ο	S	0	0	0
	1	40	380	254	64	60	2		0	0

• Molecule 13 is a protein called Cytochrome c oxidase subunit 8B, mitochondrial.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
12	М	43	Total	С	Ν	0	0	0	0
10	111	40	335	223	53	59	0	0	0
12	7	12	Total	С	Ν	0	0	0	0
10		40	335	223	53	59	0	0	0

• Molecule 14 is HEME-A (three-letter code: HEA) (formula: $C_{49}H_{56}FeN_4O_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ate	\mathbf{oms}			ZeroOcc	AltConf
14	Λ	1	Total	С	Fe	Ν	Ο	0	0
14	Л	1	60	49	1	4	6	0	0
14	Λ	1	Total	С	Fe	Ν	Ο	0	0
14	Л	1	60	49	1	4	6	0	0
14	N	1	Total	С	Fe	Ν	Ο	0	0
14	IN	1	60	49	1	4	6	0	0
14	N	1	Total	С	Fe	Ν	Ο	0	0
14	11		60	49	1	4	6	0	U

• Molecule 15 is COPPER (II) ION (three-letter code: CU) (formula: Cu).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
15	А	1	Total Cu 1 1	0	0
15	Ν	1	Total Cu 1 1	0	0

• Molecule 16 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
16	А	1	Total Mg 1 1	0	0
16	Ν	1	Total Mg 1 1	0	0

• Molecule 17 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
17	А	1	Total Na 1 1	0	0
17	Ν	1	Total Na 1 1	0	0

• Molecule 18 is TRISTEAROYLGLYCEROL (three-letter code: TGL) (formula: $C_{57}H_{110}O_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
18	А	1	Total C O 63 57 6	0	0
18	Ι	1	Total C O 63 57 6	0	0
18	L	1	Total C O 63 57 6	0	0
18	Ν	1	Total C O 63 57 6	0	0
18	Ν	1	Total C O 63 57 6	0	0
18	Y	1	Total C O 63 57 6	0	0

• Molecule 19 is (1R)-2-{[{[(2S)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSP HORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL (11E)-OCTADEC-11-ENO ATE (three-letter code: PGV) (formula: C₄₀H₇₇O₁₀P) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atom	s	ZeroOcc	AltConf
10	Δ	1	Total C	O P	0	0
19	A	L	51 40	10 1	0	0
10	С	1	Total C	O P	0	0
19	U	L	51 40	10 1	0	0
10	С	1	Total C	O P	0	0
19	U	T	51 40	10 1	0	0
10	М	1	Total C	O P	0	0
19	111	L	51 40	10 1	0	0
10	N	1	Total C	O P	0	0
13	11	T	51 40	10 1	0	
10	р	1	Total C	O P	0	0
13	T	T	51 40	10 1	0	0
10	I	1	Total C	O P	0	0
13	0	1	51 40	10 1		0
10	7	1	Total C	O P	0	0
19		L	51 40	10 1		0

• Molecule 20 is CARBON MONOXIDE (three-letter code: CMO) (formula: CO).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
20	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 2 1 1 \end{array}$	0	0
20	Ν	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 2 1 1 \end{array}$	0	0

CUA	
cu1 <mark>Cu</mark> — <mark>Cu</mark> cu2	

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
21	В	1	Total Cu 2 2	0	0
21	О	1	Total Cu 2 2	0	0

• Molecule 22 is CHOLIC ACID (three-letter code: CHD) (formula: $C_{24}H_{40}O_5$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
22	В	1	Total C O 29 24 5	0	0
22	С	1	Total C O 29 24 5	0	0
22	С	1	Total C O 29 24 5	0	0
22	G	1	Total C O 29 24 5	0	0
22	J	1	Total C O 29 24 5	0	0
22	Ν	1	Total C O 29 24 5	0	0
22	Р	1	Total C O 29 24 5	0	0
22	Р	1	Total C O 29 24 5	0	0

• Molecule 23 is HYDROXIDE ION (three-letter code: OH) (formula: HO).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
23	С	1	Total O 1 1	0	1
23	Р	1	Total O 1 1	0	1

• Molecule 24 is CARDIOLIPIN (three-letter code: CDL) (formula: $C_{81}H_{156}O_{17}P_2$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
24	С	1	Total	С	Ο	Р	0	0
24	U	1	100	81	17	2	0	0
24	С	1	Total	С	0	Р	0	0
24	G	1	100	81	17	2	0	0

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
24	D	1	Total	С	0	Р	0	0	
24	1	L	100	81	17	2	0	0	
24	Т	1	Total	С	0	Р	0	0	
	1			81	17	2	0	0	

• Molecule 25 is (7R,17E,20E)-4-HYDROXY-N,N,N-TRIMETHYL-9-OXO-7-[(PALMITO YLOXY)METHYL]-3,5,8-TRIOXA-4-PHOSPHAHEXACOSA-17,20-DIEN-1-AMINIUM 4-OXIDE (three-letter code: PSC) (formula: C₄₂H₈₁NO₈P) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
25	F	1	Total	С	Ν	0	Р	0	0
20	25 E	I	52	42	1	8	1	0	
25	D	1	Total	С	Ν	Ο	Р	0	0
20	n	L	52	42	1	8	1	0	0

• Molecule 26 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
26	F	1	Total Zn 1 1	0	0
26	S	1	Total Zn 1 1	0	0

• Molecule 27 is (1S)-2-{[(2-AMINOETHOXY)(HYDROXY)PHOSPHORYL]OXY}-1-[(ST EAROYLOXY)METHYL]ETHYL (5E,8E,11E,14E)-ICOSA-5,8,11,14-TETRAENOATE (three-letter code: PEK) (formula: C₄₃H₇₈NO₈P).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf		
27	С	1	Total	С	Ν	0	Р	0	0
21	G	1	53	43	1	8	1	0	0
97	С	1	Total	С	Ν	0	Р	0	0
21	G	1	53	43	1	8	1	0	0
97	С	1	Total	С	Ν	0	Р	0	0
21	G	1	53	43	1	8	1	0	0
97	D	1	Total	С	Ν	0	Р	0	0
	1	1	53	43	1	8	1	0	0
97	т	1	Total	С	Ν	0	Р	0	0
	1	1	53	43	1	8	1	0	0
27	Т	1	Total	С	Ν	0	Р	0	0
			53	43	1	8	1	0	0

• Molecule 28 is DECYL-BETA-D-MALTOPYRANOSIDE (three-letter code: DMU) (formula: $C_{22}H_{42}O_{11}$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
28	G	1	Total C O 33 22 11	0	0
28	М	1	Total C O 33 22 11	0	0
28	Q	1	Total C O 33 22 11	0	0
28	Т	1	Total C O 33 22 11	0	0

• Molecule 29 is N-ACETYL-SERINE (three-letter code: SAC) (formula: $C_5H_9NO_4$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
29	Ι	1	Total C N C 9 5 1 3	0	0
29	V	1	Total C N C 9 5 1 3	0	0

• Molecule 30 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
30	А	43	Total O 43 43	0	0
30	В	21	TotalO2121	0	0
30	С	23	TotalO2323	0	0
30	D	11	Total O 11 11	0	0
30	Е	10	Total O 10 10	0	0
30	F	7	Total O 7 7	0	0
30	G	11	Total O 11 11	0	0
30	Н	1	Total O 1 1	0	0
30	Ι	2	Total O 2 2	0	0
30	K	4	Total O 4 4	0	0
30	L	4	Total O 4 4	0	0
30	М	3	Total O 3 3	0	0
30	Ν	31	Total O 31 31	0	0
30	О	21	Total O 21 21	0	0
30	Р	12	$\begin{array}{ccc} \text{Total} & \text{O} \\ 12 & 12 \end{array}$	0	0
30	Q	7	TotalO77	0	0
30	R	8	Total O 8 8	0	0
30	S	5	TotalO55	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
30	Т	7	Total O 7 7	0	0
30	U	1	Total O 1 1	0	0
30	V	8	Total O 8 8	0	0
30	W	1	Total O 1 1	0	0
30	Υ	2	Total O 2 2	0	0
30	Ζ	2	Total O 2 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Cytochrome c oxidase subunit 1

• Molecule 2: Cytochrome c oxidase subunit 2

• Molecule 3: Cytochrome c oxidase subunit 3

• Molecule 3: Cytochrome c oxidase subunit 3

Chain P:	80%	19% •
MET THR 13 13 13 13 13 13 13 13 13 13 13 13 13	100 466 467 467 473 773 773 773 773 773 773 773 773 77	T109 L124 L127 B128 V129 V129 V129 V129 V129 V139
A147 D155 H158 H158 H159 H167 V171 H204 H204 H204 H204 H204 H207 Y208 C212 C212 C212 C212 C22 C22 C22 C22 C22	H232 H232 N261 N268	
• Molecule 4: Cytochrome c oxide	ase subunit 4 isoform 1, mitoch	ondrial
Chain D:	78%	18% ••
ALA HIS 611 94 716 716 716 716 716 716 716 716 716 716	L50 F68 F68 F68 F68 V81 V81 V81 V81 V81 V81 V98 V103 V103 V103 V103 V103 C125 C133 C133	W138 7140 N143 K147 K147
• Molecule 4: Cytochrome c oxide	ase subunit 4 isoform 1, mitoch	ondrial
Chain Q:	82%	14% ••
ALA HIS GLY 84 84 84 86 85 85 815 815 815 815 815 815 815 815 8	E58 K65 K65 K73 M73 M73 M86 M86 M86 M86 M86 M86 M86 M86 M16 K121 K121 K121 K121 K121 K121 K121	Di 41 Ki 47

• Molecule 5: Cytochrome c oxidase subunit 5A, mitochondrial

• Molecule 8: Cytochrome c oxidase subunit 6B1 Chain U: 79% 13% 7% . ALA GLU ASP ILE ILE GLN ALA • Molecule 9: Cytochrome c oxidase subunit 6C Chain I: 81% 18% • Molecule 9: Cytochrome c oxidase subunit 6C Chain V: 79% 16% . . • Molecule 10: Cytochrome c oxidase subunit 7A1, mitochondrial Chain J: 90% 7% . . • Molecule 10: Cytochrome c oxidase subunit 7A1, mitochondrial Chain W: 81% 17% • Molecule 11: Cytochrome c oxidase subunit 7B, mitochondrial Chain K: 82% 12% ILE HIS GLN LYS ARG E E • Molecule 11: Cytochrome c oxidase subunit 7B, mitochondrial Chain X: 59% 23% 12%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	178.30Å 189.00Å 209.00Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(A)	32.00 - 2.80	Depositor
Resolution (A)	31.98 - 2.80	EDS
% Data completeness	99.4 (32.00-2.80)	Depositor
(in resolution range)	99.4 (31.98-2.80)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.10 (at 2.81 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0267	Depositor
B B.	0.223 , 0.269	Depositor
II, II free	0.227 , 0.268	DCC
R_{free} test set	8688 reflections (5.04%)	wwPDB-VP
Wilson B-factor $(Å^2)$	53.3	Xtriage
Anisotropy	0.124	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.28 , 44.1	EDS
L-test for $twinning^2$	$ < L >=0.46, < L^2>=0.29$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	30981	wwPDB-VP
Average B, all atoms $(Å^2)$	61.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.25% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FME, SAC, PGV, CDL, DMU, PEK, TGL, CUA, NA, HEA, CU, CHD, TPO, OH, MG, ZN, CMO, PSC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.66	0/4156	0.78	0/5678
1	N	0.69	0/4156	0.78	0/5678
2	В	0.65	0/1860	0.82	0/2534
2	0	0.67	0/1860	0.81	0/2534
3	С	0.64	0/2197	0.75	0/3005
3	Р	0.66	0/2197	0.75	0/3005
4	D	0.66	0/1229	0.78	0/1658
4	Q	0.66	0/1229	0.77	0/1658
5	Е	0.64	0/871	0.78	0/1182
5	R	0.66	0/871	0.76	0/1182
6	F	0.64	0/765	0.86	0/1038
6	S	0.67	0/765	0.85	0/1038
7	G	0.65	0/690	0.84	0/937
7	Т	0.66	0/690	0.85	0/937
8	Н	0.64	0/682	0.80	0/921
8	U	0.64	0/682	0.80	0/921
9	Ι	0.67	0/605	0.86	0/802
9	V	0.66	0/605	0.82	0/802
10	J	0.65	0/471	0.79	0/636
10	W	0.68	0/471	0.77	0/636
11	К	0.67	0/398	0.74	0/546
11	Х	0.68	0/398	0.83	1/546~(0.2%)
12	L	0.63	0/393	0.78	0/526
12	Y	0.66	0/393	0.76	0/526
13	М	0.63	0/345	0.74	0/470
13	Z	0.66	0/345	0.77	0/470
All	All	0.66	0/29324	0.79	1/39866~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected

by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
6	F	0	1
6	S	0	1
7	G	0	1
7	Т	0	2
All	All	0	5

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	Х	54	ARG	NE-CZ-NH2	5.59	123.10	120.30

There are no chirality outliers.

All (5) planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
6	F	93	PRO	Peptide
7	G	12	GLY	Peptide
6	S	93	PRO	Peptide
7	Т	5	LYS	Peptide
7	Т	6	GLY	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4027	0	4001	43	0
1	Ν	4027	0	4001	84	0
2	В	1824	0	1833	23	0
2	0	1824	0	1833	26	0
3	С	2110	0	2027	23	0
3	Р	2110	0	2027	30	0
4	D	1195	0	1183	15	0
4	Q	1195	0	1183	14	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	Е	852	0	845	13	0
5	R	852	0	845	8	0
6	F	748	0	728	11	0
6	S	748	0	728	8	0
7	G	675	0	644	14	0
7	Т	675	0	644	8	0
8	Н	662	0	623	13	0
8	U	662	0	623	5	0
9	Ι	592	0	604	4	0
9	V	592	0	604	9	0
10	J	460	0	459	6	0
10	W	460	0	459	5	0
11	K	384	0	366	2	0
11	Х	384	0	366	10	0
12	L	380	0	380	2	0
12	Y	380	0	380	4	0
13	М	335	0	352	2	0
13	Ζ	335	0	352	12	0
14	А	120	0	108	7	0
14	N	120	0	108	9	0
15	А	1	0	0	0	0
15	Ν	1	0	0	0	0
16	А	1	0	0	0	0
16	N	1	0	0	0	0
17	А	1	0	0	0	0
17	Ν	1	0	0	0	0
18	А	63	0	110	2	0
18	Ι	63	0	110	1	0
18	L	63	0	110	1	0
18	Ν	126	0	220	1	0
18	Y	63	0	110	0	0
19	A	51	0	76	0	0
19	С	102	0	152	2	0
19	М	51	0	76	0	0
19	N	51	0	76	1	0
19	Р	51	0	76	2	0
19	U	51	0	76	2	0
19	Z	51	0	76	3	0
20	A	2	0	0	1	0
20	N	2	0	0	0	0
21	В	2	0	0	0	0
21	0	2	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
22	В	29	0	39	0	0
22	С	58	0	78	3	0
22	G	29	0	39	1	0
22	J	29	0	39	4	0
22	N	29	0	39	5	0
22	Р	58	0	78	3	0
23	С	1	0	0	1	0
23	Р	1	0	0	1	0
24	С	100	0	156	2	0
24	G	100	0	156	7	0
24	Р	100	0	156	0	0
24	Т	100	0	156	6	0
25	Е	52	0	80	10	0
25	R	52	0	80	3	0
26	F	1	0	0	0	0
26	S	1	0	0	0	0
27	G	159	0	231	6	0
27	Р	53	0	77	2	0
27	Т	106	0	154	1	0
28	G	33	0	42	0	0
28	М	33	0	42	0	0
28	Q	33	0	42	2	0
28	Т	33	0	41	0	0
29	Ι	9	0	8	2	0
29	V	9	0	8	0	0
30	A	43	0	0	1	0
30	В	21	0	0	2	0
30	C	23	0	0	8	0
30	D	11	0	0	0	0
30	E	10	0	0	0	0
30	F	7	0	0	0	0
30	G	11	0	0	2	0
30	H	1	0	0	0	0
30	l	2	0	0	0	0
30	K	4	0	0	2	0
30	L	4	0	0	0	0
30	M	3	0	0	0	0
30	N	31	0	0	3	0
30		21	0	0		0
30	P	12	0	0	0	0
30		7	0	0	2	0
30	R	8	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
30	S	5	0	0	0	0
30	Т	7	0	0	0	0
30	U	1	0	0	1	0
30	V	8	0	0	2	0
30	W	1	0	0	0	0
30	Y	2	0	0	0	0
30	Ζ	2	0	0	3	0
All	All	30981	0	31315	390	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (390) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
18:N:608:TGL:CC1	30:N:701:HOH:O	2.24	0.85
3:P:47:LEU:O	3:P:51:MET:HG2	1.79	0.81
14:A:601:HEA:HMC1	14:A:601:HEA:HBC1	1.65	0.77
30:C:412:HOH:O	10:J:46:SER:CB	2.34	0.75
7:G:76:ASN:HD21	27:G:101:PEK:HN2	1.35	0.75
14:N:601:HEA:HBC1	14:N:601:HEA:HMC1	1.68	0.75
14:A:602:HEA:HBC1	14:A:602:HEA:HMC1	1.71	0.73
3:P:232:HIS:NE2	23:P:301[H]:OH:O	2.23	0.72
14:N:602:HEA:HBC1	14:N:602:HEA:HMC1	1.72	0.72
11:X:19:ALA:O	11:X:23:THR:OG1	2.09	0.70
9:V:37:PHE:HB2	30:V:205:HOH:O	1.91	0.70
30:C:412:HOH:O	10:J:46:SER:HB2	1.92	0.70
2:0:88:ASP:0	2:O:89:GLU:O	2.11	0.69
1:A:240:HIS:O	1:A:243:VAL:HG22	1.93	0.69
6:F:85:CYS:SG	6:F:87:THR:HG22	2.33	0.69
3:C:103:HIS:ND1	22:C:301:CHD:O26	2.25	0.68
2:B:41:ILE:O	2:B:45:MET:HG2	1.94	0.67
1:A:321:PHE:CD1	25:E:201:PSC:H341	2.30	0.66
1:N:445:ASP:O	1:N:448:THR:OG1	2.09	0.66
13:Z:28:LEU:HB2	13:Z:29:PRO:HD3	1.76	0.66
2:O:9:PHE:HB2	2:O:21:LEU:HD21	1.78	0.66
5:E:8:ASP:OD1	25:E:201:PSC:H081	1.95	0.66
30:O:407:HOH:O	4:Q:115:TRP:CH2	2.49	0.66
22:J:101:CHD:H222	22:J:101:CHD:H183	1.76	0.65
29:I:102:SAC:C	29:I:102:SAC:OAC	2.45	0.65
3:C:47:LEU:O	3:C:51:MET:HG2	1.97	0.64

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
12:L:35:ALA:HB3	12:L:36:PRO:HD3	1.79	0.64
3:C:146:TRP:CZ2	7:G:17:ARG:HG3	2.32	0.64
10:J:33:ARG:HG2	22:J:101:CHD:H151	1.80	0.63
2:O:130:PRO:HA	30:O:407:HOH:O	1.99	0.62
14:A:602:HEA:NA	20:A:608:CMO:C	2.62	0.62
6:F:95:GLN:O	6:F:97:ALA:N	2.26	0.62
1:N:144:ASP:OD2	3:P:36:HIS:NE2	2.20	0.62
2:B:41:ILE:HD13	25:E:201:PSC:H342	1.81	0.62
2:O:102:HIS:NE2	2:O:107:SER:OG	2.29	0.61
28:Q:201:DMU:H19	30:Z:201:HOH:O	2.01	0.61
2:B:33:LEU:HD12	9:I:28:SER:HB3	1.83	0.61
8:H:85:ILE:HG22	8:H:85:ILE:OXT	2.01	0.60
2:0:121:TYR:0	2:O:138:VAL:HA	2.00	0.60
12:Y:36:PRO:O	12:Y:40:VAL:HG23	2.02	0.59
2:O:41:ILE:O	2:O:45:MET:HG2	2.03	0.59
10:W:31:LEU:O	10:W:35:THR:OG1	2.19	0.59
11:X:54:ARG:CG	11:X:54:ARG:HH21	2.16	0.59
4:D:16:TYR:CE2	4:D:25:PRO:HG2	2.37	0.59
9:I:2:THR:N	29:I:102:SAC:O	2.36	0.59
1:N:112:LEU:HD23	1:N:112:LEU:O	2.02	0.59
3:C:63:ARG:HE	24:C:305:CDL:HA22	1.68	0.58
5:E:78:HIS:CD2	9:I:12:LEU:HD22	2.38	0.58
8:H:8:ILE:HG23	8:H:8:ILE:O	2.04	0.58
1:N:128:VAL:HG12	1:N:128:VAL:O	2.04	0.58
5:E:90:ARG:HB3	5:E:91:PRO:HD3	1.84	0.58
4:Q:12:ALA:HA	6:S:73:TRP:CD1	2.39	0.58
1:A:431:LEU:HD21	1:A:450:TRP:HB2	1.85	0.57
1:A:321:PHE:CE1	25:E:201:PSC:H341	2.39	0.57
8:H:31:GLN:HE21	8:H:31:GLN:HA	1.70	0.57
30:O:407:HOH:O	4:Q:115:TRP:CZ2	2.57	0.57
24:C:305:CDL:H112	30:C:420:HOH:O	2.05	0.56
3:P:67:PHE:HA	10:W:9:GLN:HG2	1.86	0.56
30:C:412:HOH:O	10:J:46:SER:HB3	2.00	0.56
4:Q:23:PRO:O	4:Q:25:PRO:HD3	2.04	0.56
3:C:26:LEU:HD21	10:J:42:GLY:C	2.26	0.56
6:F:30:PRO:O	6:F:96:LEU:HD21	2.05	0.56
1:N:377:PHE:HA	1:N:380:VAL:HG22	1.87	0.56
1:N:409:TRP:HA	1:N:412:ILE:HD12	1.88	0.56
7:G:76:ASN:ND2	27:G:101:PEK:HN2	2.02	0.55
10:W:25:GLY:O	10:W:29:ASN:ND2	2.38	0.55
22:N:609:CHD:C22	22:N:609:CHD:H183	2.36	0.55

8GBT

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:O:10:GLN:NE2	2:0:167:SER:OG	2.40	0.55
1:N:42:GLY:HA3	4:Q:104:TYR:OH	2.06	0.55
22:P:306:CHD:H151	22:P:306:CHD:O7	2.06	0.55
1:N:113:LEU:O	1:N:116:SER:OG	2.19	0.55
1:N:406:ASN:HD21	19:Z:101:PGV:C2	2.18	0.55
27:P:303:PEK:HN2	7:T:76:ASN:HD21	1.55	0.55
22:J:101:CHD:H183	22:J:101:CHD:C22	2.37	0.55
2:B:139:ASP:OD1	2:B:140:ASN:N	2.39	0.54
1:N:398:PRO:O	1:N:498:CYS:HB3	2.07	0.54
3:C:29:SER:HB2	30:C:412:HOH:O	2.07	0.54
7:G:7:ASP:O	7:G:8:HIS:HB2	2.08	0.54
1:N:230:LEU:HB2	3:P:103:HIS:CD2	2.42	0.54
1:N:60:ALA:O	1:N:64:VAL:HG23	2.07	0.54
1:N:321:PHE:CD1	25:R:201:PSC:H341	2.42	0.54
1:A:145:LEU:HD21	3:C:32:THR:HG21	1.90	0.54
3:C:29:SER:CB	30:C:412:HOH:O	2.56	0.54
2:O:165:VAL:HG11	2:O:168:LEU:HD12	1.90	0.54
1:A:507:GLU:OE1	6:F:51:SER:HA	2.07	0.53
1:N:374:VAL:HA	1:N:377:PHE:CE2	2.44	0.53
9:V:23:GLY:O	9:V:27:VAL:HG23	2.09	0.53
5:E:82:TYR:HB3	5:E:83:PRO:HD3	1.90	0.53
6:F:55:LYS:HA	6:F:74:LEU:O	2.08	0.53
5:R:82:TYR:HB3	5:R:83:PRO:HD3	1.90	0.53
1:N:58:VAL:O	1:N:61:HIS:HB3	2.09	0.53
1:A:24:ALA:HB2	14:A:601:HEA:H252	1.89	0.53
1:A:199:LEU:N	1:A:200:PRO:CD	2.72	0.52
19:U:101:PGV:H62	19:U:101:PGV:H21	1.91	0.52
6:S:51:SER:O	6:S:93:PRO:HA	2.09	0.52
2:O:41:ILE:HD13	25:R:201:PSC:H342	1.92	0.52
6:F:92:VAL:HG23	6:F:92:VAL:O	2.10	0.52
1:N:347:LEU:HD13	1:N:383:MET:HB3	1.92	0.52
1:N:449:MET:SD	2:O:5:MET:HG3	2.50	0.52
3:C:232:HIS:NE2	23:C:302[H]:OH:O	2.41	0.52
1:A:400:PHE:HB3	18:L:101:TGL:H283	1.90	0.51
2:B:196:CYS:HB2	2:B:207:MET:HG3	1.92	0.51
3:C:153:GLU:OE1	7:G:13:ALA:N	2.35	0.51
2:O:69:PRO:HG2	30:O:408:HOH:O	2.09	0.51
1:A:488:THR:HB	1:A:495:LEU:HD13	1.92	0.51
7:G:31:CYS:SG	24:G:104:CDL:H532	2.50	0.51
4:Q:89:ILE:HG23	30:Q:301:HOH:O	2.10	0.51
1:A:83:VAL:HB	1:A:84:PRO:HD3	1.91	0.51

Atom-1	Atom-2	Interatomic	Clash	
		distance (Å)	overlap (Å)	
8:H:60:TYR:CD1	8:H:60:TYR:C	2.84	0.51	
1:N:32:ALA:HB3	12:Y:36:PRO:HG2	1.91	0.51	
1:N:51:ASP:OD2	2:O:206:PHE:HE2	1.93	0.51	
9:V:68:ILE:HG13	9:V:69:PHE:N	2.25	0.51	
1:N:248:LEU:O	1:N:251:PHE:HB2	2.10	0.51	
3:P:144:ILE:O	3:P:147:ALA:HB3	2.10	0.51	
3:C:40:MET:O	3:C:41:THR:C	2.48	0.51	
3:P:231:HIS:CD2	19:P:304:PGV:O14	2.64	0.51	
2:B:78:LEU:HD12	24:T:104:CDL:H351	1.93	0.50	
1:N:313:ALA:HB3	2:O:73:LEU:HD11	1.93	0.50	
5:E:90:ARG:HB3	5:E:91:PRO:CD	2.41	0.50	
3:P:72:THR:HB	3:P:73:PRO:CD	2.42	0.50	
27:G:103:PEK:H381	24:G:104:CDL:H272	1.93	0.50	
1:N:514:LYS:HA	6:S:38:ALA:HB3	1.92	0.50	
9:V:2:THR:HB	30:V:203:HOH:O	2.12	0.50	
1:A:337:ALA:HB2	1:A:394:VAL:HG23	1.94	0.50	
3:P:67:PHE:O	10:W:13:GLN:NE2	2.28	0.50	
1:N:240:HIS:HB3	1:N:241:PRO:HD3	1.94	0.50	
1:A:240:HIS:HB3	1:A:241:PRO:HD3	1.93	0.49	
25:E:201:PSC:C14	25:E:201:PSC:H343	2.42	0.49	
1:N:230:LEU:HB2	3:P:103:HIS:HD2	1.76	0.49	
19:N:607:PGV:H51	19:N:607:PGV:H251	1.93	0.49	
5:E:8:ASP:HA	25:E:201:PSC:H081	1.94	0.49	
2:O:142:VAL:HG23	2:O:210:VAL:O	2.13	0.49	
1:A:324:LEU:O	1:A:327:LEU:HB2	2.13	0.49	
2:B:183:THR:HG23	30:B:401:HOH:O	2.10	0.49	
4:D:121:LYS:HE3	4:D:125:ASP:OD2	2.13	0.49	
1:A:106:PRO:HB2	1:A:107:PRO:CD	2.41	0.49	
1:N:33:LEU:O	1:N:37:ILE:HG13	2.12	0.49	
1:N:359:ALA:HA	14:N:602:HEA:OMA	2.12	0.49	
2:O:68:LEU:HA	30:O:416:HOH:O	2.13	0.49	
3:P:16:TRP:N	3:P:17:PRO:HD2	2.28	0.49	
9:V:68:ILE:HD11	9:V:69:PHE:CE1	2.48	0.49	
2:B:104:TRP:CG	2:B:203:ASN:HB2	2.48	0.48	
25:E:201:PSC:H343	25:E:201:PSC:H151	1.95	0.48	
9:I:36:LYS:HA	9:I:40:ALA:HB3	1.95	0.48	
6:S:12:GLN:O	6:S:12:GLN:HG2	2.12	0.48	
1:N:424:THR:HG21	14:N:601:HEA:HMB2	1.93	0.48	
2:O:170:LEU:HD11	2:O:184:LEU:HG	1.96	0.48	
2:B:74:ILE:HG22	2:B:78:LEU:HD22	1.96	0.48	
3:P:155:ASP:OD2	3:P:158:HIS:ND1	2.43	0.48	

 α ti d fa

ii wwr DD A-ray Structure vandation Report					
page					
Atom 2	Interatomic	Clash			
Atom-2	$distance (m \AA)$	overlap (Å)			
1:A:398:PRO:CD	2.77	0.48			
13:Z:4:LYS:CG	2.43	0.48			
3:P:180:GLU:OE1	2.13	0.48			
1:A:382:SER:HB3	2.14	0.48			
4:Q:46:ALA:HB3	2.13	0.48			
1:X:28:VAL:HG12	2.13	0.48			
2:C:306:CHD:H212	1.96	0.48			
1:N:107:PRO:HD3	1.94	0.48			
4:Q:72:ASN:HB2	2.14	0.48			
27:G:103:PEK:H21	2.14	0.47			
3:P:28:THR:HG21	1.96	0.47			
8:U:34:LEU:HD11	2.50	0.47			
13:Z:17:ILE:N	2.47	0.47			
13:Z:4:LYS:HG3	1.96	0.47			
2:O:174:ALA:HB2	2.45	0.47			
7:G:79:PRO:CD	2.45	0.47			
3:P:208:VAL:HG23	2.15	0.47			
4:T:104:CDL:H542	2.55	0.47			
11:X:8:ASP:C	2.53	0.47			
7:T:55:ILE:HG21	2.45	0.47			
2:N:609:CHD:H222	1.97	0.47			
3:P:130:PRO:CD	2.78	0.47			
1:A:142:SER:O	2.15	0.47			
30:N:703:HOH:O	2.48	0.47			

Atom-1

1:A:397:PHE:N

1:N:483:LEU:HD23

3:P:124:LEU:HD13	3:P:180:GLU:OE1	2.13	0.48
1:A:378:HIS:O	1:A:382:SER:HB3	2.14	0.48
4:Q:43:LYS:O	4:Q:46:ALA:HB3	2.13	0.48
11:X:24:PHE:O	11:X:28:VAL:HG12	2.13	0.48
22:C:306:CHD:H183	22:C:306:CHD:H212	1.96	0.48
1:N:106:PRO:HB2	1:N:107:PRO:HD3	1.94	0.48
4:Q:68:PHE:O	4:Q:72:ASN:HB2	2.14	0.48
3:C:161:GLN:OE1	27:G:103:PEK:H21	2.14	0.47
1:N:152:LEU:HD21	3:P:28:THR:HG21	1.96	0.47
8:U:30:TRP:CZ2	8:U:34:LEU:HD11	2.50	0.47
13:Z:14:GLU:O	13:Z:17:ILE:N	2.47	0.47
1:N:483:LEU:HD23	13:Z:4:LYS:HG3	1.96	0.47
2:O:154:VAL:CG1	2:O:174:ALA:HB2	2.45	0.47
7:G:78:LEU:HB3	7:G:79:PRO:CD	2.45	0.47
3:P:204:HIS:O	3:P:208:VAL:HG23	2.15	0.47
7:T:31:CYS:SG	24:T:104:CDL:H542	2.55	0.47
11:X:8:ASP:OD1	11:X:8:ASP:C	2.53	0.47
1:N:218:THR:CG2	7:T:55:ILE:HG21	2.45	0.47
22:N:609:CHD:H183	22:N:609:CHD:H222	1.97	0.47
3:P:129:VAL:N	3:P:130:PRO:CD	2.78	0.47
1:A:115:SER:HB2	1:A:142:SER:O	2.15	0.47
1:N:38:ARG:NH1	30:N:703:HOH:O	2.48	0.47
1:N:406:ASN:HD21	19:Z:101:PGV:H22	1.79	0.47
5:R:77:PRO:HG2	5:R:78:HIS:CD2	2.50	0.47
4:D:23:PRO:HG3	5:E:70:VAL:HG21	1.96	0.46
2:O:31:VAL:O	2:O:35:SER:OG	2.33	0.46
11:X:16:ALA:O	11:X:20:SER:OG	2.31	0.46
1:N:71:MET:HB2	1:N:72:PRO:HD3	1.97	0.46
1:A:311:ILE:O	1:A:315:PRO:HD2	2.15	0.46
2:O:71:ILE:HD12	30:O:416:HOH:O	2.15	0.46
3:P:207:HIS:CD2	3:P:241:TYR:OH	2.69	0.46
22:P:306:CHD:H183	22:P:306:CHD:H212	1.98	0.46
1:A:380:VAL:HG21	14:A:602:HEA:C3C	2.45	0.46
11:K:54:ARG:C	30:K:104:HOH:O	2.54	0.46
28:Q:201:DMU:H14	30:Z:201:HOH:O	2.16	0.46
1:A:129:TYR:CE1	1:A:232:GLN:HG2	2.51	0.46
1:N:383:MET:HG2	1:N:421:VAL:HG21	1.98	0.46
3:P:92:LEU:O	3:P:95:THR:HB	2.15	0.46
1:A:250:GLY:O	1:A:254:ILE:HG12	2.15	0.46

A + a con 1	A 4 a 0	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:H:31:GLN:HA	8:H:31:GLN:NE2	2.30	0.46
4:D:68:PHE:CZ	5:E:70:VAL:HG23	2.51	0.46
5:E:42:VAL:HG21	5:E:81:ILE:HG21	1.98	0.46
1:N:112:LEU:HD23	1:N:112:LEU:C	2.36	0.46
25:R:201:PSC:H142	25:R:201:PSC:H343	1.98	0.46
4:D:98:TRP:CZ3	4:D:103:VAL:CG2	2.99	0.46
22:P:306:CHD:O7	22:P:306:CHD:C15	2.63	0.46
8:U:11:TYR:N	30:U:201:HOH:O	2.48	0.46
8:H:8:ILE:O	8:H:8:ILE:CG2	2.64	0.46
3:C:65:SER:HB3	3:C:71:HIS:CE1	2.50	0.45
27:G:103:PEK:H321	24:G:104:CDL:H473	1.98	0.45
8:H:46:LYS:HE2	8:U:8:ILE:HG21	1.98	0.45
1:N:378:HIS:CE1	14:N:601:HEA:NA	2.84	0.45
3:P:16:TRP:N	3:P:17:PRO:CD	2.80	0.45
2:B:20:LEU:HD23	2:B:83:ILE:HG21	1.99	0.45
1:N:240:HIS:O	1:N:243:VAL:HG22	2.15	0.45
1:N:250:GLY:O	1:N:254:ILE:HG12	2.16	0.45
2:O:154:VAL:HG12	2:O:174:ALA:HA	1.97	0.45
3:P:102:TYR:O	3:P:106:LEU:HB2	2.16	0.45
1:A:456:MET:HG2	4:D:96:LEU:HD13	1.99	0.45
1:N:404:THR:HG21	13:Z:3:ALA:HB2	1.97	0.45
27:P:303:PEK:C05	7:T:76:ASN:HD21	2.28	0.45
1:N:100:MET:CE	1:N:159:LEU:HD12	2.47	0.45
1:A:302:ARG:HD2	30:A:730:HOH:O	2.15	0.45
19:C:303:PGV:C11	30:C:422:HOH:O	2.64	0.45
24:G:104:CDL:HA61	30:G:202:HOH:O	2.16	0.45
1:N:71:MET:SD	1:N:242:GLU:OE1	2.75	0.45
7:G:3:ALA:O	7:G:4:ALA:CB	2.65	0.45
24:G:104:CDL:H571	24:G:104:CDL:H771	1.98	0.45
13:M:23:PHE:O	13:M:27:LEU:HG	2.17	0.45
5:E:12:ASP:O	5:E:16:VAL:HG23	2.17	0.45
10:W:22:LEU:HA	10:W:28:ASP:HB3	1.99	0.45
8:H:85:ILE:OXT	8:H:85:ILE:CG2	2.65	0.45
1:A:72:PRO:O	1:A:77:GLY:N	2.49	0.45
1:A:440:TYR:CE2	2:B:205:SER:HA	2.52	0.45
2:B:200:CYS:SG	2:B:204:HIS:HA	2.57	0.45
1:A:50:ASP:HB3	1:A:53:ILE:HD12	1.97	0.45
18:A:606:TGL:HG32	18:A:606:TGL:OB1	2.16	0.45
2:B:123:ILE:HG22	2:B:124:PRO:O	2.17	0.45
4:D:33:LEU:HA	4:D:37:GLN:HE21	1.82	0.45
1:N:474:GLU:OE1	1:N:478:SER:OG	2.29	0.45

J fa α 1: .

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
22:N:609:CHD:H183	22:N:609:CHD:H221	1.99	0.45
12:Y:35:ALA:HB3	12:Y:36:PRO:HD3	1.98	0.45
3:C:187:THR:HB	7:G:68:THR:HG21	1.98	0.44
7:G:69:PHE:CD2	27:G:101:PEK:H221	2.52	0.44
1:N:510:TYR:CE2	6:S:36:PRO:HG3	2.52	0.44
3:P:71:HIS:CE1	3:P:79:LEU:HD11	2.52	0.44
24:T:104:CDL:H531	24:T:104:CDL:H201	1.98	0.44
1:A:374:VAL:HA	1:A:377:PHE:CE2	2.52	0.44
2:B:214:VAL:HB	2:B:215:PRO:CD	2.47	0.44
1:N:174:PRO:HB2	6:S:35:ALA:HB2	2.00	0.44
1:N:239:GLY:O	1:N:242:GLU:HB3	2.17	0.44
1:A:115:SER:O	1:A:121:GLY:HA2	2.17	0.44
3:C:177:GLN:HA	3:C:177:GLN:OE1	2.18	0.44
25:E:201:PSC:H212	25:E:201:PSC:H011	1.98	0.44
7:G:17:ARG:HD3	30:G:204:HOH:O	2.16	0.44
1:N:380:VAL:HG21	14:N:602:HEA:C3C	2.47	0.44
2:O:129:LYS:HB3	2:O:130:PRO:CD	2.47	0.44
1:A:18:LEU:HB3	1:A:102:PHE:CE1	2.52	0.44
1:A:439:ARG:HB3	2:B:199:ILE:HD12	1.99	0.44
6:F:85:CYS:SG	6:F:87:THR:CG2	3.05	0.44
24:G:104:CDL:H241	24:G:104:CDL:H542	2.00	0.44
24:G:104:CDL:H711	30:N:721:HOH:O	2.18	0.44
22:N:609:CHD:H9	22:N:609:CHD:O3	2.17	0.44
1:A:378:HIS:CG	1:A:425:PHE:CE1	3.05	0.44
1:N:68:PHE:HE2	1:N:112:LEU:HD12	1.82	0.44
3:C:252:LEU:HD22	3:C:256:ILE:HD12	2.00	0.43
25:E:201:PSC:H072	25:E:201:PSC:H042	1.86	0.43
1:N:192:ALA:HA	1:N:195:LEU:HD12	2.00	0.43
2:B:78:LEU:CD1	24:T:104:CDL:H351	2.48	0.43
27:T:101:PEK:H381	24:T:104:CDL:H273	2.00	0.43
1:N:461:SER:O	1:N:465:VAL:HG23	2.18	0.43
18:A:606:TGL:HB52	4:D:81:VAL:HG11	2.00	0.43
1:N:413:HIS:CD2	1:N:464:ALA:O	2.71	0.43
6:S:53:THR:OG1	6:S:54:ASN:N	2.50	0.43
9:V:21:ILE:HD13	9:V:21:ILE:HA	1.93	0.43
1:N:10:THR:HG23	3:P:13:PRO:HA	2.01	0.43
7:T:64:ASP:OD1	7:T:67:HIS:ND1	2.51	0.43
19:U:101:PGV:H21	19:U:101:PGV:C6	2.48	0.43
11:X:54:ARG:HH21	11:X:54:ARG:HG2	1.83	0.43
6:F:82:CYS:SG	6:F:84:SER:HB3	2.58	0.43
1:N:5:ARG:HG2	1:N:6:TRP:CE2	2.53	0.43

Atom-1	Atom-2	Interatomic	Clash
		distance (\AA)	overlap (Å)
1:N:36:LEU:HD13	12:Y:40:VAL:HG21	2.01	0.43
6:S:16:LEU:O	6:S:19:GLU:HB2	2.18	0.43
1:N:38:ARG:HD2	14:N:601:HEA:OMA	2.19	0.43
1:N:406:ASN:HD21	19:Z:101:PGV:H21	1.83	0.43
3:C:146:TRP:CD2	3:C:162:ALA:HB2	2.54	0.43
1:N:65:MET:O	1:N:69:MET:HB3	2.19	0.43
5:E:41:LEU:O	5:E:41:LEU:HD12	2.19	0.43
25:E:201:PSC:H343	25:E:201:PSC:H142	2.00	0.43
1:N:23:GLY:HA3	1:N:73:ILE:HG13	2.00	0.43
1:N:94:PHE:CZ	1:N:166:THR:HG21	2.53	0.43
1:N:218:THR:HG21	7:T:55:ILE:HG21	2.01	0.43
1:N:240:HIS:O	1:N:241:PRO:C	2.57	0.43
1:N:328:HIS:CE1	9:V:17:LEU:HD22	2.54	0.43
22:N:609:CHD:C22	22:N:609:CHD:C18	2.97	0.43
5:R:52:LEU:HD22	5:R:64:ALA:HB1	2.01	0.43
9:V:25:PHE:CZ	9:V:29:LEU:HD13	2.54	0.43
2:B:11:ASP:HB2	4:D:129:ALA:HA	2.00	0.42
5:E:71:VAL:HG11	5:E:85:VAL:HG11	2.01	0.42
22:J:101:CHD:C22	22:J:101:CHD:C18	2.96	0.42
1:A:34:SER:HB3	1:A:61:HIS:CE1	2.54	0.42
1:A:94:PHE:CZ	1:A:166:THR:HG21	2.54	0.42
2:B:63:THR:O	2:B:64:ILE:C	2.57	0.42
3:C:208:VAL:HG22	3:C:245:VAL:CG1	2.50	0.42
4:D:33:LEU:CD1	4:D:41:LYS:HG3	2.49	0.42
10:J:11:LEU:HD12	10:J:11:LEU:O	2.18	0.42
1:N:199:LEU:N	1:N:200:PRO:CD	2.82	0.42
3:P:213:THR:HG21	19:P:304:PGV:H11	2.00	0.42
7:G:42:ARG:O	7:G:43:GLU:C	2.57	0.42
1:N:115:SER:O	1:N:121:GLY:HA2	2.19	0.42
30:O:407:HOH:O	4:Q:115:TRP:CZ3	2.70	0.42
14:A:601:HEA:OMA	14:A:601:HEA:HHB	2.19	0.42
6:F:92:VAL:O	6:F:92:VAL:CG2	2.66	0.42
1:N:145:LEU:HG	3:P:32:THR:HG21	2.02	0.42
11:X:22:ALA:O	11:X:26:VAL:HG23	2.18	0.42
2:B:150:ILE:HD12	2:B:184:LEU:HD22	2.02	0.42
1:N:105:LEU:HB2	1:N:106:PRO:HD3	2.02	0.42
1:N:311:ILE:O	1:N:315:PRO:HD2	2.19	0.42
2:0:4:PRO:HG2	11:X:44:PRO:HD3	2.01	0.42
3:P:207:HIS:HD2	3:P:241:TYR:OH	2.02	0.42
1:A:377:PHE:HB2	14:A:602:HEA:HMD3	2.02	0.42
3:C:121:ILE:O	3:C:123:PRO:HD3	2.19	0.42

Atom-1	Atom-2	Interatomic	Clash
	At0111-2	distance (\AA)	overlap (Å)
1:N:309:THR:CG2	14:N:602:HEA:HMB2	2.49	0.42
1:N:426:PHE:N	1:N:427:PRO:CD	2.83	0.42
13:Z:27:LEU:HA	30:Z:201:HOH:O	2.19	0.42
1:A:495:LEU:HD12	1:A:495:LEU:HA	1.90	0.42
7:G:64:ASP:OD1	7:G:64:ASP:N	2.52	0.42
3:P:72:THR:HB	3:P:73:PRO:HD2	2.01	0.42
13:Z:11:SER:O	13:Z:12:PRO:C	2.57	0.42
11:K:6:ALA:N	30:K:101:HOH:O	2.52	0.42
1:N:456:MET:HG2	4:Q:96:LEU:HD13	2.01	0.42
1:A:498:CYS:HA	1:A:499:PRO:HA	1.89	0.42
3:C:132:LEU:O	3:C:136:VAL:HG23	2.20	0.42
7:G:25:LEU:O	7:G:26:PRO:C	2.58	0.42
1:N:477:ALA:O	13:Z:8:THR:OG1	2.37	0.42
8:U:25:GLN:O	8:U:26:THR:C	2.58	0.42
1:A:397:PHE:N	1:A:398:PRO:HD3	2.35	0.42
1:N:460:ILE:HG12	30:Q:301:HOH:O	2.19	0.42
3:P:56:GLN:O	3:P:59:ARG:HB3	2.20	0.42
8:H:9:LYS:HG3	8:H:10:ASN:N	2.35	0.41
1:A:102:PHE:CD2	1:A:102:PHE:C	2.93	0.41
14:N:602:HEA:H243	2:O:69:PRO:HB3	2.02	0.41
3:P:167:ILE:O	3:P:171:VAL:HG23	2.20	0.41
5:R:71:VAL:HG11	5:R:85:VAL:HG11	2.02	0.41
3:C:129:VAL:N	3:C:130:PRO:CD	2.83	0.41
1:N:11:ASN:O	1:N:15:ILE:HG13	2.21	0.41
2:O:213:LEU:N	2:O:213:LEU:HD22	2.35	0.41
30:B:421:HOH:O	24:T:104:CDL:H312	2.20	0.41
1:N:75:ILE:O	1:N:79:GLY:HA3	2.20	0.41
1:N:87:ILE:O	1:N:173:PRO:HD3	2.20	0.41
5:R:37:VAL:CG1	5:R:70:VAL:HG21	2.50	0.41
3:P:139:ALA:HA	7:T:24:ALA:HB1	2.01	0.41
1:N:83:VAL:O	1:N:87:ILE:HG12	2.21	0.41
1:N:498:CYS:HA	1:N:499:PRO:HA	1.82	0.41
2:B:164:ALA:HA	2:B:170:LEU:O	2.20	0.41
4:D:138:TRP:HD1	4:D:140:TYR:CD1	2.39	0.41
4:Q:121:LYS:HG2	11:X:53:TRP:HD1	1.84	0.41
1:A:356:ILE:HD13	1:A:356:ILE:HA	1.93	0.41
3:C:119:THR:HG21	8:H:82:PRO:HA	2.02	0.41
22:G:105:CHD:O7	22:G:105:CHD:H41	2.21	0.41
1:N:3:ILE:O	1:N:7:LEU:HB2	2.20	0.41
1:N:290:HIS:HA	1:N:293:PHE:CZ	2.56	0.41
4:Q:86:MET:O	11:X:25:CYS:HB2	2.21	0.41

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
8:U:30:TRP:CE2	8:U:34:LEU:HD11	2.55	0.41	
2:B:112:ASP:O	8:H:58:ARG:NH2	2.53	0.41	
3:C:63:ARG:O	3:C:68:GLN:HG3	2.20	0.41	
6:F:95:GLN:C	6:F:97:ALA:N	2.73	0.41	
1:N:47:LEU:HD11	13:Z:37:LEU:HD12	2.03	0.41	
1:N:144:ASP:O	1:N:148:PHE:CD2	2.73	0.41	
2:O:18:GLU:OE2	9:V:47:TYR:HB3	2.21	0.41	
2:O:23:PHE:CZ	2:O:80:SER:HB2	2.56	0.41	
5:R:37:VAL:HG11	5:R:70:VAL:HG21	2.03	0.41	
2:B:162:SER:HB3	2:B:197:SER:C	2.41	0.41	
4:D:129:ALA:HB1	4:D:133:GLY:HA3	2.03	0.41	
5:E:48:ILE:O	5:E:52:LEU:HG	2.20	0.41	
8:H:9:LYS:HG3	8:H:10:ASN:H	1.86	0.41	
4:Q:7:LYS:O	4:Q:10:ASP:HB2	2.21	0.41	
1:A:193:VAL:CG1	7:T:4:ALA:HA	2.51	0.40	
1:N:100:MET:HE2	1:N:159:LEU:HD12	2.03	0.40	
3:P:222:GLN:HA	3:P:222:GLN:OE1	2.20	0.40	
13:Z:5:PRO:O	13:Z:6:ALA:C	2.60	0.40	
4:D:37:GLN:O	4:D:41:LYS:HG2	2.21	0.40	
4:D:51:LEU:HB3	4:D:56:LYS:HG3	2.03	0.40	
6:F:64:GLU:O	6:F:65:ASP:HB2	2.22	0.40	
13:Z:28:LEU:HB2	13:Z:29:PRO:CD	2.47	0.40	
1:A:106:PRO:HB2	1:A:107:PRO:HD3	2.03	0.40	
1:A:341:ALA:O	1:A:345:ILE:HG13	2.21	0.40	
2:B:23:PHE:CZ	2:B:80:SER:HB2	2.57	0.40	
22:C:301:CHD:H212	22:C:301:CHD:H183	2.03	0.40	
19:C:303:PGV:C12	30:C:422:HOH:O	2.68	0.40	
12:L:35:ALA:O	12:L:39:ILE:HG13	2.21	0.40	
4:D:59:LEU:HD23	4:D:59:LEU:HA	1.98	0.40	
8:H:75:ARG:O	8:H:79:GLY:N	2.52	0.40	
18:I:101:TGL:H252	18:I:101:TGL:H222	1.96	0.40	
4:Q:25:PRO:O	5:R:30:ARG:NE	2.54	0.40	
13:M:37:LEU:HD23	13:M:37:LEU:HA	1.95	0.40	
1:N:35:LEU:HD23	1:N:458:SER:HB2	2.04	0.40	
5:R:21:LYS:O	5:R:57:ARG:NH2	2.53	0.40	
13:Z:37:LEU:HD23	13:Z:37:LEU:HA	1.91	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	512/514~(100%)	481 (94%)	31~(6%)	0	100	100
1	Ν	512/514~(100%)	471 (92%)	39~(8%)	2~(0%)	34	66
2	В	225/227~(99%)	206 (92%)	17 (8%)	2(1%)	17	46
2	Ο	225/227~(99%)	204 (91%)	20 (9%)	1 (0%)	34	66
3	С	257/261~(98%)	240 (93%)	14 (5%)	3 (1%)	13	39
3	Р	257/261~(98%)	240 (93%)	16 (6%)	1 (0%)	34	66
4	D	142/147~(97%)	132 (93%)	9 (6%)	1 (1%)	22	53
4	Q	142/147~(97%)	120 (84%)	17 (12%)	5(4%)	3	12
5	Е	103/109~(94%)	97~(94%)	6 (6%)	0	100	100
5	R	103/109~(94%)	94 (91%)	9 (9%)	0	100	100
6	F	96/98~(98%)	84 (88%)	10 (10%)	2 (2%)	7	23
6	S	96/98~(98%)	80 (83%)	11 (12%)	5 (5%)	2	6
7	G	81/85~(95%)	60 (74%)	13 (16%)	8 (10%)	0	1
7	Т	81/85~(95%)	60 (74%)	13 (16%)	8 (10%)	0	1
8	Н	77/85~(91%)	62 (80%)	13 (17%)	2 (3%)	5	18
8	U	77/85~(91%)	61 (79%)	13 (17%)	3 (4%)	3	10
9	Ι	70/73~(96%)	61 (87%)	9 (13%)	0	100	100
9	V	70/73~(96%)	61 (87%)	8 (11%)	1 (1%)	11	34
10	J	56/59~(95%)	55 (98%)	1 (2%)	0	100	100
10	W	56/59~(95%)	50 (89%)	6 (11%)	0	100	100
11	К	47/56~(84%)	40 (85%)	7 (15%)	0	100	100
11	Х	47/56~(84%)	38 (81%)	9 (19%)	0	100	100
12	L	44/47~(94%)	40 (91%)	4 (9%)	0	100	100
12	Y	44/47~(94%)	39~(89%)	3 (7%)	2 (4%)	2	8
13	М	41/46~(89%)	39~(95%)	2 (5%)	0	100	100

Continued	from	previous	page
Contentaca	JIONE	precious	pagem

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perc	entiles
13	Z	41/46~(89%)	31 (76%)	9(22%)	1 (2%)	6	20
All	All	3502/3614~(97%)	3146 (90%)	309 (9%)	47 (1%)	12	36

All (47) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
6	F	94	HIS
7	G	3	ALA
7	G	4	ALA
7	G	7	ASP
8	Н	8	ILE
2	0	89	GLU
4	Q	65	LYS
6	S	94	HIS
7	Т	3	ALA
7	Т	4	ALA
7	Т	7	ASP
12	Y	16	GLU
3	С	38	ASN
3	С	128	GLU
7	G	37	LEU
7	G	41	HIS
8	Н	47	GLY
1	Ν	119	GLU
6	S	96	LEU
7	Т	37	LEU
7	Т	38	HIS
8	U	8	ILE
8	U	9	LYS
8	U	47	GLY
3	С	41	THR
6	F	95	GLN
7	G	9	GLY
4	Q	25	PRO
6	S	10	GLU
7	Т	41	HIS
12	Y	28	PHE
13	Ζ	42	LYS
4	D	34	SER
7	G	40	GLY
6	S	64	GLU
7	Т	46	ALA

Mol	Chain	Res	Type
1	Ν	501	PRO
4	Q	134	PHE
6	S	93	PRO
7	Т	59	PRO
2	В	60	GLU
3	Р	39	SER
4	Q	141	ASP
7	G	6	GLY
4	Q	5	VAL
2	В	64	ILE
9	V	39	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentile	es
1	А	426/426~(100%)	419 (98%)	7~(2%)	62 88	
1	Ν	426/426~(100%)	414 (97%)	12 (3%)	43 77	
2	В	210/210~(100%)	196~(93%)	14 (7%)	16 43	
2	О	210/210~(100%)	192 (91%)	18 (9%)	10 30	
3	С	224/226~(99%)	219~(98%)	5 (2%)	52 83	
3	Р	224/226~(99%)	212 (95%)	12 (5%)	22 53	
4	D	128/129~(99%)	118 (92%)	10 (8%)	12 35	
4	Q	128/129~(99%)	121 (94%)	7 (6%)	21 52	
5	Ε	92/95~(97%)	90~(98%)	2(2%)	52 83	
5	R	92/95~(97%)	$89 \ (97\%)$	3(3%)	38 72	
6	F	81/81 (100%)	78~(96%)	3(4%)	34 68	
6	S	81/81 (100%)	76 (94%)	5 (6%)	18 47	
7	G	67/68~(98%)	63~(94%)	4 (6%)	19 48	
7	Т	67/68~(98%)	60 (90%)	7 (10%)	7 21	
8	Н	71/75~(95%)	68~(96%)	3~(4%)	30 63	

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
8	U	71/75~(95%)	67~(94%)	4 (6%)	21 51
9	Ι	57/57~(100%)	49 (86%)	8 (14%)	3 11
9	V	57/57~(100%)	53~(93%)	4 (7%)	15 40
10	J	49/50~(98%)	47 (96%)	2(4%)	30 64
10	W	49/50~(98%)	47 (96%)	2(4%)	30 64
11	Κ	39/46~(85%)	37~(95%)	2(5%)	24 55
11	Х	39/46~(85%)	33~(85%)	6 (15%)	2 8
12	L	39/40~(98%)	38~(97%)	1 (3%)	46 79
12	Y	39/40~(98%)	34 (87%)	5 (13%)	4 13
13	М	37/38~(97%)	35~(95%)	2(5%)	22 53
13	Z	37/38~(97%)	35~(95%)	2(5%)	22 53
All	All	3040/3082~(99%)	2890 (95%)	150 (5%)	25 57

All (150) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	109	PHE
1	А	138	HIS
1	А	180	GLN
1	А	310	MET
1	А	484	THR
1	А	486	ASP
1	А	512	ASN
2	В	10	GLN
2	В	60	GLU
2	В	65	TRP
2	В	75	LEU
2	В	78	LEU
2	В	88	ASP
2	В	89	GLU
2	В	91	ASN
2	В	148	MET
2	В	167	SER
2	В	171	LYS
2	В	183	THR
2	В	202	SER
2	В	205	SER
3	С	111	GLU

Mol	Chain	Res	Type
3	С	127	LEU
3	С	159	MET
3	С	179	SER
3	С	258	TRP
4	D	4	SER
4	D	36	SER
4	D	50	SER
4	D	51	LEU
4	D	58	GLU
4	D	74	SER
4	D	104	TYR
4	D	121	LYS
4	D	143	ASN
4	D	147	LYS
5	Е	79	LYS
5	Е	108	LYS
6	F	48	LEU
6	F	87	THR
6	F	95	GLN
7	G	33	LEU
7	G	38	HIS
7	G	54	ARG
7	G	84	LYS
8	Н	7	LYS
8	Н	8	ILE
8	Н	60	TYR
9	Ι	8	GLN
9	Ι	15	ARG
9	Ι	19	PHE
9	Ι	21	ILE
9	Ι	25	PHE
9	Ι	29	LEU
9	Ι	31	PHE
9	Ι	44	LYS
10	J	11	LEU
10	J	27	THR
11	K	49	THR
11	K	54	ARG
12	L	24	MET
13	М	34	LEU
13	М	42	LYS
1	N	38	ARG

Mol	Chain	Res	Type
1	N	109	PHE
1	Ν	124	THR
1	Ν	138	HIS
1	Ν	152	LEU
1	Ν	177	SER
1	Ν	369	ASP
1	Ν	382	SER
1	Ν	483	LEU
1	N	484	THR
1	N	512	ASN
1	N	513	LEU
2	0	35	SER
2	0	43	SER
2	0	57	ASP
2	0	60	GLU
2	0	65	TRP
2	0	68	LEU
2	0	75	LEU
2	0	78	LEU
2	0	88	ASP
2	0	91	ASN
2	0	116	LEU
2	0	156	SER
2	0	171	LYS
2	0	183	THR
2	0	185	MET
2	0	205	SER
2	0	221	LYS
2	Ō	227	LEU
3	Р	14	SER
3	Р	32	THR
3	Р	33	MET
3	P	38	ASN
3	P	41	THR
3	P	104	SER
3	Р	109	THR
3	Р	127	LEU
3	Р	159	MET
3	Р	212	SER
3	Р	230	ASN
3	Р	258	TRP
4	Q	9	GLU

Mol	Chain	Res	Type
4	Q	10	ASP
4	Q	15	SER
4	Q	31	LYS
4	Q	58	GLU
4	Q	68	PHE
4	Q	73	ARG
5	R	5	HIS
5	R	7	THR
5	R	31	LYS
6	S	18	ARG
6	S	37	LYS
6	S	48	LEU
6	S	65	ASP
6	S	96	LEU
7	Т	18	PHE
7	Т	35	SER
7	Т	38	HIS
7	Т	59	PRO
7	Т	64	ASP
7	Т	74	ARG
7	Т	84	LYS
8	U	7	LYS
8	U	12	GLN
8	U	29	CYS
8	U	60	TYR
9	V	2	THR
9	V	15	ARG
9	V	29	LEU
9	V	61	GLU
10	W	20	VAL
10	W	50	LEU
11	Х	20	SER
11	Х	23	THR
11	Х	34	THR
11	Х	49	THR
11	Х	51	LYS
11	Х	54	ARG
12	Y	9	LYS
12	Y	11	ILE
12	Y	20	ARG
12	Y	26	THR
12	Y	47	LYS

Continued from previous page...

Mol	Chain	Res	Type
13	Ζ	13	LYS
13	Ζ	42	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (31) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	180	GLN
1	А	512	ASN
3	С	68	GLN
3	С	149	HIS
3	С	158	HIS
4	D	29	HIS
4	D	32	ASN
4	D	37	GLN
5	Е	78	HIS
5	Ε	94	ASN
7	G	76	ASN
8	Н	31	GLN
8	Н	32	ASN
10	J	57	HIS
1	Ν	178	GLN
1	Ν	328	HIS
2	0	10	GLN
2	0	181	GLN
2	0	203	ASN
3	Р	149	HIS
3	Р	161	GLN
3	Р	230	ASN
4	Q	37	GLN
5	R	78	HIS
5	R	94	ASN
7	Т	76	ASN
8	U	12	GLN
8	U	32	ASN
10	W	29	ASN
10	W	57	HIS
12	Y	42	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

6 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type		Chain	Dog	Link	B	ond leng	gths	В	ond ang	les
1VIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
7	TPO	Т	11	7	8,10,11	0.83	0	$10,\!14,\!16$	0.79	0
2	FME	0	1	2	8,9,10	0.43	0	7,9,11	1.47	2 (28%)
1	FME	А	1	1	8,9,10	0.45	0	7,9,11	0.90	0
7	TPO	G	11	7	8,10,11	0.76	0	10,14,16	0.81	0
1	FME	N	1	1	8,9,10	0.51	0	7,9,11	0.84	0
2	FME	В	1	2	8,9,10	0.60	0	7,9,11	1.57	2 (28%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	TPO	Т	11	7	-	4/9/11/13	-
2	FME	0	1	2	-	1/7/9/11	-
1	FME	А	1	1	-	4/7/9/11	-
7	TPO	G	11	7	-	3/9/11/13	-
1	FME	N	1	1	-	4/7/9/11	-
2	FME	В	1	2	-	1/7/9/11	-

There are no bond length outliers.

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	В	1	FME	CA-N-CN	-3.22	117.87	122.82
2	0	1	FME	CA-N-CN	-2.95	118.29	122.82
2	0	1	FME	C-CA-N	2.24	113.77	109.73
2	В	1	FME	C-CA-N	2.05	113.42	109.73

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
1	А	1	FME	O1-CN-N-CA
1	А	1	FME	C-CA-CB-CG
2	В	1	FME	O1-CN-N-CA
7	G	11	TPO	N-CA-CB-OG1
1	Ν	1	FME	O1-CN-N-CA
2	0	1	FME	O1-CN-N-CA
7	Т	11	TPO	N-CA-CB-CG2
7	Т	11	TPO	N-CA-CB-OG1
7	Т	11	TPO	C-CA-CB-CG2
7	Т	11	TPO	CA-CB-OG1-P
1	А	1	FME	N-CA-CB-CG
1	А	1	FME	CB-CG-SD-CE
1	Ν	1	FME	CA-CB-CG-SD
7	G	11	TPO	C-CA-CB-CG2
1	N	1	FME	N-CA-CB-CG
1	N	1	FME	C-CA-CB-CG
7	G	11	TPO	N-CA-CB-CG2

All (17) torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 58 ligands modelled in this entry, 8 are monoatomic and 2 are modelled with single atom - leaving 48 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

	T	Chain	Dag	T : 1-	B	ond leng	gths	hs Bond angles			
IVIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
27	PEK	Р	303	-	52,52,52	0.29	0	$55,\!57,\!57$	0.40	0	
29	SAC	Ι	102	-	$7,\!8,\!9$	0.55	0	8,9,11	1.06	1 (12%)	
18	TGL	N	608	-	62,62,62	0.32	0	$65,\!65,\!65$	0.50	1 (1%)	
21	CUA	0	301	2	0,1,1	-	-	-			
28	DMU	Q	201	-	34,34,34	0.73	1 (2%)	$45,\!45,\!45$	1.37	7 (15%)	
22	CHD	С	306	-	32,32,32	0.56	0	51,51,51	0.85	2 (3%)	
21	CUA	В	301	2	0,1,1	-	-	-			
22	CHD	J	101	-	32,32,32	0.61	0	$51,\!51,\!51$	0.93	3 (5%)	
18	TGL	Ι	101	-	62,62,62	0.35	0	65,65,65	0.50	1 (1%)	
22	CHD	С	301	-	32,32,32	0.58	0	51,51,51	0.74	0	
27	PEK	G	101	-	52,52,52	0.31	0	55,57,57	0.35	0	
27	PEK	Т	101	-	52,52,52	0.31	0	55,57,57	0.36	0	
22	CHD	N	609	-	32,32,32	0.62	0	51,51,51	1.24	8 (15%)	
18	TGL	N	606	-	62,62,62	0.28	0	$65,\!65,\!65$	0.28	0	
24	CDL	Р	305	-	99,99,99	0.31	0	105,111,111	0.39	1 (0%)	
19	PGV	С	304	-	50,50,50	0.35	0	53,56,56	0.64	1 (1%)	
22	CHD	G	105	-	32,32,32	0.62	0	51,51,51	1.00	2 (3%)	
19	PGV	С	303	-	50,50,50	0.30	0	53,56,56	0.55	1 (1%)	
22	CHD	Р	306	-	32,32,32	0.67	0	51,51,51	1.34	7 (13%)	
22	CHD	Р	302	-	32,32,32	0.55	0	51,51,51	0.76	1 (1%)	
19	PGV	Ζ	101	-	50,50,50	0.35	0	53,56,56	0.47	0	
19	PGV	А	607	-	50,50,50	0.32	0	53,56,56	0.49	0	
25	PSC	Е	201	-	51,51,51	0.30	0	57,59,59	0.42	0	
22	CHD	В	302	-	32,32,32	0.59	0	51,51,51	0.80	1 (1%)	
28	DMU	G	102	-	34,34,34	0.73	1 (2%)	45,45,45	1.05	4 (8%)	
19	PGV	U	101	-	50,50,50	0.36	0	53,56,56	0.63	1 (1%)	
28	DMU	М	102	-	34,34,34	0.77	1 (2%)	45,45,45	1.62	12 (26%)	
27	PEK	G	106	-	52,52,52	0.32	0	55,57,57	0.44	0	
24	CDL	Т	104	-	99,99,99	0.32	0	105,111,111	0.45	1 (0%)	
19	PGV	М	101	_	50,50,50	0.38	0	53,56,56	0.58	2 (3%)	
27	PEK	Т	103	-	52,52,52	0.36	0	55,57,57	0.49	0	
18	TGL	А	606	-	62,62,62	0.36	0	65,65,65	0.48	0	
28	DMU	Т	102	-	34,34,34	0.92	1 (2%)	45,45,45	1.85	7 (15%)	
29	SAC	V	101	-	7,8,9	0.55	0	8,9,11	0.94	1 (12%)	
14	HEA	А	602	1,20	57,67,67	1.92	14 (24%)	61,103,103	2.53	27 (44%)	
24	CDL	С	305	-	99,99,99	0.30	0	105,111,111	0.32	0	
27	PEK	G	103	-	52,52,52	0.31	0	55,57,57	0.41	0	
18	TGL	Y	101	-	$62,\!62,\!62$	0.28	0	$65,\!65,\!65$	0.31	0	

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	Bond angles		
INIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
14	HEA	А	601	1	57,67,67	2.02	15 (26%)	61,103,103	2.39	21 (34%)
19	PGV	Ν	607	-	50,50,50	0.33	0	53,56,56	0.40	0
24	CDL	G	104	-	99,99,99	0.33	0	105,111,111	0.49	1 (0%)
18	TGL	L	101	-	62,62,62	0.34	0	$65,\!65,\!65$	0.54	1 (1%)
14	HEA	Ν	602	1,20	57,67,67	2.01	15 (26%)	61,103,103	2.56	28 (45%)
25	PSC	R	201	-	51,51,51	0.29	0	57,59,59	0.43	0
20	CMO	А	608	14	0,1,1	-	-	-		
14	HEA	N	601	1	57,67,67	1.99	17 (29%)	61,103,103	2.43	26 (42%)
19	PGV	Р	304	-	50,50,50	0.29	0	53,56,56	0.43	0
20	CMO	N	610	14	0,1,1	-	-	-		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
27	PEK	Р	303	-	-	19/56/56/56	-
29	SAC	Ι	102	-	-	3/7/8/10	-
18	TGL	Ν	608	-	-	26/65/65/65	-
28	DMU	Q	201	-	2/2/10/10	8/19/59/59	0/2/2/2
22	CHD	С	306	-	-	3/9/74/74	1/4/4/4
22	CHD	J	101	-	-	6/9/74/74	0/4/4/4
18	TGL	Ι	101	-	-	29/65/65/65	-
22	CHD	С	301	-	-	2/9/74/74	0/4/4/4
27	PEK	G	101	-	-	18/56/56/56	-
27	PEK	Т	101	-	-	27/56/56/56	-
22	CHD	Ν	609	-	-	4/9/74/74	0/4/4/4
18	TGL	Ν	606	-	-	30/65/65/65	-
24	CDL	Р	305	-	-	55/110/110/110	-
19	PGV	С	304	-	-	27/55/55/55	-
22	CHD	G	105	-	-	4/9/74/74	0/4/4/4
19	PGV	С	303	-	-	16/55/55/55	-
22	CHD	Р	306	-	-	3/9/74/74	0/4/4/4
22	CHD	Р	302	-	-	3/9/74/74	0/4/4/4
19	PGV	Ζ	101	-	-	26/55/55/55	-
19	PGV	А	607	-	-	18/55/55/55	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
25	PSC	Е	201	-	-	29/55/55/55	-
22	CHD	В	302	-	-	5/9/74/74	0/4/4/4
28	DMU	G	102	-	2/2/10/10	9/19/59/59	0/2/2/2
28	DMU	М	102	-	2/2/10/10	9/19/59/59	0/2/2/2
19	PGV	U	101	-	-	34/55/55/55	-
27	PEK	G	106	-	-	32/56/56/56	-
24	CDL	Т	104	-	-	58/110/110/110	-
19	PGV	М	101	-	-	32/55/55/55	-
27	PEK	Т	103	-	-	29/56/56/56	-
18	TGL	А	606	-	-	34/65/65/65	-
28	DMU	Т	102	-	3/3/10/10	8/19/59/59	0/2/2/2
29	SAC	V	101	-	-	1/7/8/10	-
14	HEA	А	602	1,20	-	5/32/76/76	-
24	CDL	С	305	-	-	60/110/110/110	-
27	PEK	G	103	-	-	26/56/56/56	-
18	TGL	Y	101	-	-	32/65/65/65	-
14	HEA	А	601	1	-	6/32/76/76	-
19	PGV	Ν	607	-	-	24/55/55/55	-
24	CDL	G	104	-	-	55/110/110/110	-
18	TGL	L	101	-	-	35/65/65/65	-
14	HEA	Ν	602	1,20	-	8/32/76/76	-
25	PSC	R	201	-	-	22/55/55/55	-
14	HEA	Ν	601	1	-	5/32/76/76	-
19	PGV	Р	304	-	-	21/55/55/55	-

All (65) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
14	А	601	HEA	C3B-C2B	6.04	1.48	1.34
14	Ν	601	HEA	C3B-C2B	5.83	1.47	1.34
14	Ν	602	HEA	C3C-C2C	5.75	1.48	1.40
14	Ν	601	HEA	CHD-C1D	4.95	1.47	1.35
14	А	601	HEA	C3D-C2D	4.82	1.47	1.36
14	Ν	602	HEA	C3B-C2B	4.70	1.45	1.34
14	Ν	602	HEA	C3A-C2A	4.63	1.46	1.40
14	А	601	HEA	C3C-C2C	4.60	1.46	1.40
14	Ν	601	HEA	C3D-C2D	4.58	1.46	1.36

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
14	А	602	HEA	C4B-NB	-4.58	1.32	1.40
14	А	601	HEA	C1D-ND	-4.51	1.32	1.40
14	А	601	HEA	CHC-C4B	4.48	1.46	1.35
14	А	602	HEA	CHC-C4B	4.45	1.46	1.35
14	N	602	HEA	C3D-C2D	4.39	1.46	1.36
14	А	602	HEA	C3C-C2C	4.28	1.46	1.40
14	А	602	HEA	C3A-C2A	4.11	1.46	1.40
14	N	601	HEA	CHC-C4B	4.08	1.45	1.35
14	N	602	HEA	CHD-C1D	4.08	1.45	1.35
14	А	602	HEA	C3D-C2D	4.00	1.45	1.36
14	N	601	HEA	C3C-C2C	3.99	1.45	1.40
14	А	602	HEA	C1D-ND	-3.95	1.33	1.40
14	А	601	HEA	CHD-C1D	3.92	1.45	1.35
14	Ν	602	HEA	CHC-C4B	3.92	1.45	1.35
14	А	602	HEA	C3B-C2B	3.69	1.43	1.34
14	Ν	602	HEA	C4B-NB	-3.65	1.34	1.40
14	Ν	601	HEA	C4B-NB	-3.63	1.34	1.40
14	А	602	HEA	CHD-C1D	3.60	1.44	1.35
14	А	601	HEA	C4D-ND	-3.50	1.31	1.38
14	Ν	601	HEA	C3A-C2A	3.43	1.45	1.40
28	Т	102	DMU	O16-C6	3.42	1.46	1.40
14	Ν	602	HEA	C1D-ND	-3.41	1.34	1.40
14	А	602	HEA	C1B-NB	-3.39	1.31	1.38
28	М	102	DMU	O16-C6	3.35	1.45	1.40
28	Q	201	DMU	O16-C6	3.02	1.45	1.40
28	G	102	DMU	O16-C6	2.96	1.45	1.40
14	Ν	602	HEA	FE-ND	2.91	2.11	1.96
14	А	601	HEA	C4B-NB	-2.87	1.35	1.40
14	А	602	HEA	C2A-C1A	2.85	1.49	1.42
14	A	601	HEA	C3A-C2A	2.85	1.44	1.40
14	N	602	HEA	C4D-C3D	2.82	1.49	1.45
14	N	601	HEA	FE-ND	2.81	2.10	1.96
14	N	601	HEA	C1B-C2B	$2.7\overline{5}$	1.49	1.44
14	А	601	HEA	FE-NB	2.72	2.10	1.96
14	N	601	HEA	FE-NB	2.70	2.10	1.96
14	А	601	HEA	C4B-C3B	2.60	1.49	1.44
14	A	601	HEA	C1C-CHC	2.58	1.48	1.41
14	N	602	HEA	C1B-NB	-2.57	1.33	1.38
14	А	601	HEA	C2A-C1A	2.57	1.48	1.42
14	N	601	HEA	C2A-C1A	2.49	1.48	1.42
14	А	602	HEA	CHA-C4D	2.40	1.48	1.41
14	N	602	HEA	C1D-C2D	2.39	1.49	1.44

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
14	А	602	HEA	FE-ND	2.38	2.08	1.96
14	Ν	601	HEA	C1B-NB	-2.37	1.33	1.38
14	А	602	HEA	FE-NB	2.36	2.08	1.96
14	Ν	601	HEA	C1D-ND	-2.34	1.36	1.40
14	А	601	HEA	C1B-NB	-2.33	1.34	1.38
14	Ν	602	HEA	C2A-C1A	2.32	1.47	1.42
14	А	601	HEA	C1B-C2B	2.27	1.49	1.44
14	Ν	602	HEA	FE-NB	2.22	2.07	1.96
14	Ν	601	HEA	C4D-ND	-2.20	1.34	1.38
14	Ν	601	HEA	C1D-C2D	2.17	1.48	1.44
14	Ν	601	HEA	C1C-CHC	2.13	1.46	1.41
14	Ν	602	HEA	C4D-ND	-2.13	1.34	1.38
14	А	602	HEA	C1C-CHC	2.01	1.46	1.41
14	Ν	601	HEA	C4C-CHD	2.00	1.46	1.41

All (169) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
14	N	601	HEA	C3B-C4B-NB	6.90	118.01	109.84
14	А	602	HEA	CAD-CBD-CGD	-6.68	99.22	113.60
14	N	602	HEA	C3D-C4D-ND	6.66	116.81	110.36
14	N	602	HEA	C2D-C1D-ND	6.44	117.47	109.84
14	А	601	HEA	C1D-C2D-C3D	-6.02	100.63	106.96
14	А	601	HEA	C2D-C1D-ND	6.02	116.97	109.84
28	Т	102	DMU	C2-C3-C4	-5.83	97.57	110.93
28	Т	102	DMU	O55-C2-C1	5.80	123.77	110.35
14	А	601	HEA	C3B-C4B-NB	5.67	116.56	109.84
14	А	602	HEA	C3B-C4B-NB	5.54	116.40	109.84
14	А	601	HEA	C3D-C4D-ND	5.53	115.71	110.36
14	N	601	HEA	C3D-C4D-ND	5.50	115.69	110.36
14	А	602	HEA	C2B-C1B-NB	5.31	116.25	109.88
22	Р	306	CHD	C4-C5-C10	4.92	117.89	112.66
14	N	602	HEA	C1D-C2D-C3D	-4.89	101.81	106.96
14	А	602	HEA	C2D-C1D-ND	4.87	115.61	109.84
14	А	602	HEA	C3D-C4D-ND	4.85	115.06	110.36
14	N	602	HEA	C3B-C4B-NB	4.70	115.41	109.84
14	N	601	HEA	C2D-C1D-ND	4.58	115.27	109.84
28	Т	102	DMU	O16-C6-C1	4.57	115.44	108.30
14	N	602	HEA	CAD-C3D-C4D	4.54	132.60	124.66
14	А	602	HEA	CMB-C2B-C1B	4.51	131.90	125.04
14	Ν	601	HEA	CBA-CAA-C2A	4.50	120.19	112.60
14	A	601	HEA	C2B-C1B-NB	4.47	115.23	109.88

8GBT

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
14	Ν	601	HEA	C1D-C2D-C3D	-4.38	102.35	106.96
14	А	601	HEA	C3C-C4C-NC	4.38	114.87	109.21
14	А	601	HEA	C13-C12-C11	-4.19	108.05	114.35
14	А	602	HEA	C3C-C4C-NC	4.16	114.58	109.21
28	М	102	DMU	C6-O5-C4	4.10	121.73	113.69
14	А	602	HEA	C1D-C2D-C3D	-4.06	102.69	106.96
14	N	601	HEA	C4B-C3B-C2B	-4.05	100.49	107.41
28	Q	201	DMU	C6-C1-C2	3.98	118.29	110.00
14	Ν	602	HEA	C3C-C4C-NC	3.98	114.35	109.21
14	Ν	602	HEA	CMB-C2B-C1B	3.98	131.09	125.04
28	Т	102	DMU	O55-C2-C3	3.96	120.44	109.94
14	А	602	HEA	C4A-CHB-C1B	3.93	127.74	122.56
22	Р	306	CHD	C5-C6-C7	-3.86	110.20	114.46
14	N	602	HEA	CMD-C2D-C1D	3.83	130.87	125.04
14	А	601	HEA	C4B-C3B-C2B	-3.75	101.01	107.41
14	Ν	601	HEA	C2B-C1B-NB	3.71	114.33	109.88
14	Ν	602	HEA	C4D-CHA-C1A	3.71	127.45	122.56
14	Ν	601	HEA	C3C-C4C-NC	3.71	114.00	109.21
14	А	602	HEA	C1B-C2B-C3B	-3.67	102.41	106.80
22	Р	306	CHD	C1-C10-C5	3.67	113.20	107.77
14	А	601	HEA	C4A-CHB-C1B	3.65	127.37	122.56
19	С	304	PGV	O01-C1-C2	3.62	119.30	111.50
22	J	101	CHD	C13-C17-C20	3.59	123.78	119.50
14	А	602	HEA	C13-C12-C11	-3.53	109.05	114.35
22	Ν	609	CHD	C13-C17-C20	3.52	123.70	119.50
14	N	601	HEA	CAA-CBA-CGA	-3.46	104.06	113.76
14	Ν	602	HEA	C4A-CHB-C1B	3.44	127.10	122.56
14	N	602	HEA	C2B-C1B-NB	3.41	113.97	109.88
18	L	101	TGL	OG2-CB1-CB2	3.39	118.81	111.50
14	Ν	602	HEA	CAD-CBD-CGD	-3.36	106.38	113.60
28	М	102	DMU	C8-C7-C5	3.34	116.66	110.82
14	А	601	HEA	OMA-CMA-C3A	-3.34	117.64	124.91
14	А	601	HEA	CHA-C4D-C3D	-3.33	119.95	124.84
14	А	602	HEA	CMD-C2D-C1D	3.32	130.09	125.04
14	N	602	HEA	C1D-ND-C4D	-3.30	101.66	105.07
28	Q	201	DMU	C18-O16-C6	3.27	119.26	113.84
14	А	602	HEA	OMA-CMA-C3A	-3.27	117.79	124.91
14	N	601	HEA	CMB-C2B-C1B	3.24	129.98	125.04
14	N	602	HEA	C4D-C3D-C2D	-3.20	102.24	106.90
14	N	601	HEA	CHB-C1B-NB	-3.17	120.99	124.43
14	N	602	HEA	C4B-C3B-C2B	-3.15	102.03	107.41
14	Ν	602	HEA	CBA-CAA-C2A	3.15	117.91	112.60

8GBT

	nuea from	i previ	ous page				
Mol	Chain	Res	Type	Atoms	Z	Observed(^{<i>b</i>})	Ideal(°)
19	U	101	PGV	O01-C1-C2	3.13	118.24	111.50
24	G	104	CDL	OB6-CB5-C51	3.12	118.23	111.50
14	A	602	HEA	C4D-CHA-C1A	3.12	126.67	122.56
14	N	601	HEA	OMA-CMA-C3A	-3.10	118.15	124.91
14	N	601	HEA	C4A-CHB-C1B	3.08	126.62	122.56
28	М	102	DMU	C6-C1-C2	3.05	116.34	110.00
14	А	602	HEA	CHA-C4D-C3D	-3.00	120.43	124.84
14	N	601	HEA	CMD-C2D-C1D	2.98	129.58	125.04
14	А	602	HEA	C4B-C3B-C2B	-2.97	102.34	107.41
14	Ν	602	HEA	CMC-C2C-C3C	2.96	130.22	124.68
14	N	601	HEA	CMC-C2C-C3C	2.94	130.18	124.68
22	G	105	CHD	C5-C4-C3	2.92	117.04	112.76
28	G	102	DMU	C6-O5-C4	2.88	119.34	113.69
28	Q	201	DMU	C2-C3-C4	-2.88	104.33	110.93
14	N	601	HEA	C4D-CHA-C1A	2.85	126.32	122.56
14	N	601	HEA	CAD-CBD-CGD	-2.84	107.50	113.60
14	N	601	HEA	CHC-C4B-C3B	-2.84	118.50	125.80
14	N	602	HEA	CMB-C2B-C3B	-2.83	124.95	130.34
14	А	601	HEA	C1B-C2B-C3B	-2.72	103.55	106.80
28	Т	102	DMU	C1-C2-C3	2.68	115.79	109.68
22	N	609	CHD	C1-C2-C3	2.66	113.88	110.47
14	А	602	HEA	C4D-C3D-C2D	-2.66	103.02	106.90
18	N	608	TGL	OG2-CB1-CB2	2.66	117.23	111.50
22	С	306	CHD	C10-C9-C8	2.66	114.67	111.82
14	N	602	HEA	OMA-CMA-C3A	-2.65	119.13	124.91
14	А	602	HEA	C27-C19-C20	2.65	119.72	115.27
28	М	102	DMU	C7-C8-C9	2.62	114.92	110.24
28	Q	201	DMU	O5-C6-C1	2.62	115.89	110.35
22	J	101	CHD	C16-C17-C13	-2.61	100.99	103.55
14	А	601	HEA	C4D-C3D-C2D	-2.60	103.10	106.90
28	М	102	DMU	O7-C3-C2	2.58	114.15	107.28
14	N	601	HEA	C1B-C2B-C3B	-2.57	103.73	106.80
14	A	601	HEA	CAA-CBA-CGA	-2.55	106.60	113.76
29	Ι	102	SAC	O-C-CA	-2.55	118.09	124.78
14	A	602	HEA	CMC-C2C-C3C	2.53	129.42	124.68
14	N	602	HEA	CHA-C4D-C3D	-2.52	121.13	124.84
22	N	609	CHD	C5-C4-C3	2.50	116.43	112.76
22	G	105	CHD	C4-C3-C2	2.49	113.52	110.55
28	Т	102	DMU	O7-C3-C4	2.48	116.25	109.45
14	N	601	HEA	C4D-C3D-C2D	-2.48	103.28	106.90
14	А	601	HEA	CHD-C1D-C2D	-2.47	119.89	126.72
14	N	601	HEA	C17-C18-C19	-2.46	121.73	127.66

8GBT

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
14	N	601	HEA	CHA-C4D-C3D	-2.46	121.22	124.84
14	А	602	HEA	CAD-C3D-C4D	2.45	128.94	124.66
28	М	102	DMU	O5-C4-C3	2.45	114.91	109.75
22	N	609	CHD	C4-C5-C10	2.44	115.25	112.66
14	А	602	HEA	CMB-C2B-C3B	-2.44	125.69	130.34
22	Р	306	CHD	C2-C1-C10	2.44	116.96	112.78
29	V	101	SAC	O-C-CA	-2.43	118.41	124.78
18	Ι	101	TGL	OG2-CB1-CB2	2.42	116.72	111.50
14	А	602	HEA	C4B-NB-C1B	-2.39	102.60	105.07
14	N	602	HEA	C1B-C2B-C3B	-2.39	103.95	106.80
22	Р	306	CHD	C4-C3-C2	-2.38	107.71	110.55
14	N	601	HEA	O2D-CGD-CBD	2.38	121.69	114.03
14	Ν	602	HEA	O2D-CGD-CBD	2.38	121.67	114.03
24	Т	104	CDL	OB6-CB5-C51	2.37	116.60	111.50
14	А	601	HEA	CMC-C2C-C3C	2.37	129.10	124.68
14	А	601	HEA	C13-C14-C15	-2.36	121.98	127.66
28	Q	201	DMU	C7-C8-C9	2.36	114.44	110.24
14	А	602	HEA	CHD-C1D-C2D	-2.36	120.20	126.72
14	А	602	HEA	CHB-C1B-NB	-2.35	121.88	124.43
14	Ν	602	HEA	CHD-C1D-C2D	-2.35	120.23	126.72
22	Ν	609	CHD	C16-C17-C13	-2.33	101.27	103.55
28	М	102	DMU	O2-C8-C7	-2.33	104.97	110.35
28	Т	102	DMU	C6-O5-C4	2.33	118.25	113.69
14	А	601	HEA	CMD-C2D-C1D	2.30	128.54	125.04
28	М	102	DMU	C18-O16-C6	2.30	117.65	113.84
28	Q	201	DMU	O5-C4-C57	2.29	112.13	106.44
14	А	602	HEA	CHC-C4B-C3B	-2.29	119.91	125.80
22	N	609	CHD	C4-C3-C2	2.28	113.27	110.55
14	А	601	HEA	CBD-CAD-C3D	-2.27	106.32	112.63
28	М	102	DMU	O3-C5-C7	2.24	115.54	110.35
14	Ν	602	HEA	CAA-CBA-CGA	-2.24	107.47	113.76
14	А	601	HEA	C4D-CHA-C1A	2.23	125.50	122.56
14	N	602	HEA	CHA-C4D-ND	-2.22	122.02	124.43
19	М	101	PGV	O01-C1-C2	2.21	116.27	111.50
22	В	302	CHD	C16-C17-C13	-2.20	101.39	103.55
22	J	101	CHD	C22-C23-C24	2.20	118.34	112.51
28	G	102	DMU	C1-C2-C3	2.19	114.69	109.68
14	А	602	HEA	CAA-CBA-CGA	-2.19	107.61	113.76
28	G	102	DMU	O1-C9-C8	-2.19	105.72	109.69
22	Р	302	CHD	C16-C17-C13	-2.17	101.42	103.55
19	М	101	PGV	C02-O01-C1	2.16	123.11	117.79
28	М	102	DMU	C57-C4-C3	-2.16	107.05	113.33

8GB	Τ

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
14	А	601	HEA	C17-C18-C19	-2.16	122.47	127.66
22	N	609	CHD	C17-C13-C14	-2.13	97.94	100.09
28	G	102	DMU	O1-C9-C11	2.13	111.73	106.44
14	N	601	HEA	CMB-C2B-C3B	-2.13	126.29	130.34
28	М	102	DMU	O7-C3-C4	-2.11	103.67	109.45
14	Ν	601	HEA	CAD-C3D-C4D	2.08	128.29	124.66
28	Q	201	DMU	C6-O5-C4	2.08	117.76	113.69
22	С	306	CHD	C1-C2-C3	2.07	113.12	110.47
24	Р	305	CDL	OA6-CA5-C11	2.06	115.94	111.50
14	N	602	HEA	C13-C12-C11	-2.05	111.26	114.35
22	Р	306	CHD	C10-C9-C8	2.04	114.01	111.82
14	Ν	602	HEA	O2A-CGA-CBA	2.03	120.56	114.03
14	А	602	HEA	CHB-C1B-C2B	-2.03	121.81	124.98
28	М	102	DMU	C10-C5-C7	2.03	114.22	110.00
14	Ν	602	HEA	CHC-C4B-C3B	-2.02	120.59	125.80
22	Ν	609	CHD	C10-C9-C8	2.02	113.99	111.82
14	N	601	HEA	C17-C16-C15	-2.02	106.35	112.98
22	Р	306	CHD	C1-C10-C9	-2.01	108.19	111.35
19	С	303	PGV	O01-C1-C2	2.01	115.83	111.50

All (9) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
28	G	102	DMU	C6
28	G	102	DMU	C5
28	М	102	DMU	C6
28	М	102	DMU	C5
28	Q	201	DMU	C6
28	Q	201	DMU	C5
28	Т	102	DMU	C6
28	Т	102	DMU	C2
28	Т	102	DMU	C5

All (906) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
18	Ι	101	TGL	CB2-CB1-OG2-CG2
18	L	101	TGL	CB2-CB1-OG2-CG2
19	А	607	PGV	C04-O12-P-O13
19	С	303	PGV	C04-C05-C06-O06
19	С	304	PGV	C04-O12-P-O11
19	С	304	PGV	C05-C04-O12-P

8GBT

Mol	Chain	Res		Atoms
10	M	101	DCV	
19	M	101	PGV	$\begin{array}{c} 0.03 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.$
19		204	FGV DCV	002-01-001-002
19	Г U	304	PGV	C02 O11 D O12
19	U	101	PGV	C03-O11-P-O12
19	U	101	PGV	C03-011-P-013
19	U	101	PGV	C03-011-P-014
19	U	101	PGV	C04-O12-P-O14
19	U	101	PGV	012-C04-C05-C06
19	U	101	PGV	012-C04-C05-O05
19	U	101	PGV	C2-C1-O01-C02
19	Z	101	PGV	C03-O11-P-O14
19	Z	101	PGV	O02-C1-O01-C02
19	Z	101	PGV	C2-C1-O01-C02
19	Z	101	PGV	O04-C19-O03-C01
22	J	101	CHD	C13-C17-C20-C22
22	J	101	CHD	C16-C17-C20-C21
22	J	101	CHD	C16-C17-C20-C22
22	Ν	609	CHD	C13-C17-C20-C22
22	N	609	CHD	C16-C17-C20-C21
24	С	305	CDL	CA2-OA2-PA1-OA3
24	С	305	CDL	C11-CA5-OA6-CA4
24	G	104	CDL	CB2-OB2-PB2-OB4
24	G	104	CDL	CB3-OB5-PB2-OB3
24	Р	305	CDL	CA2-OA2-PA1-OA4
24	Р	305	CDL	OA7-CA5-OA6-CA4
24	Р	305	CDL	C11-CA5-OA6-CA4
24	Р	305	CDL	CB3-OB5-PB2-OB3
24	Р	305	CDL	OB7-CB5-OB6-CB4
24	Р	305	CDL	C51-CB5-OB6-CB4
24	Т	104	CDL	CA2-OA2-PA1-OA3
24	Т	104	CDL	CA2-OA2-PA1-OA4
24	Т	104	CDL	CA2-OA2-PA1-OA5
24	Т	104	CDL	CB2-OB2-PB2-OB5
24	Т	104	CDL	CB3-OB5-PB2-OB3
24	Т	104	CDL	OB6-CB4-CB6-OB8
25	Е	201	PSC	O12-C04-C05-N
25	R	201	PSC	O12-C04-C05-N
27	G	103	PEK	C04-O12-P-O13
27	G	103	PEK	O12-C04-C05-N
27	G	103	PEK	C2-C1-O01-C02
27	G	106	PEK	C03-O11-P-O12
$\frac{-1}{27}$	G	106	PEK	C03-O11-P-O13

Continued from previous page...

Mol	Chain	Res	Type	Atoms
27	G	106	PEK	C03-O11-P-O14
27	G	106	PEK	C04-O12-P-O13
27	G	106	PEK	O12-C04-C05-N
27	G	106	PEK	C2-C1-O01-C02
27	P	303	PEK	C9-C10-C11-C12
27	Т	101	PEK	C03-O11-P-O12
27	Т	101	PEK	C03-O11-P-O13
27	Т	101	PEK	C03-O11-P-O14
27	Т	101	PEK	C04-O12-P-O11
27	Т	103	PEK	C03-O11-P-O14
27	Т	103	PEK	C04-O12-P-O13
27	Т	103	PEK	O12-C04-C05-N
28	М	102	DMU	O5-C6-O16-C18
28	М	102	DMU	C19-C18-O16-C6
28	Q	201	DMU	O5-C6-O16-C18
28	Q	201	DMU	C19-C18-O16-C6
29	I	102	SAC	C-CA-N-C1A
29	Ι	102	SAC	C-CA-CB-OG
29	V	101	SAC	C-CA-N-C1A
18	А	606	TGL	OC1-CC1-OG3-CG3
18	А	606	TGL	CC2-CC1-OG3-CG3
19	М	101	PGV	O04-C19-O03-C01
24	G	104	CDL	OA9-CA7-OA8-CA6
22	N	609	CHD	C16-C17-C20-C22
18	Ι	101	TGL	OB1-CB1-OG2-CG2
18	L	101	TGL	OB1-CB1-OG2-CG2
19	U	101	PGV	O02-C1-O01-C02
24	С	305	CDL	OA7-CA5-OA6-CA4
24	G	104	CDL	OA7-CA5-OA6-CA4
25	E	201	PSC	O02-C1-O01-C02
27	G	103	PEK	O02-C1-O01-C02
27	G	106	PEK	O02-C1-O01-C02
18	L	101	TGL	CA2-CA1-OG1-CG1
19	M	101	PGV	C20-C19-O03-C01
24	Т	104	CDL	C31-CA7-OA8-CA6
19	М	101	PGV	C2-C1-O01-C02
24	G	104	CDL	C11-CA5-OA6-CA4
24	Т	104	CDL	C11-CA5-OA6-CA4
19	Z	101	PGV	C20-C19-O03-C01
24	G	104	CDL	C31-CA7-OA8-CA6
27	Т	103	PEK	C22-C21-O03-C01
24	Т	104	CDL	OA7-CA5-OA6-CA4

Continued from previous page...

8GBT

Mol	Chain	Res	Type	Atoms
18	A	606	TGL	OA1-CA1-OG1-CG1
18	L	101	TGL	OA1-CA1-OG1-CG1
$\frac{-3}{24}$	T	104	CDL	OA9-CA7-OA8-CA6
24	Т	104	CDL	OB9-CB7-OB8-CB6
25	E	201	PSC	O04-C19-O03-C01
24	G	104	CDL	O1-C1-CA2-OA2
24	P	305	CDL	O1-C1-CA2-OA2
18	A	606	TGL	CA2-CA1-OG1-CG1
24	G	104	CDL	C71-CB7-OB8-CB6
25	R	201	PSC	C20-C19-O03-C01
25	Е	201	PSC	C2-C1-O01-C02
24	Т	104	CDL	C22-C23-C24-C25
28	G	102	DMU	O5-C4-C57-O61
22	В	302	CHD	C17-C20-C22-C23
24	Т	104	CDL	C71-CB7-OB8-CB6
25	Е	201	PSC	C20-C19-O03-C01
24	Т	104	CDL	C52-C53-C54-C55
24	С	305	CDL	CA4-CA3-OA5-PA1
24	Т	104	CDL	C1-CB2-OB2-PB2
24	G	104	CDL	OB9-CB7-OB8-CB6
25	R	201	PSC	O04-C19-O03-C01
27	Т	103	PEK	O04-C21-O03-C01
28	Т	102	DMU	C5-C10-O7-C3
18	Y	101	TGL	CA2-CA1-OG1-CG1
27	Т	101	PEK	C22-C21-O03-C01
22	С	306	CHD	C17-C20-C22-C23
22	G	105	CHD	C17-C20-C22-C23
22	Р	306	CHD	C17-C20-C22-C23
18	Y	101	TGL	OA1-CA1-OG1-CG1
24	С	305	CDL	C51-CB5-OB6-CB4
19	A	607	PGV	O12-C04-C05-C06
19	Z	101	PGV	O12-C04-C05-C06
24	С	305	CDL	CB2-C1-CA2-OA2
24	Р	305	CDL	CB2-C1-CA2-OA2
22	Р	306	CHD	C21-C20-C22-C23
18	N	606	TGL	CC2-CC1-OG3-CG3
19	С	304	PGV	C20-C19-O03-C01
19	Z	101	PGV	C19-C20-C21-C22
19	С	304	PGV	O12-C04-C05-O05
22	G	105	CHD	C21-C20-C22-C23
24	Р	305	CDL	CA5-C11-C12-C13
28	Т	102	DMU	O1-C10-O7-C3

8GBT

			m -	A 4 a
	Unain	Res	Type	Atoms
19	C	304	PGV	004-C19-O03-C01
22	C	306	CHD	C21-C20-C22-C23
18	A	606	TGL	CB1-CB2-CB3-CB4
18	N	606	TGL	CC2-CC3-CC4-CC5
19	С	303	PGV	O05-C05-C06-O06
19	Р	304	PGV	O05-C05-C06-O06
19	Z	101	PGV	O05-C05-C06-O06
18	L	101	TGL	CB1-CB2-CB3-CB4
18	Y	101	TGL	CA1-CA2-CA3-CA4
19	М	101	PGV	C19-C20-C21-C22
27	G	101	PEK	C1-C2-C3-C4
24	С	305	CDL	OB7-CB5-OB6-CB4
19	U	101	PGV	C1-C2-C3-C4
24	Т	104	CDL	CA5-C11-C12-C13
22	N	609	CHD	C13-C17-C20-C21
28	М	102	DMU	O16-C18-C19-C22
18	N	608	TGL	CB1-CB2-CB3-CB4
25	Е	201	PSC	C19-C20-C21-C22
18	А	606	TGL	C21-C22-C23-C24
19	Ζ	101	PGV	O12-C04-C05-O05
22	J	101	CHD	C13-C17-C20-C21
27	Т	101	PEK	O04-C21-O03-C01
18	N	606	TGL	OC1-CC1-OG3-CG3
24	G	104	CDL	C51-CB5-OB6-CB4
19	М	101	PGV	C03-O11-P-O12
19	U	101	PGV	C04-O12-P-O11
19	Ζ	101	PGV	C03-O11-P-O12
24	С	305	CDL	CA2-OA2-PA1-OA5
24	С	305	CDL	CA3-OA5-PA1-OA2
24	G	104	CDL	CB2-OB2-PB2-OB5
24	Р	305	CDL	CA2-OA2-PA1-OA5
24	Р	305	CDL	CB2-OB2-PB2-OB5
27	G	103	PEK	C03-O11-P-O12
27	G	103	PEK	C04-O12-P-O11
27	G	106	PEK	C04-O12-P-O11
27	Т	103	PEK	C03-O11-P-O12
27	Т	103	PEK	C04-O12-P-O11
18	N	608	TGL	CA1-CA2-CA3-CA4
19	C	304	PGV	O12-C04-C05-C06
18	Ň	608	TGL	0B1-CB1-OG2-CG2
24	G	104	CDL	OB7-CB5-OB6-CB4
18	I	101	TGL	C22-C23-C24-C25

Continued from previous page...

8GBT

Mol	Chain	Res	Type	Atoms
18	L	101	TGL	CA5-CA6-CA7-CA8
18	N	606	TGL	C16-C15-CC9-CC8
24	С	305	CDL	C37-C38-C39-C40
24	С	305	CDL	C42-C43-C44-C45
24	Р	305	CDL	C16-C17-C18-C19
24	Т	104	CDL	C55-C56-C57-C58
24	Т	104	CDL	C75-C76-C77-C78
18	N	608	TGL	CB2-CB1-OG2-CG2
27	Т	103	PEK	C2-C1-O01-C02
18	А	606	TGL	C19-C33-C34-C35
18	L	101	TGL	C16-C15-CC9-CC8
18	N	608	TGL	CA4-CA5-CA6-CA7
18	N	608	TGL	C13-C14-C29-C30
19	Р	304	PGV	C30-C31-C32-C33
19	Z	101	PGV	C4-C5-C6-C7
24	G	104	CDL	C80-C81-C82-C83
24	Р	305	CDL	C56-C57-C58-C59
25	R	201	PSC	C5-C6-C7-C8
27	Р	303	PEK	C26-C27-C28-C29
27	G	106	PEK	C22-C21-O03-C01
18	Ι	101	TGL	CC7-CC8-CC9-C15
18	N	608	TGL	C17-C18-C19-C33
18	N	608	TGL	C14-C29-C30-C31
18	Y	101	TGL	C16-C15-CC9-CC8
24	Р	305	CDL	C41-C42-C43-C44
24	Р	305	CDL	C81-C82-C83-C84
25	E	201	PSC	C5-C6-C7-C8
28	Q	201	DMU	C19-C22-C25-C28
18	I	101	TGL	CG1-CG2-OG2-CB1
19	M	101	PGV	C03-C02-O01-C1
18	A	606	TGL	OB1-CB1-OG2-CG2
27	Т	101	PEK	O02-C1-O01-C02
27	<u>Т</u>	103	PEK	<u> </u>
18		101	TGL	CA4-CA5-CA6-CA7
18	N	606	TGL	CB9-C10-C11-C12
18	Y	101	TGL	C14-C29-C30-C31
19	A	607	PGV	<u>C5-C6-C7-C8</u>
19	A	607	PGV	<u>C7-C8-C9-C10</u>
19	N D	607	PGV	<u>C6-C7-C8-C9</u>
19	P	304	PGV	C20-C21-C22-C23
24		305	CDL	<u>C11-C12-C13-C14</u>
24	P	305	CDL	C23-C24-C25-C26

Continued from previous page...

MolChainResTypeAtoms25E201PSC $C4-C5-C6-C7$ 25E201PSC $C29-C30-C31-C32$ 27G101PEK $C24-C25-C26-C27$ 19U101PGV $C02-C03-O11-P$ 18I101TGL $C13-C14-C29-C30$ 18L101TGLCC3-CC4+CC5-CC618Y101TGLCC3-C24-C25-C2627G101PEKC23-C24-C25-C2627G103PEKC32-C33-C34-C3519A607PGVO12-C04-C05-O0519M101PGVO12-C04-C05-O0524C305CDLO1-C1-CA2-OA218I101TGLCC5-C6-CC7-CC819C304PGVC29-C30-C31-C3224C305CDLC16-C17-C18-C1924T104CDLC17-C18-C19-C2027T101PEKC28-C29-C30-C3128M102DMUC25-C28-C31-C3418L101TGLC21-C22-C23-C2428G102DMUC1-C6-O16-C1818Y101TGLC21-C23-C24-C2519P304PGVC28-C29-C30-C3124C305CDLC13-C14-C15-C1627T103PEKC22-C23-C24-C2519P304PGVC24-C25-C26-C2718 <th>Conti</th> <th><u>nuea</u> fron</th> <th><u>i previ</u></th> <th><u>ous pag</u>e.</th> <th></th>	Conti	<u>nuea</u> fron	<u>i previ</u>	<u>ous pag</u> e.	
25 E 201 PSC C4-C5-C6-C7 25 E 201 PSC C29-C30-C31-C32 27 G 101 PEK C24-C25-C26-C27 19 U 101 PGV C02-C03-O11-P 18 I 101 TGL CC3-CC4-C25-C26 18 Y 101 TGL CB5-CB6-CB7-CB8 24 C 305 CDL C71-C72-C73-C74 27 G 101 PEK C23-C24-C25-C26 27 G 103 PEK C32-C33-C34-C35 19 A 607 PGV O12-C04-C05-O05 19 M 101 PGV O12-C04-C05-O05 24 C 305 CDL O1-C1-CA2-OA2 18 A 606 TGL CA6-CA7-CA8-CA9 18 I 101 TGL CC5-C26-C27-CC8 19 C 304 PGV C29-C30-C31 24 C	Mol	Chain	Res	Type	Atoms
25 E 201 PSC C29-C30-C31-C32 27 G 101 PEK C24-C25-C26-C27 19 U 101 PGV C02-C03-O11-P 18 I 101 TGL C13-C14-C29-C30 18 L 101 TGL CC3-CC4-CC5-CC6 18 Y 101 TGL CB5-CB6-CB7-CB8 24 C 305 CDL C71-C72-C73-C74 27 G 103 PEK C32-C24-C25-C26 27 G 103 PEK C32-C34-C35 19 A 607 PGV O12-C04-C05-O05 19 M 101 PGV O12-C04-C05-O05 24 C 305 CDL O1-C1-CA2-OA2 18 A 606 TGL CA6-CA7-CA8-CA9 18 I 101 TGL CC5-CC6-CC7-CC8 19 C 304 PGV C29-C30-C31 24 C	25	Е	201	PSC	C4-C5-C6-C7
27 G 101 PEK $C24-C25-C26-C27$ 19 U 101 PGV $C02-C03-O11-P$ 18 I 101 TGL $C13-C14-C29-C30$ 18 L 101 TGL $CC3-CC4+CC5-CC6$ 18 Y 101 TGL $CC3-CC4+CC5-CC6$ 18 Y 101 TGL $CC3-CC4+C25-C26$ 24 C 305 CDL $C71-C72-C73-C74$ 27 G 103 PEK $C23-C23-C24-C25-C26$ 27 G 103 PEK $C32-C33-C34-C35$ 19 A 607 PGV $O12-C04-C05-O05$ 24 C 305 CDL $O1-C1-CA2-OA2$ 18 A 606 TGL $CA6-CA7-CA8-CA9$ 18 I 101 TGL $CC5-CC6-CC7-CC8$ 19 C 304 PGV $C29-C30-C31-C32$ 24 C 305 CDL $C16-C17-C18-C19-C20$ 27 T 101 PEK $C28-C29-C30-C31$ 28	25	Е	201	PSC	C29-C30-C31-C32
19 U 101 PGV C02-C03-O11-P 18 I 101 TGL C13-C14-C29-C30 18 L 101 TGL CC3-CC4-CC5-CC6 18 Y 101 TGL CB5-CB6-CB7-CB8 24 C 305 CDL C71-C72-C73-C74 27 G 101 PEK C23-C24-C25-C26 27 G 103 PEK C32-C33-C34-C35 19 A 607 PGV O12-C04-C05-O05 24 C 305 CDL O1-C1-CA2-OA2 18 A 606 TGL CA6-CA7-CA8-CA9 18 I 101 TGL CC5-CC6-C7-CC8 19 C 304 PGV C29-C30-C31-C32 24 C 305 CDL C16-C17-C18-C19 24 T 104 CDL C17-C18-C19-C20 27 T 101 TGL C21-C22-C33-C24 28 M	27	G	101	PEK	C24-C25-C26-C27
18 I 101 TGL C13-C14-C29-C30 18 L 101 TGL CC3-CC4-CC5-CC6 18 Y 101 TGL CB5-CB6-CB7-CB8 24 C 305 CDL C71-C72-C73-C74 27 G 101 PEK C23-C24-C25-C26 27 G 103 PEK C32-C33-C34-C35 19 A 607 PGV O12-C04-C05-O05 24 C 305 CDL O1-C1-CA2-OA2 18 A 606 TGL CA6-CA7-CA8-CA9 18 I 101 TGL CC5-CC6-C7-CC8 19 C 304 PGV C29-C30-C31-C32 24 C 305 CDL C16-C17-C18-C19 24 T 104 CDL C17-C18-C19-C20 27 T 101 TGL C22-C23-C34-C31 28 M 102 DMU C25-C26-C37-C34 18 L 101 TGL C22-C23-C24-C25 29 P 304	19	U	101	PGV	C02-C03-O11-P
18 L 101 TGL CC3-CC4-CC5-CC6 18 Y 101 TGL CB5-CB6-CB7-CB8 24 C 305 CDL C71-C72-C73-C74 27 G 101 PEK C23-C24-C25-C26 27 G 103 PEK C32-C33-C34-C35 19 A 607 PGV O12-C04-C05-O05 19 M 101 PGV O12-C04-C05-O05 24 C 305 CDL O1-C1-CA2-OA2 18 A 606 TGL CA6-CA7-CA8-CA9 18 I 101 TGL CC5-CC6-CC7-CC8 19 C 304 PGV C29-C30-C31-C32 24 C 305 CDL C16-C17-C18-C19 24 T 104 CDL C17-C18-C19-C20 27 T 101 PEK C28-C29-C30-C31 28 M 102 DMU C25-C28-C31-C34 18 L	18	Ι	101	TGL	C13-C14-C29-C30
18 Y 101 TGL CB5-CB6-CB7-CB8 24 C 305 CDL C71-C72-C73-C74 27 G 101 PEK C23-C24-C25-C26 27 G 103 PEK C32-C33-C34-C35 19 A 607 PGV O12-C04-C05-O05 19 M 101 PGV O12-C04-C05-O05 24 C 305 CDL O1-C1-CA2-OA2 18 A 606 TGL CA6-CA7-CA8-CA9 18 I 101 TGL CC5-CC6-CC7-CC8 19 C 304 PGV C29-C30-C31-C32 24 C 305 CDL C16-C17-C18-C19 24 T 104 CDL C17-C18-C19-C20 27 T 101 PEK C28-C29-C30-C31 28 M 102 DMU C1-C6-O16-C18 18 L 101 TGL C22-C23-C24-C25 19 P	18	L	101	TGL	CC3-CC4-CC5-CC6
24 C 305 CDL C71-C72-C73-C74 27 G 101 PEK C23-C24-C25-C26 27 G 103 PEK C32-C33-C34-C35 19 A 607 PGV O12-C04-C05-O05 19 M 101 PGV O12-C04-C05-O05 24 C 305 CDL O1-C1-CA2-OA2 18 A 606 TGL CA6-CA7-CA8-CA9 18 I 101 TGL CC5-CC6-CC7-CC8 19 C 304 PGV C29-C30-C31-C32 24 C 305 CDL C16-C17-C18-C19 24 T 104 CDL C17-C18-C19-C20 27 T 101 PEK C28-C29-C30-C31 28 M 102 DMU C25-C28-C31-C34 18 L 101 TGL C22-C23-C24-C25 19 P 304 PGV C28-C29-C30-C31 24 C	18	Y	101	TGL	CB5-CB6-CB7-CB8
27G101PEKC23-C24-C25-C2627G103PEKC32-C33-C34-C3519A607PGVO12-C04-C05-O0519M101PGVO12-C04-C05-O0524C305CDLO1-C1-CA2-OA218A606TGLCA6-CA7-CA8-CA918I101TGLCC5-CC6-CC7-CC819C304PGVC29-C30-C31-C3224C305CDLC16-C17-C18-C1924T104CDLC17-C18-C19-C2027T101PEKC28-C29-C30-C3128M102DMUC25-C28-C31-C3418L101TGLCC1-CC2-CC3-CC427G106PEKC21-C22-C23-C24-C2519P304PGVC28-C29-C30-C3124C305CDLC12-C13-C14-C1524C305CDLC12-C13-C14-C1524C305CDLC12-C13-C14-C1524C305CDLC13-C14-C15-C1619P304PGVC24-C25-C26-C2718N608TGLCC3-C24-C25-C26-C2724C305CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N606TGLC23-C24-C25-C2619P304PGVC2-C3-C4-C518N606TGLC23-C24-C25-C26 <td< td=""><td>24</td><td>С</td><td>305</td><td>CDL</td><td>C71-C72-C73-C74</td></td<>	24	С	305	CDL	C71-C72-C73-C74
27G103PEKC32-C33-C34-C3519A607PGVO12-C04-C05-O0519M101PGVO12-C04-C05-O0524C305CDLO1-C1-CA2-OA218A606TGLCA6-CA7-CA8-CA918I101TGLCC5-CC6-CC7-CC819C304PGVC29-C30-C31-C3224C305CDLC16-C17-C18-C1924T104CDLC17-C18-C19-C2027T101PEKC28-C29-C30-C3128M102DMUC25-C28-C31-C3418L101TGLCC1-C2-CC3-C2428G102DMUC1-C6-O16-C1818Y101TGLC22-C23-C24-C2519P304PGVC28-C29-C30-C3124C305CDLC11-C13-C14-C1524C305CDLC12-C13-C14-C1524C305CDLC12-C13-C14-C1524C305CDLC81-C82-C83-C8427T103PEKC24-C25-C26-C2718N608TGLCC3-C4-C5-C6619U101PGVC23-C24-C25-C26-C2724C305CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6419N606TGLC23-C24-C25-C2618N606TGLC23-C24-C25-C2618	27	G	101	PEK	C23-C24-C25-C26
19A607PGV $O12-C04-C05-O05$ 19M101PGV $O12-C04-C05-O05$ 24C305CDL $O1-C1-CA2-OA2$ 18A606TGL $CA6-CA7-CA8-CA9$ 18I101TGL $CC5-CC6-CC7-CC8$ 19C304PGV $C29-C30-C31-C32$ 24C305CDL $C16-C17-C18-C19$ 24T104CDL $C17-C18-C19-C20$ 27T101PEK $C28-C29-C30-C31$ 28M102DMU $C25-C28-C31-C34$ 18L101TGL $CC1-C2-CC3-CC4$ 27G106PEK $C21-C22-C23-C24$ 28G102DMU $C1-C6-O16-C18$ 18Y101TGL $C22-C23-C24-C25$ 19P304PGV $C28-C29-C30-C31$ 24C305CDL $C12-C13-C14-C15$ 24C305CDL $C12-C13-C14-C15$ 24C305CDL $C12-C13-C14-C15$ 24C305CDL $C35-C36-C37-C38$ 24P305CDL $C35-C36-C37-C38$ 24P305CDL $C13-C14-C15-C16-C17$ 18N606TGL $C23-C24-C25-C26-C27$ 24C305CDL $C15-C16-C17-C18$ 24T104CDL $C61-C62-C63-C64$ 19W101PGV $C23-C24-C25-C26-C26$ 18N6	27	G	103	PEK	C32-C33-C34-C35
19M101PGV $O12-C04-C05-O05$ 24C305CDL $O1-C1-CA2-OA2$ 18A606TGL $CA6-CA7-CA8-CA9$ 18I101TGL $CC5-CC6-CC7-CC8$ 19C304PGV $C29-C30-C31-C32$ 24C305CDL $C16-C17-C18-C19$ 24T104CDL $C17-C18-C19-C20$ 27T101PEK $C28-C29-C30-C31$ 28M102DMU $C25-C28-C31-C34$ 18L101TGL $CC1-CC2-CC3-CC4$ 27G106PEK $C21-C22-C23-C24$ 28G102DMU $C1-C6-O16-C18$ 18Y101TGL $C22-C23-C24-C25$ 19P304PGV $C28-C29-C30-C31$ 24C305CDL $C12-C13-C14-C15$ 24C305CDL $C12-C13-C14-C15$ 24C305CDL $C28-C29-C30-C31$ 24C305CDL $C12-C13-C14-C15$ 24C305CDL $C13-C14-C15-C16$ 19U101PGV $C24-C25-C26-C27$ 24C305CDL $C35-C36-C37-C38$ 24P305CDL $C13-C14-C15-C16$ 19U101PGV $C23-C24-C25-C26$ 18N606TGL $C23-C24-C25-C26$ 18N608TGL $C13-C14-C15-C16$ 18Y101	19	А	607	PGV	O12-C04-C05-O05
24C 305 CDL $O1-C1-CA2-OA2$ 18A 606 TGL $CA6-CA7-CA8-CA9$ 18I101TGL $CC5-CC6-CC7-CC8$ 19C 304 PGV $C29-C30-C31-C32$ 24C 305 CDL $C16-C17-C18-C19$ 24T104CDL $C17-C18-C19-C20$ 27T101PEK $C28-C29-C30-C31$ 28M102DMU $C25-C28-C31-C34$ 18L101TGL $CC1-CC2-CC3-CC4$ 27G106PEK $C21-C22-C23-C24$ 28G102DMU $C1-C6-O16-C18$ 18Y101TGL $C22-C23-C24-C25$ 19P 304 PGV $C28-C29-C30-C31$ 24C 305 CDL $C12-C13-C14-C15$ 24C 305 CDL $C12-C13-C14-C15$ 24C 305 CDL $C13-C14-C15-C16$ 19P 304 PGV $C24-C25-C26-C27$ 18N 608 TGL $CC3-C4-C5-C63-C64$ 19U101PGV $C23-C24-C25-C26$ 24T104CDL $C61-C62-C63-C64$ 18N 606 TGL $C23-C24-C25-C26$ 18N 606 TGL $C23-C24-C25-C26$ 18N 606 TGL $C23-C24-C25-C26$ 18N 606 TGL $C23-C24-C25-C26$ 18N 101 TGL $C11-C12-C13-C14$ 1	19	М	101	PGV	O12-C04-C05-O05
18A606TGLCA6-CA7-CA8-CA918I101TGLCC5-CC6-CC7-CC819C304PGVC29-C30-C31-C3224C305CDLC16-C17-C18-C1924T104CDLC17-C18-C19-C2027T101PEKC28-C29-C30-C3128M102DMUC25-C28-C31-C3418L101TGLCC1-CC2-CC3-CC427G106PEKC21-C22-C23-C2428G102DMUC1-C6-O16-C1818Y101TGLC22-C23-C24-C2519P304PGVC28-C29-C30-C3124C305CDLC12-C13-C14-C1524C305CDLC12-C13-C14-C1524C305CDLC21-C22-C23-C24-C2519P304PGVC24-C25-C26-C2718N608TGLCC7-CC8-CC9-C1519C303PGVC13-C14-C15-C1619U101PGVC24-C25-C26-C2724C305CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N606TGLC23-C24-C25-C2618N606TGLC23-C24-C25-C2618N608TGLC11-C10-CB9-CB818Y101TGLC11-C10-CB9-CB818Y101TGLC11-C12-C13-C14 <td< td=""><td>24</td><td>С</td><td>305</td><td>CDL</td><td>O1-C1-CA2-OA2</td></td<>	24	С	305	CDL	O1-C1-CA2-OA2
18I101TGLCC5-CC6-CC7-CC819C 304 PGVC29-C30-C31-C3224C 305 CDLC16-C17-C18-C1924T104CDLC17-C18-C19-C2027T101PEKC28-C29-C30-C3128M102DMUC25-C28-C31-C3418L101TGLCC1-CC2-CC3-CC427G106PEKC21-C22-C23-C2428G102DMUC1-C6-O16-C1818Y101TGLC22-C23-C24-C2519P304PGVC28-C29-C30-C3124C305CDLC11-C13-C14-C1524C305CDLC12-C13-C14-C1524C305CDLC81-C82-C83-C8427T103PEKC24-C25-C26-C2718N608TGLCC7-CC8-CC9-C1519C303PGVC13-C14-C15-C1619U101PGVC24-C25-C26-C2724C305CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N606TGLC23-C24-C25-C2618N606TGLC23-C24-C25-C2618N608TGLCC3-CC4-C5-CC618Y101TGLC11-C10-CB9-CB818Y101TGLC11-C12-C13-C1419M101PGVC2-C3-C4-C519 </td <td>18</td> <td>А</td> <td>606</td> <td>TGL</td> <td>CA6-CA7-CA8-CA9</td>	18	А	606	TGL	CA6-CA7-CA8-CA9
19C 304 PGVC29-C30-C31-C3224C 305 CDLC16-C17-C18-C1924T 104 CDLC17-C18-C19-C2027T 101 PEKC28-C29-C30-C3128M 102 DMUC25-C28-C31-C3418L 101 TGLCC1-CC2-CC3-CC427G 106 PEKC21-C22-C23-C2428G 102 DMUC1-C6-O16-C1818Y 101 TGLC22-C23-C24-C2519P 304 PGVC28-C29-C30-C3124C 305 CDLC12-C13-C14-C1524C 305 CDLC12-C13-C14-C1524C 305 CDLC81-C82-C83-C8427T 103 PEKC24-C25-C26-C2718N 608 TGLCC7-CC8-CC9-C1519C 303 PGVC13-C14-C15-C1619U 101 PGVC24-C25-C26-C2724C 305 CDLC15-C16-C17-C1824T 104 CDLC61-C62-C63-C6418N 606 TGLCC3-C24-C25-C2618N 608 TGLCC3-CC4-C5-CC618Y 101 TGLC11-C10-CB9-CB818Y 101 TGLC11-C12-C13-C1419M 101 PGVC2-C3-C4-C519P 304 PGVC7-C8-C9-C1019U 101 PGV<	18	Ι	101	TGL	CC5-CC6-CC7-CC8
24C 305 CDLC16-C17-C18-C1924T104CDLC17-C18-C19-C2027T101PEKC28-C29-C30-C3128M102DMUC25-C28-C31-C3418L101TGLCC1-CC2-CC3-CC427G106PEKC21-C22-C23-C2428G102DMUC1-C6-O16-C1818Y101TGLC22-C23-C24-C2519P304PGVC28-C29-C30-C3124C305CDLC12-C13-C14-C1524C305CDLC12-C13-C14-C1524C305CDLC81-C82-C83-C8427T103PEKC24-C25-C26-C2718N608TGLCC7-CC8-CC9-C1519C303PGVC13-C14-C15-C1619U101PGVC24-C25-C26-C2724C305CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N606TGLCC3-C24-C25-C2618N608TGLCC3-C24-C25-C2618N608TGLC11-C10-CB9-CB818Y101TGLC11-C10-CB9-CB818Y101TGLC11-C12-C13-C1419M101PGVC2-C3-C4-C519P304PGVC7-C8-C9-C1019U101PGVC13-C14-C15-C16	19	С	304	PGV	C29-C30-C31-C32
24T 104 CDLC17-C18-C19-C20 27 T 101 PEKC28-C29-C30-C31 28 M 102 DMUC25-C28-C31-C34 18 L 101 TGLCC1-CC2-CC3-CC4 27 G 106 PEKC21-C22-C23-C24 28 G 102 DMUC1-C6-O16-C18 18 Y 101 TGLC22-C23-C24-C25 19 P 304 PGVC28-C29-C30-C31 24 C 305 CDLC12-C13-C14-C15 24 C 305 CDLC81-C82-C83-C84 27 T 103 PEKC24-C25-C26-C27 18 N 608 TGLCC7-CC8-CC9-C15 19 C 303 PGVC13-C14-C15-C16 19 U 101 PGVC24-C25-C26-C27 24 C 305 CDLC15-C16-C17-C18 24 P 305 CDLC15-C16-C17-C18 24 P 305 CDLC15-C16-C17-C18 24 P 305 CDLC15-C16-C17-C18 24 P 305 CDLC15-C16-C17-C18 18 N 606 TGLC23-C24-C25-C26 18 N 606 TGLCC3-CC4-C5-CC6 18 Y 101 TGLC11-C10-CB9-CB8 18 Y 101 TGLC11-C10-CB9-CB8 18 Y 101 PGVC2-C3-C4-C5 19 P 304 PGVC7-C8-C9-C10 </td <td>24</td> <td>С</td> <td>305</td> <td>CDL</td> <td>C16-C17-C18-C19</td>	24	С	305	CDL	C16-C17-C18-C19
27T101PEKC28-C29-C30-C3128M102DMUC25-C28-C31-C3418L101TGLCC1-CC2-CC3-CC427G106PEKC21-C22-C23-C2428G102DMUC1-C6-O16-C1818Y101TGLC22-C23-C24-C2519P304PGVC28-C29-C30-C3124C305CDLC12-C13-C14-C1524C305CDLC81-C82-C83-C8427T103PEKC24-C25-C26-C2718N608TGLCC7-CC8-CC9-C1519C303PGVC13-C14-C15-C1619U101PGVC24-C25-C26-C2724C305CDLC35-C36-C37-C3824P305CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N606TGLC23-C24-C25-C2618N606TGLCC3-CC4-C5-CC618Y101TGLC11-C10-CB9-CB818Y101TGLC11-C12-C13-C1419M101PGVC2-C3-C4-C519P304PGVC7-C8-C9-C1019U101PGVC2-C3-C4-C519P304PGVC7-C8-C9-C1019U101PGVC13-C14-C15-C16	24	Т	104	CDL	C17-C18-C19-C20
28M102DMUC25-C28-C31-C3418L101TGLCC1-CC2-CC3-CC427G106PEKC21-C22-C23-C2428G102DMUC1-C6-O16-C1818Y101TGLC22-C23-C24-C2519P304PGVC28-C29-C30-C3124C305CDLC12-C13-C14-C1524C305CDLC81-C82-C83-C8427T103PEKC24-C25-C26-C2718N608TGLCC7-CC8-CC9-C1519C303PGVC13-C14-C15-C1619U101PGVC24-C25-C26-C2724C305CDLC35-C36-C37-C3824P305CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N606TGLC23-C24-C25-C2618N608TGLCC3-CC4-C5-CC618Y101TGLC11-C10-CB9-CB818Y101TGLC11-C12-C13-C1419M101PGVC2-C3-C4-C519P304PGVC7-C8-C9-C1019U101PGVC13-C14-C15-C16	27	Т	101	PEK	C28-C29-C30-C31
18L101TGLCC1-CC2-CC3-CC427G106PEKC21-C22-C23-C2428G102DMUC1-C6-O16-C1818Y101TGLC22-C23-C24-C2519P304PGVC28-C29-C30-C3124C305CDLC12-C13-C14-C1524C305CDLC81-C82-C83-C8427T103PEKC24-C25-C26-C2718N608TGLCC7-CC8-CC9-C1519C303PGVC13-C14-C15-C1619U101PGVC24-C25-C26-C2724C305CDLC35-C36-C37-C3824P305CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N606TGLCC3-C24-C25-C2618N608TGLCC3-C24-C25-C2618Y101TGLC11-C10-CB9-CB818Y101TGLC11-C12-C13-C1419M101PGVC2-C3-C4-C519P304PGVC7-C8-C9-C1019U101PGVC13-C14-C15-C16	28	М	102	DMU	C25-C28-C31-C34
27G106PEKC21-C22-C23-C2428G102DMUC1-C6-O16-C1818Y101TGLC22-C23-C24-C2519P304PGVC28-C29-C30-C3124C305CDLC12-C13-C14-C1524C305CDLC81-C82-C83-C8427T103PEKC24-C25-C26-C2718N608TGLCC7-CC8-CC9-C1519C303PGVC13-C14-C15-C1619U101PGVC24-C25-C26-C2724C305CDLC35-C36-C37-C3824P305CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N606TGLC23-C24-C25-C2618N608TGLCC3-C24-C25-C2618Y101TGLC11-C10-CB9-CB818Y101TGLC11-C12-C13-C1419M101PGVC2-C3-C4-C519P304PGVC7-C8-C9-C1019U101PGVC13-C14-C15-C16	18	L	101	TGL	CC1-CC2-CC3-CC4
28G 102 DMUC1-C6-O16-C18 18 Y 101 TGLC22-C23-C24-C25 19 P 304 PGVC28-C29-C30-C31 24 C 305 CDLC12-C13-C14-C15 24 C 305 CDLC81-C82-C83-C84 27 T 103 PEKC24-C25-C26-C27 18 N 608 TGLCC7-CC8-CC9-C15 19 C 303 PGVC13-C14-C15-C16 19 U 101 PGVC24-C25-C26-C27 24 C 305 CDLC35-C36-C37-C38 24 P 305 CDLC15-C16-C17-C18 24 T 104 CDLC61-C62-C63-C64 18 N 606 TGLC23-C24-C25-C26 18 N 608 TGLCC3-CC4-CC5-CC6 18 Y 101 TGLC11-C10-CB9-CB8 18 Y 101 TGLC11-C12-C13-C14 19 M 101 PGVC2-C3-C4-C5 19 P 304 PGVC7-C8-C9-C10 19 U 101 PGVC13-C14-C15-C16	27	G	106	PEK	C21-C22-C23-C24
18Y101TGLC22-C23-C24-C2519P 304 PGVC28-C29-C30-C3124C 305 CDLC12-C13-C14-C1524C 305 CDLC81-C82-C83-C8427T 103 PEKC24-C25-C26-C2718N 608 TGLCC7-CC8-CC9-C1519C 303 PGVC13-C14-C15-C1619U101PGVC24-C25-C26-C2724C 305 CDLC35-C36-C37-C3824P 305 CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N 606 TGLC23-C24-C25-C2618N 606 TGLCC3-CC4-CC5-CC618Y101TGLC11-C10-CB9-CB818Y101TGLC11-C12-C13-C1419M101PGVC2-C3-C4-C519P 304 PGVC7-C8-C9-C1019U101PGVC13-C14-C15-C16	28	G	102	DMU	C1-C6-O16-C18
19P 304 PGVC28-C29-C30-C3124C 305 CDLC12-C13-C14-C1524C 305 CDLC81-C82-C83-C8427T 103 PEKC24-C25-C26-C2718N 608 TGLCC7-CC8-CC9-C1519C 303 PGVC13-C14-C15-C1619U101PGVC24-C25-C26-C2724C 305 CDLC35-C36-C37-C3824P 305 CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N 606 TGLC23-C24-C25-C2618N 606 TGLCC3-CC4-CC5-CC618Y101TGLC11-C10-CB9-CB818Y101TGLC11-C10-CB9-CB818Y101TGLC11-C12-C13-C1419M101PGVC2-C3-C4-C519P 304 PGVC7-C8-C9-C1019U101PGVC13-C14-C15-C16	18	Y	101	TGL	C22-C23-C24-C25
24C 305 CDLC12-C13-C14-C15 24 C 305 CDLC81-C82-C83-C84 27 T 103 PEKC24-C25-C26-C27 18 N 608 TGLCC7-CC8-CC9-C15 19 C 303 PGVC13-C14-C15-C16 19 U 101 PGVC24-C25-C26-C27 24 C 305 CDLC35-C36-C37-C38 24 P 305 CDLC15-C16-C17-C18 24 T 104 CDLC61-C62-C63-C64 18 N 606 TGLC23-C24-C25-C26 18 N 606 TGLCC3-CC4-CC5-CC6 18 Y 101 TGLC11-C10-CB9-CB8 18 Y 101 TGLC11-C12-C13-C14 19 M 101 PGVC2-C3-C4-C5 19 P 304 PGVC7-C8-C9-C10 19 U 101 PGVC13-C14-C15-C16	19	Р	304	PGV	C28-C29-C30-C31
24C 305 CDLC81-C82-C83-C84 27 T 103 PEKC24-C25-C26-C27 18 N 608 TGLCC7-CC8-CC9-C15 19 C 303 PGVC13-C14-C15-C16 19 U 101 PGVC24-C25-C26-C27 24 C 305 CDLC35-C36-C37-C38 24 P 305 CDLC15-C16-C17-C18 24 T 104 CDLC61-C62-C63-C64 18 N 606 TGLCC3-C24-C25-C26 18 N 606 TGLCC3-C24-C25-C26 18 Y 101 TGLC11-C10-CB9-CB8 18 Y 101 TGLC11-C12-C13-C14 19 M 101 PGVC2-C3-C4-C5 19 P 304 PGVC7-C8-C9-C10 19 U 101 PGVC13-C14-C15-C16	24	С	305	CDL	C12-C13-C14-C15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	С	305	CDL	C81-C82-C83-C84
18N608TGLCC7-CC8-CC9-C1519C303PGVC13-C14-C15-C1619U101PGVC24-C25-C26-C2724C305CDLC35-C36-C37-C3824P305CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N606TGLC23-C24-C25-C2618N608TGLCC3-CC4-CC5-CC618Y101TGLC11-C10-CB9-CB818Y101TGLC11-C12-C13-C1419M101PGVC2-C3-C4-C519P304PGVC7-C8-C9-C1019U101PGVC13-C14-C15-C16	27	Т	103	PEK	C24-C25-C26-C27
19C 303 PGVC13-C14-C15-C1619U101PGVC24-C25-C26-C2724C 305 CDLC35-C36-C37-C3824P 305 CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N606TGLCC3-C24-C25-C2618N608TGLCC3-CC4-CC5-CC618Y101TGLC11-C10-CB9-CB818Y101TGLC11-C12-C13-C1419M101PGVC2-C3-C4-C519P 304 PGVC7-C8-C9-C1019U101PGVC13-C14-C15-C16	18	N	608	TGL	CC7-CC8-CC9-C15
19U101PGVC24-C25-C26-C2724C305CDLC35-C36-C37-C3824P305CDLC15-C16-C17-C1824T104CDLC61-C62-C63-C6418N606TGLCC9-C15-C16-C1718N606TGLCC3-C24-C25-C2618N608TGLCC3-CC4-CC5-CC618Y101TGLC11-C10-CB9-CB818Y101TGLC11-C12-C13-C1419M101PGVC2-C3-C4-C519P304PGVC7-C8-C9-C1019U101PGVC13-C14-C15-C16	19	С	303	PGV	C13-C14-C15-C16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	U	101	PGV	C24-C25-C26-C27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	С	305	CDL	C35-C36-C37-C38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	Р	305	CDL	C15-C16-C17-C18
18 N 606 TGL CC9-C15-C16-C17 18 N 606 TGL C23-C24-C25-C26 18 N 608 TGL CC3-CC4-CC5-CC6 18 Y 101 TGL C11-C10-CB9-CB8 18 Y 101 TGL C11-C12-C13-C14 19 M 101 PGV C2-C3-C4-C5 19 P 304 PGV C7-C8-C9-C10 19 U 101 PGV C13-C14-C15-C16	24	Т	104	CDL	C61-C62-C63-C64
18 N 606 TGL C23-C24-C25-C26 18 N 608 TGL CC3-CC4-CC5-CC6 18 Y 101 TGL C11-C10-CB9-CB8 18 Y 101 TGL C11-C12-C13-C14 19 M 101 PGV C2-C3-C4-C5 19 P 304 PGV C7-C8-C9-C10 19 U 101 PGV C13-C14-C15-C16	18	N	606	TGL	CC9-C15-C16-C17
18 N 608 TGL CC3-CC4-CC5-CC6 18 Y 101 TGL C11-C10-CB9-CB8 18 Y 101 TGL C11-C12-C13-C14 19 M 101 PGV C2-C3-C4-C5 19 P 304 PGV C7-C8-C9-C10 19 U 101 PGV C13-C14-C15-C16	18	N	606	TGL	C23-C24-C25-C26
18 Y 101 TGL C11-C10-CB9-CB8 18 Y 101 TGL C11-C12-C13-C14 19 M 101 PGV C2-C3-C4-C5 19 P 304 PGV C7-C8-C9-C10 19 U 101 PGV C13-C14-C15-C16	18	N	608	TGL	CC3-CC4-CC5-CC6
18 Y 101 TGL C11-C12-C13-C14 19 M 101 PGV C2-C3-C4-C5 19 P 304 PGV C7-C8-C9-C10 19 U 101 PGV C13-C14-C15-C16	18	Y	101	TGL	C11-C10-CB9-CB8
19M101PGVC2-C3-C4-C519P304PGVC7-C8-C9-C1019U101PGVC13-C14-C15-C16	18	Y	101	TGL	C11-C12-C13-C14
19 P 304 PGV C7-C8-C9-C10 19 U 101 PGV C13-C14-C15-C16	19	М	101	PGV	C2-C3-C4-C5
19 U 101 PGV C13-C14-C15-C16	19	Р	304	PGV	C7-C8-C9-C10
	19	U	101	PGV	C13-C14-C15-C16

0 +: d fa .

	Chain	Bos	Type	Atoms
10		101	DCV	C20 C20 C21 C22
19		101 205		029-030-031-032
24		303		$\bigcirc 14 \ \bigcirc 15 \ \bigcirc 16 \ \bigcirc 17$
24	G	104	CDL	C14-C15-C16-C17
24	G	104	CDL	C37-C38-C39-C40
24	Т	104	CDL	C18-C19-C20-C21
24	Т	104	CDL	C19-C20-C21-C22
28	Т	102	DMU	C28-C31-C34-C37
18	A	606	TGL	CB9-C10-C11-C12
18	I	101	TGL	C21-C20-CA9-CA8
19	М	101	PGV	C4-C5-C6-C7
19	М	101	PGV	C24-C25-C26-C27
19	Р	304	PGV	C22-C23-C24-C25
24	С	305	CDL	C40-C41-C42-C43
24	Т	104	CDL	C72-C73-C74-C75
27	G	106	PEK	C16-C17-C18-C19
28	Q	201	DMU	C25-C28-C31-C34
19	Z	101	PGV	C04-C05-C06-O06
28	Т	102	DMU	O5-C4-C57-O61
27	Т	101	PEK	C2-C1-O01-C02
18	N	608	TGL	CB9-C10-C11-C12
24	Т	104	CDL	C20-C21-C22-C23
27	Т	101	PEK	C29-C30-C31-C32
27	Т	103	PEK	C34-C35-C36-C37
28	G	102	DMU	C3-C4-C57-O61
22	В	302	CHD	C21-C20-C22-C23
19	М	101	PGV	C12-C13-C14-C15
18	А	606	TGL	CA2-CA3-CA4-CA5
18	Ι	101	TGL	CC3-CC4-CC5-CC6
18	L	101	TGL	C11-C12-C13-C14
18	N	608	TGL	CA7-CA8-CA9-C20
18	Y	101	TGL	CA9-C20-C21-C22
19	С	304	PGV	C14-C15-C16-C17
19	U	101	PGV	C23-C24-C25-C26
24	Р	305	CDL	C35-C36-C37-C38
24	Р	305	CDL	C79-C80-C81-C82
24	Т	104	CDL	C35-C36-C37-C38
25	R	201	PSC	C14-C15-C16-C17
$\frac{-5}{25}$	R	201	PSC	C23-C24-C25-C26
$\frac{-5}{25}$	R	201	PSC	C27-C28-C29-C30
$\frac{-5}{25}$	R	201	PSC	C29-C30-C31-C32
$\frac{20}{27}$	G	103	PEK	C23-C24-C25-C26
27	P	303	PEK	C31-C32-C33-C34
	1	000	T TOTY	

Continued from previous page...

8GBT

Mol	Chain	Res	Type	Atoms
27	G	106	PEK	C01-C02-C03-O11
18	I	101	TGL	CB4-CB5-CB6-CB7
18	L	101	TGL	C11-C10-CB9-CB8
18	L	101	TGL	C20-C21-C22-C23
18	N	606	TGL	C13-C14-C29-C30
10	A	607	PGV	C29-C30-C31-C32
10	I	101	PGV	C20-C21-C22-C23
$\frac{13}{24}$	C	305	CDL	C53-C54-C55-C56
21	G	101	PEK	C32-C33-C34-C35
$\frac{21}{27}$	P	303	PEK	012-C04-C05-N
18	Δ	606	TGL	$\frac{\text{CC6-CC7-CC8-CC9}}{\text{CC6-CC7-CC8-CC9}}$
18	I	101	TGL	C17-C18-C19-C33
18	I L	101	TGL	C13-C14-C29-C30
18	N	608	TCL	$CC5_CC6_CC7_CC8$
18	V	101	TGL	CA3-CA4-CA5-CA6
10	I C	303	PCV	0.00000000000000000000000000000000000
$\frac{15}{24}$	P	305	CDL	C54-C55-C56-C57
24	T	104	CDL	$\begin{array}{c} C_{13} C_{14} C_{15} C_{16} \\ \hline \end{array}$
$\frac{24}{97}$	T	104	DEK	$\begin{array}{c} 013-014-010-010\\ \hline 022 \ 023 \ 024 \ 025 \end{array}$
21		201	DMU	$\begin{array}{c} 022 - 023 - 024 - 023 \\ \hline 028 \ 031 \ 034 \ 037 \\ \hline \end{array}$
$\frac{20}{27}$		106	DINU	$\begin{array}{c} 020 \\ \hline 01 \\ \hline 02 \\ \hline 03 \\ \hline 04 \\ \hline 04 \\ \hline 03 \\ \hline 04 \\ \hline 04 \\ \hline 01 \\ \hline 02 \\ \hline 03 \\ \hline 04 \\ \hline 04 \\ \hline 04 \\ \hline 05 \hline 05$
18		606	TCI	CB2 CB3 CB4 CB5
10	A N	607	PCV	$\begin{array}{c} 0.02 \\ \hline 0.02 $
$\frac{19}{24}$	IN C	305		0.00000000000000000000000000000000000
24		101	DEK	$\begin{array}{c} 0.000 \\ \hline 0.000 \\ \hline$
10	I C	304	PCV	$\begin{array}{c} 0.000 \\ 0.0000$
19 25	E E	201	PSC	$\frac{0.00-0.000}{0.000}$
18	L	101	TGL	$\begin{array}{c} 020 - 021 - 020 - 023 \\ \hline 017 \ 018 \ 010 \ 023 \end{array}$
18	N L	606	TGL	$\frac{C16-C17-C18-C19}{C16-C17-C18-C19}$
10	Δ	607	PCV	C6-C7-C8-C9
21		305	CDL	C55_C56_C57_C58
24	G	104	CDL	C63-C64-C65-C66
24	R	201	PSC	$C21_C22_C23_C24$
$\frac{20}{27}$	T	101	PEK	$C_{23}C_{24}C_{25}C_{24}$
21		101	PEK	020-024-020-020
18	N	608	TCL	$C21_C20_C\Delta 0_C\Delta 8$
10	C	304	PCV	C24-C25-C76-C77
10	N	607	PCV	$\begin{array}{c} 024 - 020 - 020 - 021 \\ \hline 02 - 020 \\ \hline 0$
10	P	307	PCV	$C13_C14_C15_C16$
<u>1</u> 3 <u>9</u> 4		204		C60_C61_C62_C62
24	P	305	CDL	C50-C61-C61-C63
18	Δ	606	TCL	CB2_CB1_OC2 CC2
1 10	1 11	000		

Continued from previous page...

8GBT

			us puge	· · ·
Mol	Chain	Res	Type	Atoms
18	L	101	TGL	C21-C22-C23-C24
19	С	303	PGV	C14-C15-C16-C17
24	Т	104	CDL	C60-C61-C62-C63
24	Т	104	CDL	C62-C63-C64-C65
27	G	103	PEK	C25-C26-C27-C28
19	А	607	PGV	C12-C13-C14-C15
27	Т	103	PEK	C15-C16-C17-C18
18	N	608	TGL	CB6-CB7-CB8-CB9
18	Y	101	TGL	C23-C24-C25-C26
19	С	304	PGV	C13-C14-C15-C16
28	G	102	DMU	C25-C28-C31-C34
19	С	303	PGV	C1-C2-C3-C4
19	U	101	PGV	C22-C23-C24-C25
24	Р	305	CDL	C17-C18-C19-C20
18	А	606	TGL	C12-C13-C14-C29
24	G	104	CDL	C79-C80-C81-C82
18	N	608	TGL	C20-C21-C22-C23
18	N	606	TGL	CB2-CB1-OG2-CG2
18	L	101	TGL	CB5-CB6-CB7-CB8
19	Ζ	101	PGV	C2-C3-C4-C5
27	Т	103	PEK	C16-C17-C18-C19
24	Т	104	CDL	C37-C38-C39-C40
19	С	304	PGV	C11-C10-C9-C8
18	Y	101	TGL	OB1-CB1-OG2-CG2
19	N	607	PGV	O02-C1-O01-C02
18	N	606	TGL	CA6-CA7-CA8-CA9
24	Р	305	CDL	C13-C14-C15-C16
24	Т	104	CDL	C34-C35-C36-C37
18	N	606	TGL	C17-C18-C19-C33
19	U	101	PGV	C3-C4-C5-C6
18	Y	101	TGL	CB4-CB5-CB6-CB7
18	Y	101	TGL	C15-C16-C17-C18
28	G	102	DMU	O5-C6-O16-C18
18	А	606	TGL	C16-C17-C18-C19
18	Y	101	TGL	CB2-CB1-OG2-CG2
19	N	607	PGV	C2-C1-O01-C02
24	G	104	CDL	OA5-CA3-CA4-OA6
18	Y	101	TGL	C21-C22-C23-C24
27	Р	303	PEK	C28-C29-C30-C31
18	N	606	TGL	OB1-CB1-OG2-CG2
18	L	101	TGL	CA3-CA4-CA5-CA6
18	L	101	TGL	C15-C16-C17-C18

Continued from previous page...

8GBT

Mol	Chain	Res	Tvpe	Atoms
27	G	106	PEK	<u>003-C01-C02-O01</u>
$\frac{-1}{27}$	T	103	PEK	<u>003-C01-C02-O01</u>
18	A	606	TGL	CC4-CC5-CC6-CC7
19	C	304	PGV	C21-C22-C23-C24
24	C	305	CDL	C59-C60-C61-C62
24	P	305	CDL	C73-C74-C75-C76
25	E	201	PSC	C20-C21-C22-C23
18	N	608	TGL	CB3-CB4-CB5-CB6
19	С	304	PGV	C23-C24-C25-C26
19	N	607	PGV	C14-C15-C16-C17
24	С	305	CDL	C17-C18-C19-C20
24	G	104	CDL	C40-C41-C42-C43
19	С	304	PGV	C12-C13-C14-C15
19	М	101	PGV	C11-C10-C9-C8
19	N	607	PGV	C19-C20-C21-C22
24	Т	104	CDL	C33-C34-C35-C36
27	Т	101	PEK	C24-C25-C26-C27
27	Т	103	PEK	C25-C26-C27-C28
18	L	101	TGL	C12-C13-C14-C29
18	Ι	101	TGL	CA5-CA6-CA7-CA8
19	С	304	PGV	C5-C6-C7-C8
24	G	104	CDL	C18-C19-C20-C21
24	G	104	CDL	C33-C34-C35-C36
19	С	304	PGV	C22-C23-C24-C25
19	Z	101	PGV	C6-C7-C8-C9
24	Р	305	CDL	C74-C75-C76-C77
24	G	104	CDL	CB3-OB5-PB2-OB2
19	С	303	PGV	C7-C8-C9-C10
19	М	101	PGV	C02-C03-O11-P
24	G	104	CDL	C1-CB2-OB2-PB2
24	C	305	CDL	C62-C63-C64-C65
27	G	106	PEK	C27-C28-C29-C30
24	P	305	CDL	OB5-CB3-CB4-CB6
24	T	104	CDL	OA5-CA3-CA4-CA6
18	L	101	TGL	C16-C17-C18-C19
18	N	606	TGL	CB2-CB3-CB4-CB5
27	G	106	PEK	C26-C27-C28-C29
19	М	101	PGV	C13-C14-C15-C16
19	Z	101	PGV	C24-C25-C26-C27
24	G	104	CDL	C13-C14-C15-C16
24	G	104	CDL	C36-C37-C38-C39
24	Т	104	CDL	C31-C32-C33-C34

Continued from previous page...

8GBT

Mol	Chain	Res	Type	Atoms
24	Т	104	CDL	C57-C58-C59-C60
24	C	305	CDL	C71-CB7-OB8-CB6
19	M	101	PGV	O12-C04-C05-C06
18	N	606	TGL	CA9-C20-C21-C22
19	A	607	PGV	C4-C5-C6-C7
18	A	606	TGL	C23-C24-C25-C26
18	Y	101	TGL	CA5-CA6-CA7-CA8
24	G	104	CDL	C31-C32-C33-C34
24	G	104	CDL	C61-C62-C63-C64
18	А	606	TGL	CG1-CG2-CG3-OG3
19	U	101	PGV	O03-C01-C02-C03
24	С	305	CDL	CA3-CA4-CA6-OA8
24	С	305	CDL	CB3-CB4-CB6-OB8
24	G	104	CDL	CA3-CA4-CA6-OA8
25	Е	201	PSC	O03-C01-C02-C03
18	А	606	TGL	C29-C30-C31-C32
14	N	602	HEA	C4D-C3D-CAD-CBD
19	М	101	PGV	C15-C16-C17-C18
24	С	305	CDL	C73-C74-C75-C76
24	Т	104	CDL	C16-C17-C18-C19
24	Р	305	CDL	CB5-C51-C52-C53
18	Ι	101	TGL	C25-C26-C27-C28
18	L	101	TGL	CB3-CB4-CB5-CB6
18	L	101	TGL	C22-C23-C24-C25
27	Т	101	PEK	C2-C3-C4-C5
27	Т	101	PEK	C15-C16-C17-C18
27	Т	103	PEK	C2-C3-C4-C5
24	G	104	CDL	C16-C17-C18-C19
18	N	606	TGL	CC4-CC5-CC6-CC7
19	Р	304	PGV	C14-C15-C16-C17
24	G	104	CDL	C24-C25-C26-C27
18	Y	101	TGL	CB1-CB2-CB3-CB4
19	Р	304	PGV	C20-C19-O03-C01
27	Р	303	PEK	C22-C21-O03-C01
19	С	303	PGV	C15-C16-C17-C18
19	Z	101	PGV	C03-C02-O01-C1
14	A	601	HEA	C11-C12-C13-C14
27	G	103	PEK	C17-C18-C19-C20
19	М	101	PGV	C1-C2-C3-C4
18	L	101	TGL	CC4-CC5-CC6-CC7
24	С	305	CDL	OB9-CB7-OB8-CB6
19	Z	101	PGV	O01-C02-C03-O11

Continued from previous page...

8GBT

Mol	Chain	Res	Type	Atoms
27	Т	103	PEK	O01-C02-C03-O11
19	N	607	PGV	O03-C19-C20-C21
18	L	101	TGL	CC5-CC6-CC7-CC8
29	Ι	102	SAC	N-CA-CB-OG
19	U	101	PGV	C5-C6-C7-C8
24	G	104	CDL	C15-C16-C17-C18
19	U	101	PGV	C27-C28-C29-C30
24	Т	104	CDL	C77-C78-C79-C80
27	Р	303	PEK	C2-C3-C4-C5
24	С	305	CDL	C72-C73-C74-C75
18	N	606	TGL	OG2-CG2-CG3-OG3
18	Y	101	TGL	CC2-CC3-CC4-CC5
19	U	101	PGV	C31-C32-C33-C34
27	Р	303	PEK	O04-C21-O03-C01
19	N	607	PGV	C7-C8-C9-C10
19	U	101	PGV	C7-C8-C9-C10
27	G	101	PEK	C34-C35-C36-C37
14	N	602	HEA	C2D-C3D-CAD-CBD
27	G	106	PEK	C33-C34-C35-C36
27	Т	101	PEK	C34-C35-C36-C37
18	N	608	TGL	CB5-CB6-CB7-CB8
19	U	101	PGV	C30-C31-C32-C33
24	Р	305	CDL	C61-C62-C63-C64
18	Ι	101	TGL	C19-C33-C34-C35
19	С	304	PGV	C3-C4-C5-C6
18	Ι	101	TGL	C29-C30-C31-C32
25	Е	201	PSC	C22-C23-C24-C25
27	Т	101	PEK	C35-C36-C37-C38
19	U	101	PGV	C25-C26-C27-C28
24	С	305	CDL	C13-C14-C15-C16
24	G	104	CDL	C76-C77-C78-C79
24	G	104	CDL	C59-C60-C61-C62
28	Т	102	DMU	C2-C3-O7-C10
24	С	305	CDL	OA5-CA3-CA4-CA6
24	С	305	CDL	OB5-CB3-CB4-CB6
$\overline{24}$	G	104	CDL	OA5-CA3-CA4-CA6
24	G	104	CDL	C43-C44-C45-C46
28	Q	201	DMU	O16-C18-C19-C22
19	C	303	PGV	C22-C23-C24-C25
19	С	304	PGV	C25-C26-C27-C28
27	G	106	PEK	C22-C23-C24-C25
24	Т	104	CDL	CB4-CB3-OB5-PB2

Continued from previous page...

OGDI	8GBT
------	------

Mol	Chain	Res	Tvpe	Atoms
18	I	101	TGL	C21-C22-C23-C24
27	G	101	PEK	C16-C17-C18-C19
24	C	305	CDL	C22-C23-C24-C25
24	T	104	CDL	C58-C59-C60-C61
19	P	304	PGV	004-C19-O03-C01
$\frac{10}{24}$	T	104	CDL	C36-C37-C38-C39
10	C	304	PGV	C26-C27-C28-C29
$\frac{13}{24}$	P	305	CDL	CA3-CA4-CA6-OA8
24	P	305	CDL	CB3-CB4-CB6-OB8
24	T	104	CDL	CA3-CA4-CA6-OA8
$\frac{21}{24}$	T	101	CDL	CB3-CB4-CB6-OB8
$\frac{24}{27}$	G	104	PEK	003-C01-C02-C03
27		100	PEK	003-C01-C02-C03
21	T	100	DMU	C19-C22-C25-C28
18	Δ	606	TGL	CC7-CC8-CC9-C15
10	Δ	607	PGV	$C21_{C22_{C23_{C24}}}$
15	Δ	606	TGL	CC5-CC6-CC7-CC8
10		303	PCV	$\frac{000-000-001-000}{000}$
10	P D	303	PCV	$\begin{array}{c} 020 - 021 - 020 - 023 \\ \hline 025 \ 026 \ 027 \ 028 \end{array}$
10	I	101	PCV	$C_2 C_3 C_4 C_5$
19 25	E E	201	PSC	$\begin{array}{c} 0.02 - 0.03 - 0.04 - 0.03 \\ \hline 0.02 - 0.04 \\ \hline 0$
$\frac{20}{25}$	E F	201	PSC	$\frac{0.09-0.10-0.11-0.12}{0.10-0.11-0.12}$
$\frac{20}{25}$	B	201	PSC	$\begin{array}{c} 0.00011-012-013 \\ \hline 0.00011 \\ \hline 0.011 \\ \hline 0.012 \\$
$\frac{20}{25}$	R	201	PSC	$\frac{\text{C}_{9}\text{-}\text{C}_{10}\text{-}\text{C}_{11}\text{-}\text{C}_{12}\text{-}\text{C}_{12}}{\text{C}_{10}\text{-}\text{C}_{11}\text{-}\text{C}_{12}\text{-}\text{C}_{13}}$
$\frac{20}{27}$		101	PEK	$\begin{array}{c} 010-011-012-013 \\ \hline 011 \ 010 \ 00 \ 08 \end{array}$
$\frac{21}{27}$	G	101	PEK	C5 C6 C7 C8
$\frac{21}{27}$	G	103	PEK	$\begin{array}{c} 0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0$
$\frac{21}{27}$	G	105	PEK	C5 C6 C7 C8
$\frac{21}{27}$	G	100	PEK	C6-C7-C8-C9
21	G	106	PEK	C11_C10_C9_C8
21	G	106	PEK	$C9_C10_C11_C12$
21	G	106	PEK	C12-C13-C14-C15
21		101	PEK	$C11_{-}C10_{-}C9_{-}C8$
21	T T	101	PEK	C9_C10_C11_C19
21	T T	101	PEK	$C12_C13_C14_C15$
$\frac{21}{27}$	T T	101	PEK	$C11_{-}C10_{-}C9_{-}C8$
21	T T	103	PEK	$\begin{array}{c} 011-010-03-00\\ 09-010-011-012\\ 011-012\\ 03-00\\ 03-0$
$\frac{21}{97}$	T T	100	PEK	$C17_C18_C10_C20$
18	Δ	606	TCL	CB4_CR5_CR6_CR7
24		305	CDI	$\bigcirc \Delta 5 \ C \Delta 3 \ C \Delta 4 \ O \Delta 6$
24 94	D D	205	CDL	$\bigcirc \Delta 5 - C \Delta 3 C \Delta 4 \cap \Delta 6$
$\frac{24}{97}$	I C	102	DER	$\bigcirc 01 \bigcirc 02 \bigcirc 02 \bigcirc 11$
41	U	100		001-002-003-011

Continued from previous page...

8GB	Τ

Mol	Chain	Res	Type	Atoms
27	G	106	PEK	O01-C02-C03-O11
24	Т	104	CDL	C84-C85-C86-C87
19	Р	304	PGV	C19-C20-C21-C22
28	G	102	DMU	C22-C25-C28-C31
19	N	607	PGV	C31-C32-C33-C34
25	Е	201	PSC	C31-C32-C33-C34
28	G	102	DMU	C34-C37-C40-C43
24	Т	104	CDL	C73-C74-C75-C76
28	М	102	DMU	C4-C3-O7-C10
18	А	606	TGL	OG2-CG2-CG3-OG3
19	М	101	PGV	O03-C01-C02-O01
27	G	103	PEK	O03-C01-C02-O01
19	Р	304	PGV	C31-C32-C33-C34
24	G	104	CDL	C17-C18-C19-C20
18	А	606	TGL	CA9-C20-C21-C22
25	Е	201	PSC	C27-C28-C29-C30
24	G	104	CDL	C73-C74-C75-C76
19	Z	101	PGV	C02-C03-O11-P
24	С	305	CDL	C1-CA2-OA2-PA1
27	G	103	PEK	C02-C03-O11-P
18	N	606	TGL	CA4-CA5-CA6-CA7
27	G	106	PEK	C25-C26-C27-C28
27	Р	303	PEK	C29-C30-C31-C32
18	Y	101	TGL	C29-C30-C31-C32
24	Р	305	CDL	C83-C84-C85-C86
19	Ν	607	PGV	C15-C16-C17-C18
18	Ν	608	TGL	C15-C16-C17-C18
27	G	103	PEK	C01-C02-C03-O11
24	Р	305	CDL	C51-C52-C53-C54
18	I	101	TGL	C16-C17-C18-C19
19	A	607	PGV	C22-C23-C24-C25
19	М	101	PGV	C6-C7-C8-C9
18	L	101	TGL	CB4-CB5-CB6-CB7
18	I	101	TGL	CA3-CA4-CA5-CA6
19	М	101	PGV	C21-C22-C23-C24
24	G	104	CDL	C12-C13-C14-C15
24	Т	104	CDL	C38-C39-C40-C41
25	R	201	PSC	C4-C5-C6-C7
27	G	103	PEK	C29-C30-C31-C32
19	М	101	PGV	C14-C15-C16-C17
24	Т	104	CDL	C79-C80-C81-C82
18	A	606	TGL	CG3-CG2-OG2-CB1

Continueu from previous page					
Mol	Chain	Res	Type	Atoms	
18	Ν	606	TGL	CG1-CG2-OG2-CB1	
18	Ν	608	TGL	CG1-CG2-OG2-CB1	
27	G	103	PEK	C34-C35-C36-C37	
28	М	102	DMU	C28-C31-C34-C37	
19	С	304	PGV	C6-C7-C8-C9	
18	Ι	101	TGL	CA2-CA1-OG1-CG1	
19	А	607	PGV	C13-C14-C15-C16	
24	G	104	CDL	C56-C57-C58-C59	
18	Ν	608	TGL	C11-C12-C13-C14	
24	G	104	CDL	C78-C79-C80-C81	
24	С	305	CDL	CA5-C11-C12-C13	
19	М	101	PGV	O03-C01-C02-C03	
25	Е	201	PSC	C02-C03-O11-P	
25	R	201	PSC	O03-C01-C02-C03	
27	Р	303	PEK	O03-C01-C02-C03	
24	Р	305	CDL	OB5-CB3-CB4-OB6	
19	С	304	PGV	C27-C28-C29-C30	
27	Р	303	PEK	C24-C25-C26-C27	
28	М	102	DMU	C2-C3-O7-C10	
27	Т	101	PEK	C32-C33-C34-C35	
19	N	607	PGV	C25-C26-C27-C28	
18	Ι	101	TGL	OG2-CG2-CG3-OG3	
19	U	101	PGV	O03-C01-C02-O01	
18	N	606	TGL	C14-C29-C30-C31	
25	R	201	PSC	C6-C7-C8-C9	
27	G	103	PEK	C24-C25-C26-C27	
24	С	305	CDL	C32-C33-C34-C35	
18	Y	101	TGL	C25-C26-C27-C28	
24	G	104	CDL	C20-C21-C22-C23	
24	G	104	CDL	C72-C73-C74-C75	
25	R	201	PSC	C3-C4-C5-C6	
18	Ι	101	TGL	OA1-CA1-OG1-CG1	
19	Р	304	PGV	C2-C3-C4-C5	
27	Р	303	PEK	C35-C36-C37-C38	
24	Т	104	CDL	C78-C79-C80-C81	
19	N	607	PGV	C04-C05-C06-O06	
27	Т	101	PEK	C30-C31-C32-C33	
19	Р	304	PGV	C1-C2-C3-C4	
18	L	101	TGL	C23-C24-C25-C26	
19	Ζ	101	PGV	C12-C13-C14-C15	
25	Е	201	PSC	C03-O11-P-O12	
25	R	201	PSC	C04-O12-P-O11	

Continued from previous page...

Mol	Chain	Res	Type	Atoms
18	Ι	101	TGL	CB7-CB8-CB9-C10
25	Е	201	PSC	C2-C3-C4-C5
19	С	303	PGV	C02-C03-O11-P
19	Р	304	PGV	C02-C03-O11-P
24	Р	305	CDL	C1-CA2-OA2-PA1
18	Y	101	TGL	CB2-CB3-CB4-CB5
19	С	304	PGV	C04-O12-P-O14
24	С	305	CDL	CA2-OA2-PA1-OA4
24	С	305	CDL	CA3-OA5-PA1-OA3
24	G	104	CDL	CB3-OB5-PB2-OB4
24	Р	305	CDL	CB2-OB2-PB2-OB3
24	Р	305	CDL	CB2-OB2-PB2-OB4
24	Т	104	CDL	CB2-OB2-PB2-OB4
27	G	103	PEK	C03-O11-P-O14
27	G	106	PEK	C04-O12-P-O14
27	Т	101	PEK	C04-O12-P-O13
27	Т	103	PEK	C03-O11-P-O13
27	Т	103	PEK	C04-O12-P-O14
24	Т	104	CDL	C80-C81-C82-C83
19	М	101	PGV	C01-C02-C03-O11
24	Р	305	CDL	OA5-CA3-CA4-CA6
27	Т	103	PEK	C01-C02-C03-O11
24	С	305	CDL	C51-C52-C53-C54
19	Z	101	PGV	C15-C16-C17-C18
24	Р	305	CDL	C31-C32-C33-C34
28	Q	201	DMU	C34-C37-C40-C43
25	R	201	PSC	C05-C04-O12-P
27	Т	101	PEK	C16-C17-C18-C19
27	Р	303	PEK	C17-C18-C19-C20
18	L	101	TGL	CA1-CA2-CA3-CA4
24	G	104	CDL	CB2-C1-CA2-OA2
18	Y	101	TGL	C17-C18-C19-C33
14	А	601	HEA	O11-C11-C3B-C2B
24	С	305	CDL	OB5-CB3-CB4-OB6
24	Т	104	CDL	OA5-CA3-CA4-OA6
18	N	608	TGL	C12-C13-C14-C29
19	N	607	PGV	C2-C3-C4-C5
19	N	607	PGV	C27-C28-C29-C30
19	N	607	PGV	C28-C29-C30-C31
25	Е	201	PSC	C04-C05-N-C07
24	С	305	CDL	CB7-C71-C72-C73
27	G	103	PEK	O03-C01-C02-C03

Continued from previous page...

Continuea from previous page					
<u>MOI</u>	Chain	Res	Type	Atoms	
27	G	106	PEK	C32-C33-C34-C35	
28		201	DMU	$\begin{array}{c} \hline C22 - C25 - C28 - C31 \\ \hline \end{array}$	
24	P	305	CDL	OA6-CA4-CA6-OA8	
24	P	305	CDL	0B6-CB4-CB6-0B8	
25	R	201	PSC	003-C01-C02-O01	
24	G	104	CDL	C52-C53-C54-C55	
19	U	101	PGV	C21-C22-C23-C24	
27	G	103	PEK	C30-C31-C32-C33	
27	Р	303	PEK	C27-C28-C29-C30	
24	Т	104	CDL	C64-C65-C66-C67	
22	Р	302	CHD	C16-C17-C20-C22	
19	N	607	PGV	C22-C23-C24-C25	
24	Р	305	CDL	C52-C53-C54-C55	
24	G	104	CDL	C52-C51-CB5-OB6	
19	C	303	PGV	C27-C28-C29-C30	
19	Z	101	PGV	C14-C15-C16-C17	
24	С	305	CDL	C44-C45-C46-C47	
27	G	101	PEK	C17-C18-C19-C20	
19	А	607	PGV	C9-C10-C11-C12	
24	Р	305	CDL	C20-C21-C22-C23	
18	А	606	TGL	C11-C10-CB9-CB8	
19	Ζ	101	PGV	C22-C23-C24-C25	
24	Т	104	CDL	C74-C75-C76-C77	
27	Р	303	PEK	C32-C33-C34-C35	
18	А	606	TGL	CB7-CB8-CB9-C10	
18	А	606	TGL	C11-C12-C13-C14	
18	L	101	TGL	CA7-CA8-CA9-C20	
24	G	104	CDL	C23-C24-C25-C26	
25	Е	201	PSC	C04-C05-N-C08	
19	А	607	PGV	C26-C27-C28-C29	
19	N	607	PGV	C4-C5-C6-C7	
22	Р	302	CHD	C13-C17-C20-C21	
24	С	305	CDL	OA6-CA4-CA6-OA8	
24	C	305	CDL	OB6-CB4-CB6-OB8	
24	G	104	CDL	OA6-CA4-CA6-OA8	
25	E	201	PSC	<u>O03-C01-C02-O01</u>	
24	C	305	CDL	<u>C54-C55-C56-C57</u>	
19	A	607	PGV	<u>C03-O11-P-O12</u>	
10	A	607	PGV	C04-O12-P-O11	
10	7	101	PGV	C04-012-P-011	
24	G	104	CDL	CA3-OA5-PA1-OA2	
<u>2</u> - <u></u> <u>9</u> 4	T	104	CDL	$\frac{CR3-OR5-PR2-OR2}{CR3-OR5-PR2-OR2}$	
<u> </u>	-	101			

, tin d fa α

8GBT

	Chain	Res	Type	Atoms
25	P	201	PCC PCC	$\begin{array}{c} \hline 11 \text{ P} \text{ O19} \\ \hline 11 \text{ P} \text{ O19} \\ \hline \end{array}$
$\frac{23}{97}$	C R	103	DEK	$\begin{array}{c} 0.05 - 0.11 - 1 - 0.12 \\ 0.01 - 0.02 - 0.02 - 0.02 \\ 0.02 - 0.02 $
18	G I	103	TCL	$\begin{array}{c} 021-022-023-024 \\ \hline 015 \ 016 \ 017 \ 018 \end{array}$
18	I V	101	TCI	CB0 C10 C11 C12
$\frac{10}{24}$	I D	305	CDI	$\begin{array}{c} \text{CD9-C10-C11-C12} \\ \text{C22} \text{ C23} \text{ C24} \text{ C25} \end{array}$
18	I V	101	TCI	$\begin{array}{c} 0.22 - 0.23 - 0.24 - 0.23 \\ \hline 0.16 \ 0.17 \ 0.18 \ 0.10 \\ \hline \end{array}$
$\frac{10}{24}$	I T	101	CDI	C10-C17-C16-C19
24		104	DEV	C43-C44-C43-C40
10	D G	204	DCV	$\begin{array}{c} 027 \\ \hline 027 \\ \hline 027 \\ \hline 028 \\ \hline 020 \\ \hline$
19	P C	304	CDI	C_{21} - C_{20} - C_{29} - C_{50}
24		303		C41-C42-C43-C44
27	P N	303	PEK	C02-C03-O11-P
19	IN T	<u> </u>	PGV	$\begin{array}{c} \text{C11-C12-C13-C14} \\ \text{C2-C13-C14} \end{array}$
27		103	PEK	$\frac{\text{U3-U4-U5-U6}}{\text{CCC}}$
18	Y	101	TGL	<u>CC6-CC7-CC8-CC9</u>
14	A	601	HEA	CAD-CBD-CGD-O1D
19	N	607	PGV	C24-C25-C26-C27
19	M	101	PGV	C11-C12-C13-C14
27	G	101	PEK	O04-C21-O03-C01
14	A	602	HEA	CAA-CBA-CGA-O1A
19	С	303	PGV	C11-C10-C9-C8
22	Р	302	CHD	C16-C17-C20-C21
27	G	101	PEK	C10-C11-C12-C13
22	В	302	CHD	C22-C23-C24-O25
22	G	105	CHD	C22-C23-C24-O25
18	L	101	TGL	CA9-C20-C21-C22
22	С	306	CHD	C13-C17-C20-C21
27	Р	303	PEK	C22-C23-C24-C25
27	P	303	PEK	C14-C15-C16-C17
18	N	606	TGL	CB3-CB4-CB5-CB6
19	Z	101	PGV	C5-C6-C7-C8
18	L	101	TGL	CB2-CB3-CB4-CB5
24	Р	305	CDL	C58-C59-C60-C61
14	А	601	HEA	CAA-CBA-CGA-O1A
22	В	302	CHD	C22-C23-C24-O26
22	J	101	CHD	C22-C23-C24-O26
18	N	606	TGL	C12-C13-C14-C29
18	N	606	TGL	OG1-CA1-CA2-CA3
24	С	305	CDL	C56-C57-C58-C59
24	Т	104	CDL	C51-C52-C53-C54
28	М	102	DMU	C19-C22-C25-C28
14	N	601	HEA	CAA-CBA-CGA-O1A
25	Е	201	PSC	C01-C02-O01-C1

Continued from previous page...

Mal	Choin	M 1 Cl : D D				
10	Unain	res	Type			
19		007		$\begin{array}{c c} \hline \hline$		
25	E D	201	PSC	$\begin{array}{c} C04-C05-N-C00 \\ \hline C26, C27, C28, C20 \\ \hline \end{array}$		
24	P	305	CDL	C36-C37-C38-C39		
24	G	104	CDL	CB7-C71-C72-C73		
18	A	606	TGL	C20-C21-C22-C23		
24	P	305	CDL	C76-C77-C78-C79		
27	G	101	PEK	C9-C10-C11-C12		
27	Т	103	PEK	C12-C13-C14-C15		
14	N	601	HEA	CAA-CBA-CGA-O2A		
22	J	101	CHD	C22-C23-C24-O25		
18	L	101	TGL	CB6-CB7-CB8-CB9		
19	М	101	PGV	C05-C04-O12-P		
24	C	305	CDL	C23-C24-C25-C26		
19	С	304	PGV	O01-C02-C03-O11		
14	A	601	HEA	CAD-CBD-CGD-O2D		
25	Е	201	PSC	C6-C7-C8-C9		
19	Z	101	PGV	C01-C02-C03-O11		
22	G	105	CHD	C22-C23-C24-O26		
27	Р	303	PEK	C30-C31-C32-C33		
18	N	608	TGL	CC9-C15-C16-C17		
19	Р	304	PGV	C24-C25-C26-C27		
18	А	606	TGL	C24-C25-C26-C27		
18	Ι	101	TGL	C11-C10-CB9-CB8		
19	А	607	PGV	C3-C4-C5-C6		
14	А	602	HEA	CAA-CBA-CGA-O2A		
24	С	305	CDL	C24-C25-C26-C27		
24	G	104	CDL	C55-C56-C57-C58		
27	Т	103	PEK	C17-C18-C19-C20		
19	U	101	PGV	O04-C19-O03-C01		
18	A	606	TGL	CB6-CB7-CB8-CB9		
19	С	304	PGV	O01-C1-C2-C3		
28	T	102	DMU	C25-C28-C31-C34		
27	G	106	PEK	C14-C15-C16-C17		
27	T	101	PEK	O01-C02-C03-O11		
22	B	302	CHD	C20-C22-C23-C24		
24	 C	305	CDL	C31-C32-C33-C34		
19	C	303	PGV	C25-C26-C27-C28		
25	R	201	PSC	C12-C13-C14-C15		
18	N	608	TGL	C16-C17-C18-C19		
10	N	607	PGV	<u>004-C19-C20-C21</u>		
18	I.	101	TGU	OG2-CB1-CB2-CB3		
2/		101	CDL	$C\Delta 2 CD1 CD2 CD3$		
24	G	104				

Continued from previous page...

8GBT

Mol	Chain	Res	Type	Atoms
24	Т	104	CDL	CB2-C1-CA2-OA2
24	С	305	CDL	C12-C11-CA5-OA6
14	А	602	HEA	CAD-CBD-CGD-O1D
14	A	602	HEA	CAD-CBD-CGD-O2D
27	G	101	PEK	C22-C21-O03-C01
27	G	101	PEK	C22-C23-C24-C25
18	Ι	101	TGL	OG1-CA1-CA2-CA3
19	U	101	PGV	O01-C1-C2-C3
24	Р	305	CDL	C12-C11-CA5-OA6
27	G	103	PEK	O04-C21-O03-C01
18	N	606	TGL	OA1-CA1-OG1-CG1
19	М	101	PGV	C9-C10-C11-C12
19	N	607	PGV	C9-C10-C11-C12
19	Р	304	PGV	C9-C10-C11-C12
27	G	101	PEK	C31-C32-C33-C34
28	Т	102	DMU	C4-C3-O7-C10
24	С	305	CDL	C58-C59-C60-C61
18	Y	101	TGL	OG2-CB1-CB2-CB3
14	N	602	HEA	C26-C15-C16-C17
19	С	303	PGV	C9-C10-C11-C12
27	G	106	PEK	C3-C4-C5-C6
27	Т	103	PEK	C35-C36-C37-C38
14	N	602	HEA	CAA-CBA-CGA-O1A
18	N	606	TGL	CA2-CA1-OG1-CG1
18	N	606	TGL	OG3-CC1-CC2-CC3
27	G	101	PEK	O01-C1-C2-C3
27	Т	103	PEK	O01-C1-C2-C3
14	А	601	HEA	CAA-CBA-CGA-O2A
14	Ν	602	HEA	CAD-CBD-CGD-O1D
18	N	606	TGL	C29-C30-C31-C32
24	P	305	CDL	CB7-C71-C72-C73
27	G	103	PEK	C14-C15-C16-C17
19	М	101	PGV	O01-C1-C2-C3
19	C	304	PGV	C01-C02-C03-O11
22	С	301	CHD	C22-C23-C24-O26
18	L	101	TGL	OG3-CC1-CC2-CC3
24	Т	104	CDL	C52-C51-CB5-OB6
27	G	103	PEK	C22-C21-O03-C01
24	C	305	CDL	C82-C83-C84-C85
14	N	601	HEA	CAD-CBD-CGD-O1D
14	N	602	HEA	CAD-CBD-CGD-O2D
24	G	104	CDL	C32-C31-CA7-OA8

Continued from previous page...

Mol	Chain	Res	Type	Atoms
18	Y	101	TGL	CA6-CA7-CA8-CA9
14	N	602	HEA	CAA-CBA-CGA-O2A
19	N	607	PGV	O05-C05-C06-O06
18	Y	101	TGL	OG1-CA1-CA2-CA3
28	М	102	DMU	O6-C11-C9-C8
14	N	602	HEA	C14-C15-C16-C17
18	Ι	101	TGL	CC4-CC5-CC6-CC7
19	С	303	PGV	C11-C12-C13-C14
19	U	101	PGV	C26-C27-C28-C29
18	N	606	TGL	OG2-CB1-CB2-CB3
22	Р	306	CHD	C20-C22-C23-C24
25	Е	201	PSC	C12-C13-C14-C15
18	Ι	101	TGL	OA1-CA1-CA2-CA3
14	А	602	HEA	C26-C15-C16-C17
18	N	606	TGL	OC1-CC1-CC2-CC3
28	G	102	DMU	C2-C3-O7-C10
19	U	101	PGV	O02-C1-C2-C3
27	Т	103	PEK	O02-C1-C2-C3
28	G	102	DMU	C4-C3-O7-C10
19	Р	304	PGV	C11-C12-C13-C14
19	Ζ	101	PGV	C11-C12-C13-C14
18	Y	101	TGL	OB1-CB1-CB2-CB3
24	С	305	CDL	C12-C11-CA5-OA7
18	N	606	TGL	CG1-CG2-CG3-OG3
24	С	305	CDL	C18-C19-C20-C21
24	Р	305	CDL	C62-C63-C64-C65
24	Т	104	CDL	OB7-CB5-OB6-CB4
24	G	104	CDL	CB4-CB3-OB5-PB2
24	G	104	CDL	C32-C31-CA7-OA9
18	Ι	101	TGL	C16-C15-CC9-CC8
24	P	305	CDL	CB3-OB5-PB2-OB4
24	T	104	CDL	CB3-OB5-PB2-OB4
25	E	201	PSC	C03-O11-P-O13
$2\overline{5}$	R	201	PSC	C03-O11-P-O14
18	L	101	TGL	OC1-CC1-CC2-CC3
19	М	101	PGV	O02-C1-C2-C3
24	Р	305	CDL	C12-C11-CA5-OA7
18	N	608	TGL	C21-C22-C23-C24
19	A	607	PGV	C11-C10-C9-C8
14	N	601	HEA	CAD-CBD-CGD-O2D
18	A	606	TGL	CC3-CC4-CC5-CC6
14	Ν	601	HEA	C26-C15-C16-C17

Continued from previous page...

Mol	Chain	Res	Type	Atoms
24	Р	305	CDL	C14-C15-C16-C17
25	R	201	PSC	C22-C23-C24-C25
22	С	301	CHD	C22-C23-C24-O25
25	Е	201	PSC	C05-C04-O12-P
27	G	101	PEK	C05-C04-O12-P
27	G	101	PEK	O02-C1-C2-C3
18	Ν	608	TGL	CB2-CB3-CB4-CB5
24	Р	305	CDL	C32-C31-CA7-OA8
27	G	106	PEK	O01-C1-C2-C3
18	L	101	TGL	C21-C20-CA9-CA8
19	М	101	PGV	O03-C19-C20-C21
19	С	304	PGV	C2-C3-C4-C5
24	Р	305	CDL	C80-C81-C82-C83
18	Y	101	TGL	OA1-CA1-CA2-CA3
19	U	101	PGV	C20-C19-O03-C01
18	А	606	TGL	C15-C16-C17-C18
19	U	101	PGV	C4-C5-C6-C7
19	М	101	PGV	O04-C19-C20-C21

All (1) ring outliers are listed below:

Mol	Chain	Res	Type	Atoms
22	С	306	CHD	C1-C10-C2-C3-C4-C5

31 monomers are involved in 85 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
27	Р	303	PEK	2	0
29	Ι	102	SAC	2	0
18	N	608	TGL	1	0
28	Q	201	DMU	2	0
22	С	306	CHD	1	0
22	J	101	CHD	4	0
18	Ι	101	TGL	1	0
22	С	301	CHD	2	0
27	G	101	PEK	3	0
27	Т	101	PEK	1	0
22	N	609	CHD	5	0
22	G	105	CHD	1	0
19	С	303	PGV	2	0
22	Р	306	CHD	3	0
19	Ζ	101	PGV	3	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
25	Е	201	PSC	10	0
19	U	101	PGV	2	0
24	Т	104	CDL	6	0
18	А	606	TGL	2	0
14	А	602	HEA	4	0
24	С	305	CDL	2	0
27	G	103	PEK	3	0
14	А	601	HEA	3	0
19	Ν	607	PGV	1	0
24	G	104	CDL	7	0
18	L	101	TGL	1	0
14	Ν	602	HEA	5	0
25	R	201	PSC	3	0
20	A	608	CMO	1	0
14	N	601	HEA	4	0
19	Р	304	PGV	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{A}^2)$	Q < 0.9
1	А	513/514~(99%)	-0.80	0 100 100	27, 39, 52, 90	0
1	Ν	513/514~(99%)	-0.65	7 (1%) 75 70	37, 52, 69, 92	0
2	В	226/227~(99%)	-0.65	3 (1%) 77 72	32, 47, 75, 138	0
2	Ο	226/227~(99%)	-0.48	4 (1%) 68 61	42,63,94,133	0
3	С	259/261~(99%)	-0.73	0 100 100	33, 45, 62, 101	0
3	Р	259/261~(99%)	-0.67	0 100 100	37, 54, 78, 112	0
4	D	144/147~(97%)	-0.55	1 (0%) 87 84	40, 50, 76, 98	0
4	Q	144/147~(97%)	0.01	7 (4%) 29 20	54, 75, 108, 166	0
5	Ε	105/109~(96%)	-0.81	0 100 100	36, 50, 82, 135	0
5	R	105/109~(96%)	-0.47	2 (1%) 66 59	47, 68, 89, 118	0
6	F	98/98~(100%)	-0.17	6 (6%) 21 13	38, 55, 121, 165	0
6	S	98/98~(100%)	-0.12	8 (8%) 11 6	46, 64, 138, 178	0
7	G	83/85~(97%)	0.06	13 (15%) 2 1	39, 55, 142, 158	0
7	Т	83/85~(97%)	0.31	9 (10%) 5 3	44, 67, 146, 162	0
8	Н	79/85~(92%)	-0.31	3 (3%) 40 30	42, 58, 119, 149	0
8	U	79/85~(92%)	-0.03	5 (6%) 20 12	49, 72, 132, 149	0
9	Ι	72/73~(98%)	-0.40	1 (1%) 75 70	45, 58, 90, 101	0
9	V	72/73~(98%)	-0.05	5 (6%) 16 10	51, 76, 104, 122	0
10	J	58/59~(98%)	-0.45	2 (3%) 45 35	44, 58, 94, 122	0
10	W	58/59~(98%)	-0.29	4 (6%) 16 10	55, 73, 111, 142	0
11	K	49/56~(87%)	-0.27	0 100 100	45, 56, 74, 101	0
11	X	49/56 (87%)	0.16	4 (8%) 11 6	54, 78, 97, 110	0
12	L	46/47 (97%)	-0.84	0 100 100	36, 47, 73, 108	0
12	Y	46/47~(97%)	-0.56	1 (2%) 62 52	51, 69, 105, 126	0

Contentaca front provoas page									
Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2		$OWAB(Å^2)$	$Q{<}0.9$		
13	М	43/46~(93%)	-0.33	1 (2%) 60	51	34, 49, 87, 132	0		
13	Z	43/46~(93%)	-0.02	3 (6%) 16	9	58, 71, 108, 147	0		
All	All	3550/3614~(98%)	-0.50	89 (2%) 57	47	27, 54, 96, 178	0		

All (89) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
6	F	98	HIS	11.5
4	Q	4	SER	8.1
6	F	94	HIS	8.0
13	М	43	SER	7.7
7	Т	40	GLY	7.6
7	Т	39	SER	7.5
6	F	1	ALA	7.1
7	Т	41	HIS	7.0
4	Q	6	VAL	6.7
7	G	2	SER	6.4
6	S	1	ALA	6.4
4	Q	5	VAL	6.3
6	S	96	LEU	6.0
7	Т	6	GLY	5.7
4	Q	7	LYS	5.7
7	Т	3	ALA	5.5
7	Т	1	ALA	5.5
7	G	40	GLY	5.3
2	0	227	LEU	5.0
4	Q	8	SER	5.0
6	S	98	HIS	4.9
6	S	97	ALA	4.8
6	S	95	GLN	4.7
2	0	90	ILE	4.5
8	Н	45	ALA	4.5
6	S	2	SER	4.4
7	G	41	HIS	4.3
2	В	90	ILE	4.3
7	Т	36	TRP	4.3
13	Ζ	43	SER	4.3
7	G	3	ALA	4.1
7	G	39	SER	4.0
4	Q	147	LYS	3.9
8	U	45	ALA	3.9

Mol	Chain	Res	Type	RSRZ
7	G	1	ALA	3.8
10	J	57	HIS	3.7
10	W	57	HIS	3.7
7	Т	10	GLY	3.6
8	U	7	LYS	3.5
4	D	4	SER	3.4
6	F	2	SER	3.3
8	U	48	GLY	3.3
10	W	58	LYS	3.2
2	В	59	GLN	3.1
11	Х	30	VAL	3.1
11	Х	7	PRO	3.0
9	Ι	37	PHE	2.9
8	Н	46	LYS	2.9
12	Y	2	HIS	2.9
7	G	5	LYS	2.9
1	N	463	THR	2.8
13	Ζ	42	LYS	2.8
8	U	8	ILE	2.8
1	Ν	464	ALA	2.7
9	V	53	ASN	2.6
5	R	108	LYS	2.6
7	Т	2	SER	2.6
7	G	10	GLY	2.5
10	J	1	PHE	2.5
1	N	465	VAL	2.5
7	G	36	TRP	2.5
2	0	167	SER	2.5
1	Ν	466	MET	2.5
1	Ν	461	SER	2.5
5	R	109	VAL	2.5
7	G	42	ARG	2.5
8	U	84	LYS	2.5
1	N	462	LEU	2.5
9	V	25	PHE	2.4
7	G	7	ASP	2.4
11	Х	6	ALA	2.4
4	Q	141	ASP	2.4
7	G	8	HIS	2.3
2	В	92	ASN	2.3
10	W	48	TYR	2.3
9	V	3	ALA	2.3

Mol	Chain	Res	Type	RSRZ
9	V	37	PHE	2.3
2	0	92	ASN	2.2
10	W	52	TRP	2.2
13	Ζ	35	TYR	2.2
1	N	468	MET	2.2
8	Н	48	GLY	2.2
11	Х	15	ASN	2.2
6	S	94	HIS	2.2
6	S	3	GLY	2.1
7	G	6	GLY	2.1
9	V	72	ALA	2.1
6	F	44	GLU	2.1
6	F	95	GLN	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
7	TPO	G	11	11/12	0.79	0.32	$130,\!155,\!173,\!179$	0
7	TPO	Т	11	11/12	0.84	0.27	128,139,156,165	0
1	FME	N	1	10/11	0.93	0.37	85,93,132,138	0
1	FME	А	1	10/11	0.93	0.26	62,73,99,106	0
2	FME	0	1	10/11	0.97	0.16	$50,\!65,\!73,\!73$	0
2	FME	В	1	10/11	0.97	0.22	49,51,53,61	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
28	DMU	G	102	33/33	0.52	0.53	73,155,175,175	0
29	SAC	V	101	9/10	0.54	0.64	106,135,145,154	0
16	MG	А	604	1/1	0.60	0.15	47,47,47,47	0
28	DMU	Т	102	33/33	0.66	0.51	94,128,165,185	0
18	TGL	Y	101	63/63	0.66	0.39	70,110,161,176	0
29	SAC	Ι	102	9/10	0.68	0.40	117,130,135,138	0
27	PEK	G	106	53/53	0.69	0.47	65,140,205,219	0
24	CDL	С	305	100/100	0.70	0.40	70,120,150,154	0
27	PEK	Т	101	53/53	0.73	0.32	61,101,157,172	0
24	CDL	Р	305	100/100	0.75	0.36	68,117,159,183	0
25	PSC	R	201	52/52	0.75	0.42	78,119,219,243	0
18	TGL	L	101	63/63	0.76	0.32	57,97,131,136	0
27	PEK	Т	103	53/53	0.76	0.48	73,135,200,205	0
18	TGL	N	606	63/63	0.77	0.29	79,107,126,129	0
24	CDL	G	104	100/100	0.78	0.36	90,126,183,224	0
27	PEK	G	103	53/53	0.78	0.29	85,102,150,159	0
25	PSC	Е	201	52/52	0.78	0.37	64,109,198,208	0
19	PGV	Ζ	101	51/51	0.79	0.42	65,104,165,168	0
19	PGV	С	304	51/51	0.79	0.26	75,99,134,148	0
19	PGV	М	101	51/51	0.80	0.37	64,99,161,175	0
24	CDL	Т	104	100/100	0.80	0.32	72,118,184,209	0
18	TGL	N	608	63/63	0.82	0.27	47,95,138,152	0
22	CHD	N	609	29/29	0.82	0.36	108,129,146,153	0
18	TGL	А	606	63/63	0.83	0.23	66,95,108,110	0
19	PGV	U	101	51/51	0.84	0.29	74,112,145,159	0
28	DMU	Q	201	33/33	0.85	0.34	70,96,112,116	0
18	TGL	Ι	101	63/63	0.85	0.24	39,95,134,150	0
23	OH	С	302[H]	1/1	0.86	0.24	24,24,24,24	0
22	CHD	J	101	29/29	0.89	0.39	75,108,123,130	0
22	CHD	С	306	29/29	0.91	0.33	75,86,97,110	0
28	DMU	М	102	33/33	0.92	0.21	45,60,78,79	0
27	PEK	Р	303	53/53	0.93	0.31	60,78,128,137	0
17	NA	N	605	1/1	0.95	0.16	63,63,63,63	0
16	MG	N	604	1/1	0.95	0.13	39,39,39,39	0
22	CHD	Р	302	29/29	0.95	0.12	42,47,50,51	0
27	PEK	G	101	53/53	0.95	0.23	43,69,117,125	0
22	CHD	Р	306	29/29	0.95	0.30	80,89,94,99	0
22	CHD	G	105	29/29	0.96	0.17	42,45,51,54	0
19	PGV	Р	304	51/51	0.96	0.28	42,57,136,153	0
22	CHD	С	301	29/29	0.96	0.10	35,38,41,41	0
14	HEA	N	601	60/60	0.96	0.16	39,48,61,72	0
19	PGV	N	607	51/51	0.97	0.21	45,63,74,85	0
21	CUA	В	301	2/2	0.97	0.05	41,41,41,46	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
21	CUA	0	301	2/2	0.97	0.05	62,62,62,63	0
22	CHD	В	302	29/29	0.97	0.14	36,45,51,62	0
14	HEA	А	602	60/60	0.97	0.12	$24,\!34,\!48,\!55$	0
19	PGV	С	303	51/51	0.97	0.25	35,50,110,115	0
14	HEA	N	602	60/60	0.98	0.14	34,39,55,56	0
14	HEA	А	601	60/60	0.98	0.13	$27,\!36,\!56,\!59$	0
26	ZN	S	101	1/1	0.98	0.05	67,67,67,67	0
19	PGV	А	607	51/51	0.98	0.21	34,54,72,86	0
23	OH	Р	301[H]	1/1	0.98	0.30	24,24,24,24	0
15	CU	N	603	1/1	0.99	0.08	$55,\!55,\!55,\!55$	0
17	NA	А	605	1/1	0.99	0.13	38,38,38,38	0
20	CMO	А	608	2/2	0.99	0.10	33,33,33,36	0
20	CMO	N	610	2/2	0.99	0.14	56, 56, 56, 56	0
15	CU	А	603	1/1	0.99	0.07	44,44,44,44	0
26	ZN	F	101	1/1	1.00	0.05	67,67,67,67	0

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

