

wwPDB EM Validation Summary Report (i)

Aug 12, 2024 – 10:13 AM EDT

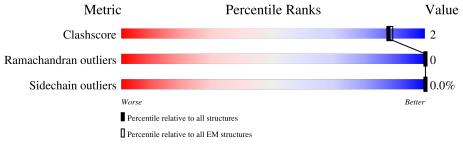
PDB ID 9B03 : EMDB ID : EMD-44026 Title : INF2 in the Middle of F-Actin (Up state) Authors : Palmer, N.J.; Barrie, K.R.; Dominguez, R. Deposited on 2024-03-11 : 2.95 Å(reported) Resolution : Based on initial models ., 8f8p :

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.95 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{llllllllllllllllllllllllllllllllllll$	${f EM} {f structures} \ (\#{f Entries})$		
Clashscore	158937	4297		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

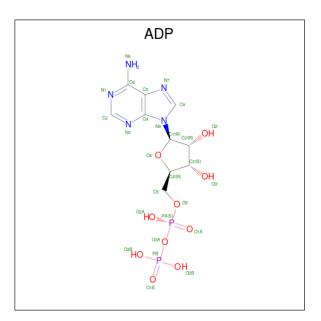
Mol	Chain	Length	Quality of chain	
1	А	371	96%	.
1	В	371	93%	7%
1	С	371	94%	6%
1	D	371	91%	9%
1	Е	371	94%	6%
1	F	371	93%	7%
2	G	437	88%	• 9%
2	Н	437	88%	• 9%

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 23896 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			AltConf	Trace
1	А	A 371	Total	С	Ν	0	S	0	0
	A	371	2900	1837	489	553	21	0	0
1	В	371	Total	С	Ν	0	S	0	0
	D	371	2900	1837	489	553	21	0	0
1	С	371	Total	С	Ν	0	S	0	0
	U		2900	1837	489	553	21	0	0
1	D	371	Total	С	Ν	0	S	0	0
	D	571	2900	1837	489	553	21	0	0
1	Е	371	Total	С	Ν	0	\mathbf{S}	0	0
	Ľ	571	2900	1837	489	553	21	0	0
1	F	371	Total	С	Ν	0	\mathbf{S}	0	0
	T,	571	2900	1837	489	553	21	0	0


• Molecule 1 is a protein called Actin, alpha skeletal muscle.

• Molecule 2 is a protein called Inverted formin-2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	G	398	Total			0	S	0	0
	000	3171	1999	556	602	14	Ŭ		
0	2 H	396	Total	С	Ν	Ο	\mathbf{S}	0	0
		390	3157	1991	554	598	14	0	0

• Molecule 3 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues		Ate	oms			AltConf
3	А	1	Total	С	Ν	Ο	Р	0
0	A	1	27	10	5	10	2	0
3	В	1	Total	С	Ν	Ο	Р	0
5	D	1	27	10	5	10	2	0
3	С	1	Total	С	Ν	Ο	Р	0
0	U	1	27	10	5	10	2	0
3	D	1	Total	\mathbf{C}	Ν	Ο	Р	0
0	D	I	27	10	5	10	2	0
3	Е	1	Total	\mathbf{C}	Ν	Ο	Р	0
0	Ľ	1	27	10	5	10	2	0
3	F	1	Total	\mathbf{C}	Ν	Ο	Р	0
	T	I	27	10	5	10	2	0

• Molecule 4 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
4	А	1	Total Mg 1 1	0
4	В	1	Total Mg 1 1	0
4	С	1	Total Mg 1 1	0
4	D	1	Total Mg 1 1	0
4	Е	1	Total Mg 1 1	0
4	F	1	Total Mg 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Actin, alpha skeletal muscle

• Molecule 1: Actin, alpha skeletal muscle

Chain F:	93%	7%	
15 833 847 847 847 847 847 847 847 848 848 848	R210 R213 F214 F214 F214 R215 F256 F256 T260 R256 R256 R256 R256 R256 R256 C265 C285	1289 E361 1369 F375	
• Molecule 2: Inverted formin-	2		
Chain G:	88%	• 9%	
V561 P552 S553 S553 S553 N566 N566 N563 N563 N564 N563 N577 N577 N577 N579 N581 N581	SSS8 SSS8 SS59 P5500 D591 A592 A594 A594 P609 A610	A611 LVS PRO LVS PRO PRO PRO ARG ARG ARG ARG LVS E626 P627 K628 F632 LVS E629 F632 L633 D634 K036 F635 L633 C636 C636	
K646 K649 K649 K649 S651 N652 E653 E653 E653 R660 R655 R660 R665 R665 R665 R665 R665	K666 F667 F667 V669 E670 V671 L672 K673 C673 K673 K673 K673 K673 K673 K673	H683 E684 E685 F685 F681 F681 F683 F683 F6835 A696 A696 A696 A696 F633 F693 L707 F712 F712 F712 F712 F716 F716 F716 F716 F716 F716	•
G7712 8772 H173 D776 A177 A177 A177 A177 A176 A177 A176 A176	A859 V860 V861 Q862 P863 P865 P865 P865 P887 P887 P887 P887 P887 P887 P887 P887 P887 P887 P887 P880 P800	09 02 19 03 19 03 19 08 19 08 19 08 19 43 19 19 19	
GLU ASP GLY CLY CLY VAL ARG GLY CG71 CG71 CG71 CG71 CG71 CG71 CG71 CG71	GLN LEU ARG		
• Molecule 2: Inverted formin-	2		
Chain H:	88%	• 9%	
V551 P552 8553 H554 R555 R555 P560 P560 P560 R565 R565 R565 R565 R565 R565 R565 R	N575 V576 A577 A577 A577 E579 H580 N581 S582 C582 S585 S589	P590 P591 P592 P593 A594 A594 A594 A594 A594 A594 A594 A594 A594 A594 A10 P100	
T531 F532 L539 L539 K646 K646 K649 K646 S551 N655 S551 N655 R655 A655 R655 R655 R655	A661 A662 D662 T664 F664 F667 F667 F667 F667 F667 F667 F	qe74 Le78 K882 K882 H883 E686 R689 R689 F691 R689 A890 R689 R691 R695 R0703 L706 L707 L708 L708 L709 L709 L709 L709	
111 P112 P712 G771 G771 0776 0774 C370 C370 C300 K300	V888 A875 A875 B918 C944 L944 L944 L944	A945 E946 E946 E946 E947 CUU AIC ARG ARG ARG CLY VAL VAL VAL VAL CYS CIU CIU CIU CIU CIU CIU CIU CIU CIU	
P374 B381 A982 C983 C983 C983 C1EU ARG			

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	493960	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	44	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	1.041	Depositor
Minimum map value	-0.285	Depositor
Average map value	0.008	Depositor
Map value standard deviation	0.032	Depositor
Recommended contour level	0.133	Depositor
Map size (Å)	311.04, 311.04, 311.04	wwPDB
Map dimensions	288, 288, 288	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.08, 1.08, 1.08	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HIC, MG, ADP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.30	0/2950	0.58	0/3994	
1	В	0.31	0/2950	0.60	1/3994~(0.0%)	
1	С	0.30	0/2950	0.61	1/3994~(0.0%)	
1	D	0.29	0/2950	0.59	0/3994	
1	Е	0.29	0/2950	0.60	0/3994	
1	F	0.29	0/2950	0.60	1/3994~(0.0%)	
2	G	0.31	0/3217	0.60	3/4333~(0.1%)	
2	Н	0.33	0/3203	0.59	1/4314~(0.0%)	
All	All	0.30	0/24120	0.59	7/32611~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	G	0	2

There are no bond length outliers.

The worst 5 of 7 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	С	47	MET	CA-CB-CG	6.47	124.30	113.30
1	F	47	MET	CA-CB-CG	6.28	123.97	113.30
2	G	639	LEU	CA-CB-CG	6.15	129.46	115.30
2	Н	678	LEU	CB-CG-CD1	5.39	120.17	111.00
2	G	908	ASP	CB-CG-OD1	5.21	122.99	118.30

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	G	947	GLU	Peptide,Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2900	0	2871	7	0
1	В	2900	0	2871	15	0
1	С	2900	0	2872	13	0
1	D	2900	0	2871	19	0
1	Е	2900	0	2871	13	0
1	F	2900	0	2871	12	0
2	G	3171	0	3229	7	0
2	Н	3157	0	3218	9	0
3	А	27	0	12	0	0
3	В	27	0	12	0	0
3	С	27	0	12	1	0
3	D	27	0	12	0	0
3	Е	27	0	12	0	0
3	F	27	0	12	0	0
4	А	1	0	0	0	0
4	В	1	0	0	0	0
4	С	1	0	0	0	0
4	D	1	0	0	0	0
4	Е	1	0	0	0	0
4	F	1	0	0	0	0
All	All	23896	0	23746	89	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

The worst 5 of 89 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:G:861:VAL:O	2:G:865:TYR:HB2	2.02	0.59
1:F:374:CYS:SG	1:F:375:PHE:N	2.77	0.58
1:A:342:GLY:HA2	1:A:345:ILE:HD12	1.89	0.55

Continued on next page...

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:332:PRO:O	1:B:335:ARG:NH1	2.40	0.54
1:A:332:PRO:O	1:A:335:ARG:NH1	2.43	0.52

Continued from previous page...

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	368/371~(99%)	358~(97%)	10 (3%)	0	100	100
1	В	368/371~(99%)	356~(97%)	12 (3%)	0	100	100
1	С	368/371~(99%)	352~(96%)	16 (4%)	0	100	100
1	D	368/371~(99%)	355~(96%)	13 (4%)	0	100	100
1	Ε	368/371~(99%)	355~(96%)	13 (4%)	0	100	100
1	F	368/371~(99%)	355~(96%)	13 (4%)	0	100	100
2	G	392/437~(90%)	388~(99%)	4 (1%)	0	100	100
2	Н	390/437~(89%)	382 (98%)	8 (2%)	0	100	100
All	All	2990/3100~(96%)	2901 (97%)	89 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	313/313~(100%)	313~(100%)	0	100 100
1	В	313/313~(100%)	313~(100%)	0	100 100
1	\mathbf{C}	313/313~(100%)	313 (100%)	0	100 100
1	D	313/313~(100%)	313 (100%)	0	100 100
1	Ε	313/313~(100%)	313 (100%)	0	100 100
1	F	313/313~(100%)	313 (100%)	0	100 100
2	G	347/380~(91%)	346 (100%)	1 (0%)	92 97
2	Н	346/380~(91%)	346 (100%)	0	100 100
All	All	2571/2638~(98%)	2570 (100%)	1 (0%)	100 100

All (1) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	G	636	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such side chains are listed below:

Mol	Chain	Res	Type
1	А	12	ASN
1	В	115	ASN
1	С	115	ASN
1	D	115	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

6 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Turne	Chain	Chain Res		Link Bond lengths			В	Bond angles		
10101	Type	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
1	HIC	В	73	1	8,11,12	1.66	2 (25%)	6,14,16	1.45	1 (16%)	
1	HIC	D	73	1	8,11,12	1.63	2 (25%)	6,14,16	1.54	1 (16%)	
1	HIC	С	73	1	8,11,12	1.64	2 (25%)	6,14,16	1.41	1 (16%)	
1	HIC	Е	73	1	8,11,12	1.65	2 (25%)	6,14,16	1.60	1 (16%)	
1	HIC	А	73	1	8,11,12	1.61	2 (25%)	6,14,16	1.63	1 (16%)	
1	HIC	F	73	1	8,11,12	1.66	2 (25%)	6,14,16	1.59	1 (16%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	HIC	В	73	1	-	1/5/6/8	0/1/1/1
1	HIC	D	73	1	-	1/5/6/8	0/1/1/1
1	HIC	С	73	1	-	2/5/6/8	0/1/1/1
1	HIC	Е	73	1	-	2/5/6/8	0/1/1/1
1	HIC	А	73	1	-	1/5/6/8	0/1/1/1
1	HIC	F	73	1	-	1/5/6/8	0/1/1/1

The worst 5 of 12 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\operatorname{Observed}(\operatorname{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
1	F	73	HIC	CD2-CG	3.69	1.41	1.36
1	В	73	HIC	CD2-CG	3.67	1.41	1.36
1	С	73	HIC	CD2-CG	3.63	1.41	1.36
1	Е	73	HIC	CD2-CG	3.63	1.41	1.36
1	D	73	HIC	CD2-CG	3.59	1.41	1.36

The worst 5 of 6 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Ε	73	HIC	CB-CA-C	-3.48	104.95	111.47
1	А	73	HIC	CB-CA-C	-3.40	105.09	111.47
1	F	73	HIC	CB-CA-C	-3.31	105.27	111.47
1	D	73	HIC	CB-CA-C	-3.22	105.43	111.47
1	В	73	HIC	CB-CA-C	-2.94	105.95	111.47

There are no chirality outliers.

5 of 8 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	А	73	HIC	CA-CB-CG-ND1
1	В	73	HIC	CA-CB-CG-ND1
1	С	73	HIC	CA-CB-CG-ND1
1	D	73	HIC	N-CA-CB-CG
1	Е	73	HIC	N-CA-CB-CG

There are no ring outliers.

3 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
1	В	73	HIC	1	0
1	D	73	HIC	1	0
1	Ε	73	HIC	1	0

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 12 ligands modelled in this entry, 6 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Res	Link	Bo	ond leng	ths	В	ond ang	les
WIOI	туре	Ullaili	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	ADP	Е	401	4	24,29,29	0.93	1 (4%)	$29,\!45,\!45$	1.52	4 (13%)
3	ADP	D	401	-	24,29,29	0.93	1 (4%)	29,45,45	1.54	4 (13%)
3	ADP	С	401	4	24,29,29	0.95	1 (4%)	29,45,45	1.42	4 (13%)
3	ADP	F	401	4	24,29,29	0.93	1 (4%)	29,45,45	1.47	4 (13%)
3	ADP	А	401	4	24,29,29	0.94	1 (4%)	29,45,45	1.50	4 (13%)
3	ADP	В	401	-	24,29,29	0.94	1 (4%)	29,45,45	1.43	4 (13%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	ADP	Е	401	4	-	2/12/32/32	0/3/3/3
3	ADP	D	401	-	-	3/12/32/32	0/3/3/3
3	ADP	С	401	4	-	4/12/32/32	0/3/3/3
3	ADP	F	401	4	-	4/12/32/32	0/3/3/3
3	ADP	А	401	4	-	1/12/32/32	0/3/3/3
3	ADP	В	401	-	-	3/12/32/32	0/3/3/3

Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

The worst 5 of 6 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
3	Е	401	ADP	C5-C4	2.54	1.47	1.40
3	F	401	ADP	C5-C4	2.52	1.47	1.40
3	А	401	ADP	C5-C4	2.52	1.47	1.40
3	D	401	ADP	C5-C4	2.50	1.47	1.40
3	В	401	ADP	C5-C4	2.45	1.47	1.40

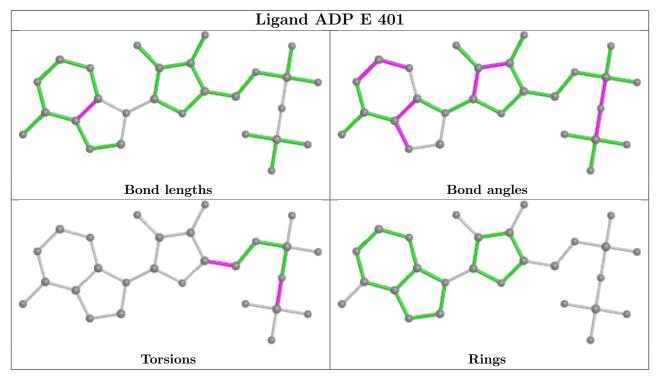
The worst 5 of 24 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
3	F	401	ADP	C3'-C2'-C1'	3.66	106.48	100.98
3	Е	401	ADP	C3'-C2'-C1'	3.55	106.33	100.98
3	А	401	ADP	C3'-C2'-C1'	3.50	106.25	100.98
3	В	401	ADP	C3'-C2'-C1'	3.47	106.20	100.98
3	D	401	ADP	C3'-C2'-C1'	3.47	106.20	100.98

There are no chirality outliers.

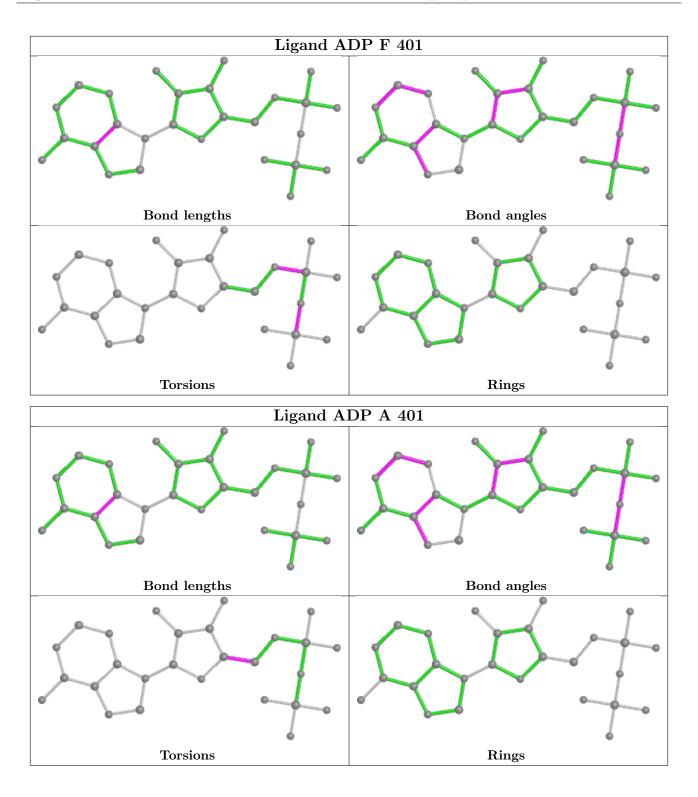
5 of 17 torsion outliers are listed below:

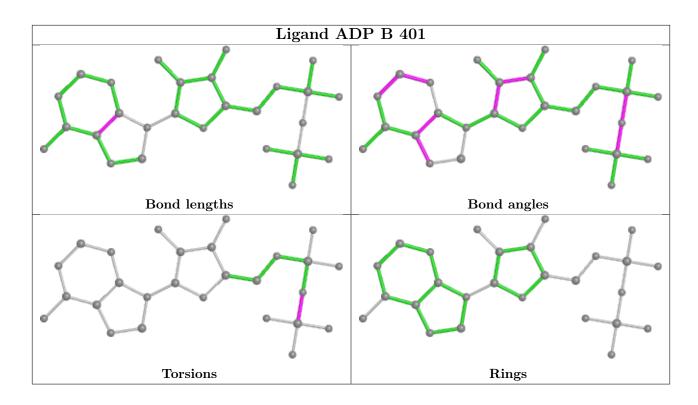
Mol	Chain	Res	Type	Atoms
3	С	401	ADP	C5'-O5'-PA-O3A
3	F	401	ADP	C5'-O5'-PA-O2A
3	D	401	ADP	C3'-C4'-C5'-O5'
3	D	401	ADP	O4'-C4'-C5'-O5'
3	В	401	ADP	PA-O3A-PB-O1B


There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	\mathbf{C}	401	ADP	1	0


The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

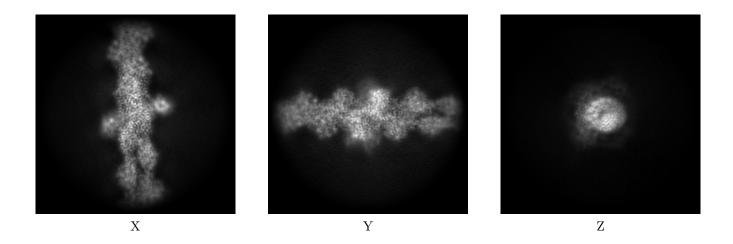


5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

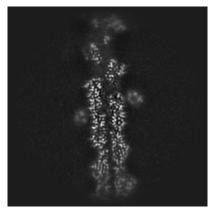
There are no chain breaks in this entry.


6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-44026. These allow visual inspection of the internal detail of the map and identification of artifacts.

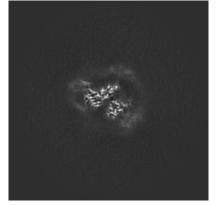
No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)


6.1.1 Primary map

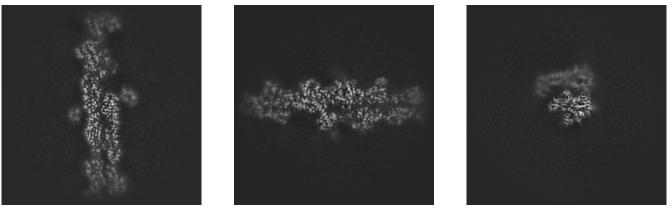
The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)


6.2.1 Primary map

X Index: 144

Y Index: 144

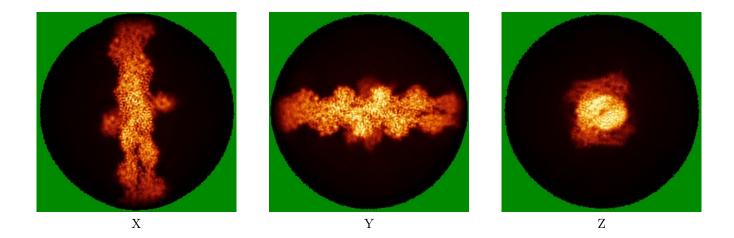

Z Index: 144

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 148

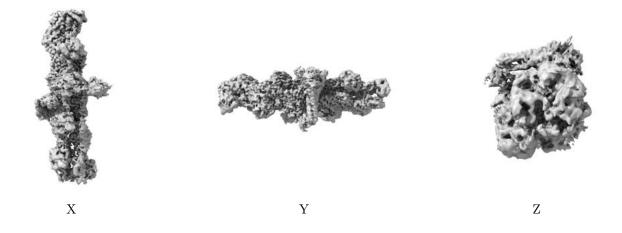

Y Index: 136

Z Index: 158

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map



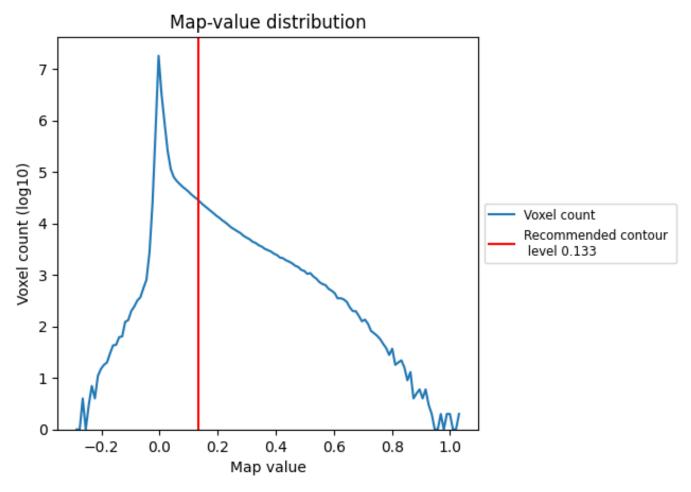
The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

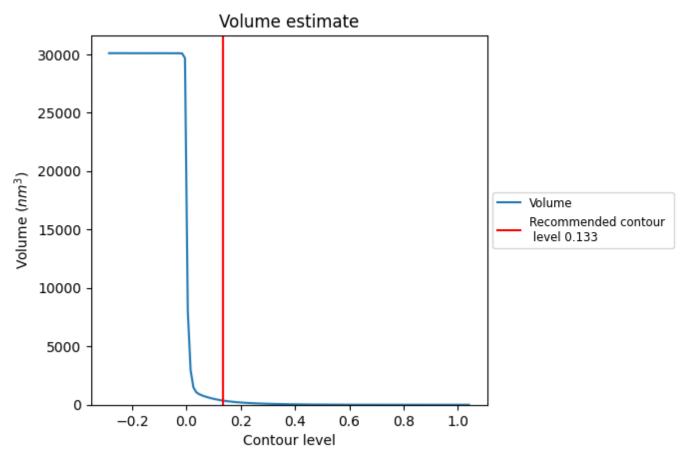
The images above show the 3D surface view of the map at the recommended contour level 0.133. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)


This section was not generated. No masks/segmentation were deposited.

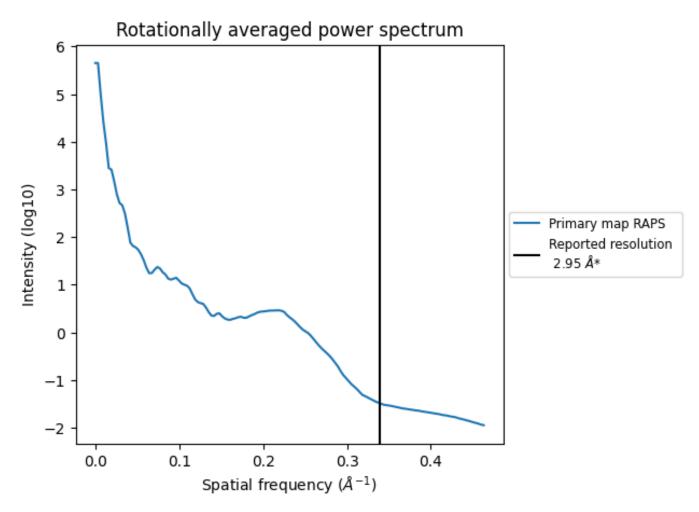
7 Map analysis (i)

This section contains the results of statistical analysis of the map.


7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)



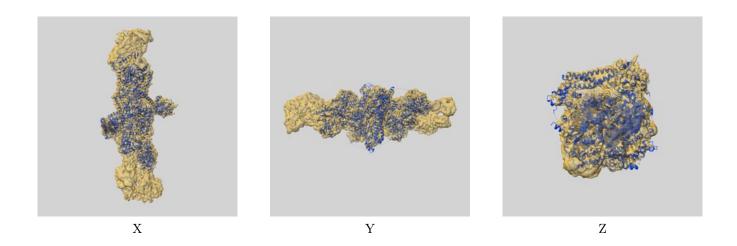
The volume at the recommended contour level is 365 nm^3 ; this corresponds to an approximate mass of 329 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

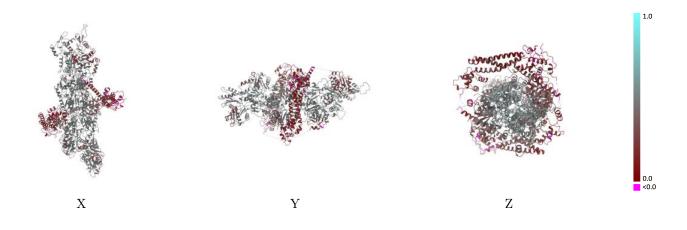
*Reported resolution corresponds to spatial frequency of 0.339 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)


This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-44026 and PDB model 9B03. Per-residue inclusion information can be found in section 3 on page 5.

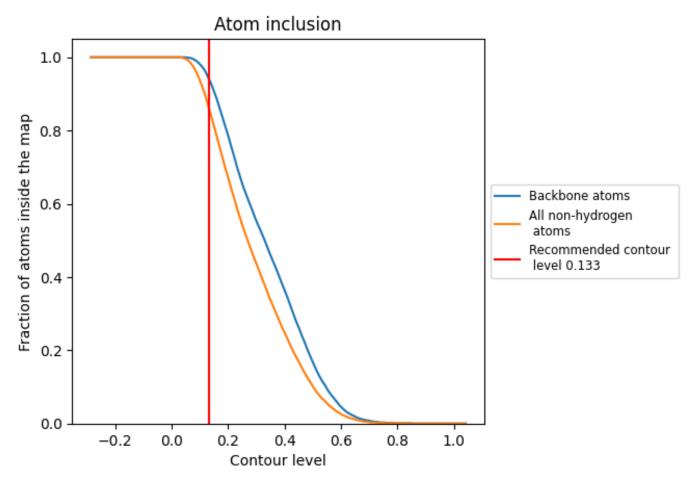

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.133 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.


9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.133).

9.4 Atom inclusion (i)

At the recommended contour level, 94% of all backbone atoms, 86% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.133) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8590	0.3950
А	0.9060	0.4330
В	0.9550	0.4650
С	0.9690	0.4890
D	0.9680	0.4810
Е	0.9640	0.4850
F	0.9370	0.4560
G	0.5890	0.1960
Н	0.6250	0.1910

