

wwPDB EM Validation Summary Report (i)

Jan 11, 2023 – 03:47 pm GMT

PDB ID	:	8APN
EMDB ID	:	EMD-15576
Title	:	Structure of the mitochondrial ribosome from Polytomella magna with tRNA
		bound to the P site
Authors	:	Tobiasson, V.; Berzina, I.; Amunts, A.
Deposited on	:	2022-08-10
Resolution	:	3.10 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	A1	109	77%	23%
2	A2	81	80%	20%
3	A3	207	86%	14%
4	A4	73	85%	15%
5	A5	136	8%	24%
6	A6	109	• 81%	19%
7	A7	534	85%	15%
8	A8	350	83%	16%

Mol	Chain	Length	Quality of chain	
9	A9	69	78%	22%
10	Aa	306	• 100%	
11	Ab	306	• 100%	
12	Ac	303	5%	
13	Ad	193	99%	•
14	Ae	242	19%	
15	Af	56	98%	•
16	Ah	186	• 99%	
17	Ai	121	• 100%	
18	Aj	206	100%	
19	Ak	166	100%	
20	Al	173	99%	·
21	Am	114	100%	
22	An	170	8% 100%	
23	Ao	117	100%	
24	Ap	200	100%	
25	Aq	188	9 9%	•
26	Ar	155	99%	
27	As	115	100%	
28	At	253	100%	
29	Au	142	99% 5%	·
30	Av	129	100%	
31	Aw	123	98%	•
32	Ax	176	100%	
33	Ay	72	100%	

Mol	Chain	Length	Quality of chain
34	Az	59	<u>8%</u> 93% 7%
35	AA	50	• 100%
36	AB	50	100%
37	AC	139	99%
38	AD	47	98%
39	AE	92	100%
40	AF	93	100%
41	AG	121	100%
42	AH	176	99%
43	AI	64	100%
44	AJ	122	100%
45	AK	139	100%
46	AL	394	99% ·
47	AM	419	100%
48	AN	420	100%
49	AO	377	99%
50	Xa	199	99%
51	Xb	244	100%
52	Xc	57	100%
53	Xd	413	100%
54	Xe	483	10%
55	Xf	201	100%
56	Xg	410	99%
57	Xh	143	100%
58	Xi	24	100%

Mol	Chain	Length	Quality of chain	
59	Xj	71	28%	
60	B1	102	19% 78%	22%
61	B2	210	5% 81%	19%
62	B3	379	●	13%
63	B4	337	86%	14%
64	Ba	242	41% 98%	·
65	Bb	236	23%	
66	Bc	289	48% 99%	·
67	Bd	221	31%	
68	Be	228	8%	•
69	Bf	119	15%	
70	Bg	112	98%	·
71	Bh	374	23%	
72	Bi	282	32%	
73	Bj	401	69% 100%	
74	Bk	116	— 100%	
75	Bl	123	43%	
76	Bm	113	34%	•
77	Bn	118	8%	
78	Во	167	7%	
79	Bp	123	43%	
80	Bq	130	8%	
81	Br	90	12%	
82	Bs	92	50%	
83	Bt	75	8%	

Continue contraction contrac	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
			43%	
84	Bu	167	100%	
0E	D.,	164	34%	
80	DV	104		•
86	Bw	349	100%	
	10 11	010	83%	
87	Bx	621	98%	•
			41%	
88	By	80	98%	•
80	\mathbf{B}_{7}	110	80%	
- 09	DZ	119	51%	
90	BA	176	100%	
			44%	
91	BB	84	100%	
	F C	2 - 2	63%	
92	BC	270	100%	
02	ЪD	21	10%	
95	DD	- 16	99%	
94	\mathbf{BE}	171	100%	
			63%	
95	BF	370	100%	
			59%	
96	Ya	180	99%	•
07	Vh	50	84%	
97	ID	- 00	48%	•
98	Yc	159	100%	
			76%	
99	Yd	95	100%	
100	**	100	15%	
100	Ye	106	98%	•
101	$\mathbf{V}\mathbf{f}$	150	37%	
101	11	100	81%	
102	Yg	67	100%	
	-0		49%	
103	Yh	65	100%	
			95%	
104	Yi	132	98%	•
105	\mathbf{V} :	206	92%	
105	IJ	066	98%	
106	Yk	92	100%	
100	117	54	37%	
107	Yl	84	100%	
			10%	
108	C1	73	59%	41%

Mol	Chain	Length	Quality of chain						
109	C3	4	75%	25%					
110	Ub	130	50% 95%	5%					
111	Ua	32	59%						
112	Ud	43	86%						
113	Ue	47	100%						
114	Uf	73	95%						
115	Ug	63	68% 100%						
116	Uh	48	100%						
117	Ui	26	31%						
118	Uj	9	89%						
119	Uk	23	87%						
120	Ul	16	100%						
121	Um	11	55%						

2 Entry composition (i)

There are 126 unique types of molecules in this entry. The entry contains 198407 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called mtLSU-1.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	A1	109	Total 2344	C 1052	N 444	O 739	Р 109	0	0

• Molecule 2 is a RNA chain called mtLSU-2.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	A2	81	Total 1729	C 777	N 318	O 553	Р 81	0	0

• Molecule 3 is a RNA chain called mtLSU-3.

Mol	Chain	Residues		A	AltConf	Trace			
3	A3	207	Total 4413	C 1980	N 795	O 1431	Р 207	0	0

• Molecule 4 is a RNA chain called mtLSU-4.

Mol	Chain	Residues		A	toms			AltConf	Trace
4	A4	73	Total 1572	C 704	N 302	0 493	Р 73	0	0

• Molecule 5 is a RNA chain called mtLSU-5.

Mol	Chain	Residues		A	toms			AltConf	Trace
5	A5	136	Total 2897	C 1298	N 522	0 941	Р 136	0	0

• Molecule 6 is a RNA chain called mtLSU-6.

Mol	Chain	Residues		A	toms			AltConf	Trace
6	A6	109	Total 2337	C 1048	N 433	0 747	Р 109	0	0

• Molecule 7 is a RNA chain called mtLSU-7.

Mol	Chain	Residues		A	toms			AltConf	Trace
7	Δ.7	524	Total	С	Ν	Ο	Р	0	0
· ·	A	004	11387	5106	2066	3681	534	0	0

• Molecule 8 is a RNA chain called mtLSU-8.

Mol	Chain	Residues		A	toms			AltConf	Trace
8	A8	350	Total 7452	C 3335	N 1322	0 2445	Р 350	0	0

• Molecule 9 is a RNA chain called mt-5S.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
9	A9	69	Total 1466	C 656	N 256	0 485	Р 69	0	0

• Molecule 10 is a protein called uL2m.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	Aa	306	Total 2386	C 1501	N 470	0 410	${f S}{5}$	0	0

• Molecule 11 is a protein called uL3m.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	Ab	306	Total 2414	C 1560	N 411	0 432	S 11	0	0

• Molecule 12 is a protein called uL4m.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	Ac	303	Total 2377	C 1499	N 438	0 435	${S \atop 5}$	0	0

• Molecule 13 is a protein called uL5m.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Ad	193	Total 1537	C 991	N 256	O 281	S 9	0	0

• Molecule 14 is a protein called uL6m.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	Ae	242	Total 1934	C 1260	N 326	0 341	${ m S} 7$	0	0

• Molecule 15 is a protein called uL9m.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
15	Af	56	Total 432	C 274	N 74	0 83	S 1	0	0

• Molecule 16 is a protein called uL13m.

Mol	Chain	Residues		At	oms		AltConf	Trace	
16	Ah	186	Total 1517	C 975	N 274	O 260	S 8	0	0

• Molecule 17 is a protein called Hypothetical protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	Ai	121	Total 952	C 621	N 170	0 158	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called uL15m.

Mol	Chain	Residues		Ate	AltConf	Trace			
18	Aj	206	Total 1607	C 1027	N 290	O 284	S 6	0	0

• Molecule 19 is a protein called uL16m.

Mol	Chain	Residues		At	oms		AltConf	Trace	
19	Ak	166	Total 1356	C 870	N 261	0 216	${ m S} 9$	0	0

• Molecule 20 is a protein called bL17m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	Al	173	Total 1412	C 898	N 272	0 240	${ m S} { m 2}$	0	0

• Molecule 21 is a protein called uL18m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	Am	114	Total 911	$\begin{array}{c} \mathrm{C} \\ 587 \end{array}$	N 166	0 156	${ m S} { m 2}$	0	0

• Molecule 22 is a protein called bL19m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	An	170	Total 1392	C 891	N 238	O 255	S 8	0	0

• Molecule 23 is a protein called bL20m.

Mol	Chain	Residues		At	oms		AltConf	Trace	
23	Ao	117	Total 964	C 607	N 186	0 168	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called bL21m.

Mol	Chain	Residues		At		AltConf	Trace		
24	Ар	200	Total 1566	C 1003	N 278	0 279	S 6	0	0

• Molecule 25 is a protein called uL22m.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	Aq	188	Total 1533	C 971	N 285	0 273	$\frac{S}{4}$	0	0

• Molecule 26 is a protein called uL23m.

Mol	Chain	Residues		At	oms		AltConf	Trace	
26	Ar	155	Total 1283	C 824	N 223	0 232	${f S}$ 4	0	0

• Molecule 27 is a protein called bL24m.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	As	115	Total 920	C 590	N 157	O 169	${S \atop 4}$	0	0

• Molecule 28 is a protein called bL25m.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	At	253	Total 2003	C 1268	N 364	O 361	S 10	0	0

• Molecule 29 is a protein called bL27m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	Au	142	Total	С	N	0	S	0	0
_			1149	734	212	200	3	-	-

• Molecule 30 is a protein called bL28m.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
30	Av	129	Total 1058	C 670	N 187	0 198	${ m S} { m 3}$	0	0

• Molecule 31 is a protein called uL29m.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
31	Aw	123	Total 1024	C 646	N 189	O 189	0	0

• Molecule 32 is a protein called uL30m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	Ax	176	Total 1472	C 942	N 277	O 250	${ m S} { m 3}$	0	0

• Molecule 33 is a protein called bL31m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	Ау	72	Total 592	C 387	N 103	O 100	${ m S} { m 2}$	0	0

• Molecule 34 is a protein called bL32m.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
34	Az	59	Total 469	C 306	N 87	0 72	$\frac{S}{4}$	0	0

• Molecule 35 is a protein called bL33m.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
35	AA	50	Total 416	С 276	N 72	O 66	${ m S} { m 2}$	0	0

• Molecule 36 is a protein called bL34m.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
36	AB	50	Total 427	С 264	N 91	O 68	$\frac{S}{4}$	0	0

• Molecule 37 is a protein called bL35m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	AC	139	Total 1180	C 756	N 238	0 184	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 38 is a protein called bL36m.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
38	AD	46	Total 375	C 236	N 78	O 57	$\frac{S}{4}$	0	0

• Molecule 39 is a protein called mL40.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
39	AE	92	Total 771	C 493	N 139	O 139	0	0

• Molecule 40 is a protein called mL41.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
40	AF	93	Total 765	C 495	N 140	O 130	0	0

• Molecule 41 is a protein called mL43.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	AG	121	Total 994	C 625	N 189	0 173	${f S}{7}$	0	0

• Molecule 42 is a protein called mL46.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	AH	176	Total 1412	C 910	N 233	O 262	${ m S} 7$	0	0

• Molecule 43 is a protein called mL63.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
43	AI	64	Total 505	C 325	N 92	0 87	S 1	0	0

• Molecule 44 is a protein called mL64.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	AJ	122	Total 1003	C 646	N 182	0 173	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 45 is a protein called mL87.

Mol	Chain	Residues		At	AltConf	Trace			
45	AK	139	Total 1164	C 751	N 215	0 195	${ m S} { m 3}$	0	0

• Molecule 46 is a protein called mL116.

Mol	Chain	Residues		Ate	AltConf	Trace			
46	AL	394	Total 3093	C 1970	N 548	O 568	S 7	0	0

• Molecule 47 is a protein called mL116.

Mol	Chain	Residues		At	AltConf	Trace			
47	AM	419	Total 3282	C 2087	N 584	O 604	${ m S} 7$	0	0

• Molecule 48 is a protein called mL116.

Mol	Chain	Residues		At	AltConf	Trace			
48	AN	420	Total 3286	C 2089	N 585	O 605	S 7	0	0

• Molecule 49 is a protein called mL118.

Mol	Chain	Residues		At	AltConf	Trace			
49	AO	377	Total 2881	C 1832	N 516	O 527	S 6	0	0

• Molecule 50 is a protein called mL120.

Mol	Chain	Residues		Ate	AltConf	Trace			
50	Xa	199	Total 1568	C 1000	N 268	O 296	$\frac{S}{4}$	0	0

• Molecule 51 is a protein called mL121.

Mol	Chain	Residues	Atoms					AltConf	Trace
51	Xb	244	Total 1956	$\begin{array}{c} \mathrm{C} \\ 1257 \end{array}$	N 320	O 370	S 9	0	0

• Molecule 52 is a protein called mL122.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
52	Xc	57	Total	С	Ν	0	0	0
52	AU	51	496	318	90	88	0	0

• Molecule 53 is a protein called mL123.

Mol	Chain	Residues		At	AltConf	Trace			
53	Xd	413	Total 3236	C 2064	N 568	O 592	S 12	0	0

• Molecule 54 is a protein called mL124.

Mol	Chain	Residues		At	AltConf	Trace			
54	Xe	483	Total 3675	C 2334	N 666	O 665	S 10	0	0

• Molecule 55 is a protein called mL125.

Mol	Chain	Residues		At	oms			AltConf	Trace
55	Xf	201	Total 1615	C 1034	N 289	O 290	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 56 is a protein called mL126.

Mol	Chain	Residues		At	AltConf	Trace			
56	Xg	410	Total 3081	C 1978	N 538	O 558	${ m S} 7$	0	0

• Molecule 57 is a protein called mL127.

Mol	Chain	Residues		At	oms			AltConf	Trace
57	Yh	1/13	Total	С	Ν	Ο	S	0	0
57		140	1147	736	208	200	3	0	0

• Molecule 58 is a protein called mL128.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
58	Xi	24	Total 206	C 131	N 40	0 34	S 1	0	0

• Molecule 59 is a protein called mL129.

Mol	Chain	Residues		At	oms			AltConf	Trace
59	Xj	71	Total 582	C 362	N 104	0 115	S 1	0	0

• Molecule 60 is a RNA chain called mtSSU-1.

Mol	Chain	Residues		Α	toms	AltConf	Trace		
60	B1	102	Total 2165	C 969	N 376	0 718	P 102	0	0

• Molecule 61 is a RNA chain called mtSSU-2.

Mol	Chain	Residues		Α	toms			AltConf	Trace
61	B2	210	Total 4484	C 2008	N 815	0 1451	Р 210	0	0

• Molecule 62 is a RNA chain called mtSSU-3.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
62	D3	270	Total	С	Ν	Ο	Р	0	0
02	D0	519	8096	3627	1480	2610	379	0	0

• Molecule 63 is a RNA chain called mtSSU-4.

Mol	Chain	Residues		Α	AltConf	Trace			
63	B4	337	Total 7186	C 3222	N 1300	0 2327	Р 337	0	0

• Molecule 64 is a protein called bS1m.

Mol	Chain	Residues		Ate		AltConf	Trace		
64	Ba	242	Total 1936	C 1222	N 344	O 361	S 9	0	0

• Molecule 65 is a protein called uS2m.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
65	Bb	236	Total 1878	C 1215	N 315	0 344	${S \atop 4}$	0	0

• Molecule 66 is a protein called uS3m.

Mol	Chain	Residues		At		AltConf	Trace		
66	Bc	289	Total 2282	C 1451	N 408	0 416	${ m S} 7$	0	0

• Molecule 67 is a protein called uS4m.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
67	Bd	221	Total 1793	C 1132	N 338	O 315	S 8	0	0

• Molecule 68 is a protein called uS5m.

Mol	Chain	Residues		At	oms			AltConf	Trace
68	Be	228	Total 1826	C 1153	N 336	O 330	S 7	0	0

• Molecule 69 is a protein called uS6m.

Mol	Chain	Residues		At	oms		AltConf	Trace	
69	Bf	119	Total 969	C 624	N 170	0 171	$\frac{S}{4}$	0	0

• Molecule 70 is a protein called uS7m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	Bg	112	Total 887	$\begin{array}{c} \mathrm{C} \\ 555 \end{array}$	N 168	0 157	${ m S} 7$	0	0

• Molecule 71 is a protein called uS8m.

Mol	Chain	Residues		At		AltConf	Trace		
71	Bh	374	Total 3037	C 1949	N 549	O 533	S 6	0	0

• Molecule 72 is a protein called uS9m.

Mol	Chain	Residues		At		AltConf	Trace		
72	Bi	282	Total 2271	C 1441	N 406	0 415	S 9	0	0

• Molecule 73 is a protein called uS10m.

Mol	Chain	Residues		At	oms			AltConf	Trace
73	Bj	401	Total 3174	C 2020	N 543	O 597	S 14	0	0

• Molecule 74 is a protein called uS11m.

Mol	Chain	Residues		At	oms		AltConf	Trace	
74	Bk	116	Total 871	C 550	N 158	0 160	${ m S} { m 3}$	0	0

• Molecule 75 is a protein called uS12m.

Mol	Chain	Residues		At	oms			AltConf	Trace
75	Bl	123	Total 962	C 604	N 190	0 164	${S \atop 4}$	0	0

• Molecule 76 is a protein called uS13m.

Mol	Chain	Residues		At	oms			AltConf	Trace
76	Bm	113	Total 897	C 560	N 176	0 157	${S \atop 4}$	0	0

• Molecule 77 is a protein called uS14m.

Mol	Chain	Residues		At	oms			AltConf	Trace
77	Bn	118	Total 978	C 613	N 194	0 167	${f S}$ 4	0	0

• Molecule 78 is a protein called uS15m.

Mol	Chain	Residues		At	oms			AltConf	Trace
78	Bo	167	Total 1212	C 759	N 234	0 213	S 6	0	0

• Molecule 79 is a protein called bS16m.

Mol	Chain	Residues		At	oms			AltConf	Trace
79	Вр	123	Total 1013	$\begin{array}{c} \mathrm{C} \\ 655 \end{array}$	N 184	0 172	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 80 is a protein called uS17m.

Mol	Chain	Residues		At	oms			AltConf	Trace
80	Bq	130	Total 1053	C 662	N 200	0 187	${f S}$ 4	0	0

• Molecule 81 is a protein called bS18m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
81	Br	90	Total 743	C 465	N 148	O 127	${ m S} { m 3}$	0	0

• Molecule 82 is a protein called bS19m.

Mol	Chain	Residues		At	oms			AltConf	Trace
82	Bs	92	Total 734	C 472	N 132	0 128	${S \over 2}$	0	0

• Molecule 83 is a protein called bS21m.

Mol	Chain	Residues		At	oms			AltConf	Trace
83	Bt	75	Total 621	C 396	N 117	0 107	S 1	0	0

• Molecule 84 is a protein called mS23.

Mol	Chain	Residues		At	oms			AltConf	Trace
84	Bu	167	Total 1366	С 874	N 240	0 248	${f S}$ 4	0	0

• Molecule 85 is a protein called mS26.

Mol	Chain	Residues		At	oms			AltConf	Trace
85	Bv	164	Total 1355	C 846	N 249	O 256	$\frac{S}{4}$	0	0

• Molecule 86 is a protein called mS29.

Mol	Chain	Residues		At	oms			AltConf	Trace
86	Bw	349	Total 2749	C 1748	N 477	0 511	S 13	0	0

• Molecule 87 is a protein called mS31.

Mol	Chain	Residues		At	oms			AltConf	Trace
87	Bx	621	Total 4714	C 2990	N 819	0 894	S 11	0	0

• Molecule 88 is a protein called mS33.

Mol	Chain	Residues		At	oms	AltConf	Trace		
88	Ву	78	Total 636	C 409	N 111	0 114	S 2	0	0

• Molecule 89 is a protein called mS34.

Mol	Chain	Residues		At	oms	AltConf	Trace		
89	Bz	119	Total 997	C 648	N 172	0 176	S 1	0	0

• Molecule 90 is a protein called mS35.

Mol	Chain	Residues		At	oms			AltConf	Trace
90	ВА	176	Total 1377	C 854	N 253	O 265	${S \atop 5}$	0	0

• Molecule 91 is a protein called mS37.

Mol	Chain	Residues		At	oms	AltConf	Trace		
91	BB	84	Total 663	C 411	N 129	0 118	${ m S}{ m 5}$	0	0

• Molecule 92 is a protein called mS45.

Mol	Chain	Residues		At	AltConf	Trace			
92	BC	270	Total 2163	C 1364	N 383	O 406	S 10	0	0

• Molecule 93 is a protein called mS38.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
93	BD	31	Total 278	C 176	N 65	O 35	${S \over 2}$	0	0

• Molecule 94 is a protein called mS106.

Mol	Chain	Residues		At	oms	AltConf	Trace		
94	BE	171	Total 1304	C 824	N 223	O 253	$\frac{S}{4}$	0	0

• Molecule 95 is a protein called mS107.

Mol	Chain	Residues		Ate	AltConf	Trace			
95	BF	370	Total 2980	C 1897	N 541	O 533	S 9	0	0

• Molecule 96 is a protein called uS4m-2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
96	Ya	180	Total 1434	C 904	N 252	0 272	S 6	0	0

• Molecule 97 is a protein called mS108.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
97	Yb	50	Total 412	C 260	N 77	0 74	S 1	0	0

• Molecule 98 is a protein called mS109.

Mol	Chain	Residues		At	oms			AltConf	Trace
98	Yc	159	Total 1297	C 826	N 231	O 237	${ m S} { m 3}$	0	0

• Molecule 99 is a protein called mS110.

Mol	Chain	Residues		At	oms	AltConf	Trace		
99	Yd	95	Total 785	C 495	N 147	0 141	${S \over 2}$	0	0

• Molecule 100 is a protein called uS3m-2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
100	Ye	106	Total 864	C 559	N 156	0 147	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 101 is a protein called mS111.

Mol	Chain	Residues		At	oms	AltConf	Trace		
101	Yf	150	Total 1236	C 792	N 218	0 221	${ m S}{ m 5}$	0	0

• Molecule 102 is a protein called mS112.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
102	Yg	67	Total 553	C 344	N 108	O 97	$\frac{S}{4}$	0	0

• Molecule 103 is a protein called mS113.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
103	Yh	65	Total 530	C 339	N 99	O 91	S 1	0	0

• Molecule 104 is a protein called mS114.

Mol	Chain	Residues		At	oms	AltConf	Trace		
104	Yi	132	Total 1075	C 692	N 197	0 184	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 105 is a protein called mS115.

Mol	Chain	Residues		At	AltConf	Trace			
105	Yj	386	Total 2859	C 1796	N 497	O 559	${ m S} 7$	0	0

• Molecule 106 is a protein called mS116.

Mol	Chain	Residues		At	oms	AltConf	Trace		
106	Yk	92	Total 707	C 460	N 113	0 133	S 1	0	0

• Molecule 107 is a protein called uS7m-2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
107	Yl	84	Total 673	C 428	N 115	0 127	${ m S} { m 3}$	0	0

• Molecule 108 is a RNA chain called P-site tRNA.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms	AltConf	Trace		
108	C1	73	Total 1542	C 693	N 268	O 509	Р 72	0	0

• Molecule 109 is a RNA chain called mRNA.

Mol	Chain	Residues		At	oms	AltConf	Trace		
109	C3	4	Total 87	C 39	N 17	0 27	Р 4	0	0

• Molecule 110 is a protein called mL105.

Mol	Chain	Residues		At	oms	AltConf	Trace		
110	Ub	130	Total 1090	C 688	N 189	O 207	S 6	0	0

• Molecule 111 is a protein called Unknown.

Mol	Chain	Residues		Ator	\mathbf{ns}	AltConf	Trace	
111	Ua	32	Total 166	C 99	N 35	O 32	0	0

• Molecule 112 is a protein called Unknown.

Mol	Chain	Residues	Atoms			AltConf	Trace	
112	Ud	43	Total 215	C 129	N 43	O 43	0	0

• Molecule 113 is a protein called Unknown.

Mol	Chain	Residues	Atoms			AltConf	Trace	
113	Ue	47	Total 235	C 141	N 47	O 47	0	0

• Molecule 114 is a protein called Unknown.

Mol	Chain	Residues	Atoms			AltConf	Trace	
114	Uf	73	Total 365	C 219	N 73	O 73	0	0

• Molecule 115 is a protein called Unknown.

Mol	Chain	Residues	Atoms			AltConf	Trace	
115	Ug	63	Total 315	C 189	N 63	O 63	0	0

• Molecule 116 is a protein called Unknown.

Mol	Chain	Residues		Atoms			AltConf	Trace
116	Uh	48	Total 240	C 144	N 48	0 48	0	0

• Molecule 117 is a protein called Unknown.

Mol	Chain	Residues	Atoms			AltConf	Trace	
117	Ui	26	Total 130	C 78	N 26	O 26	0	0

• Molecule 118 is a protein called Unknown.

Mol	Chain	Residues	Atoms			AltConf	Trace	
118	Uj	9	Total 45	C 27	N 9	O 9	0	0

• Molecule 119 is a protein called Unknown.

Mol	Chain	Residues	Atoms			AltConf	Trace	
119	Uk	23	Total 115	C 69	N 23	O 23	0	0

• Molecule 120 is a protein called Unknown.

Mol	Chain	Residues	Atoms			AltConf	Trace	
120	Ul	16	Total 80	C 48	N 16	O 16	0	0

• Molecule 121 is a protein called Unknown.

Mol	Chain	Residues	Atoms			AltConf	Trace	
121	Um	11	Total 55	C 33	N 11	O 11	0	0

• Molecule 122 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
122	A1	3	Total Mg 3 3	0
122	A2	2	Total Mg 2 2	0
122	A3	7	Total Mg 7 7	0
122	A4	10	TotalMg1010	0
122	A5	2	Total Mg 2 2	0
122	A6	7	Total Mg 7 7	0
122	A7	25	TotalMg2525	0
122	A8	14	TotalMg1414	0
122	Ab	1	Total Mg 1 1	0
122	B1	3	Total Mg 3 3	0
122	B2	8	Total Mg 8 8	0
122	B3	13	TotalMg1313	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
122	Β4	15	Total Mg 15 15	0
122	Bm	1	Total Mg 1 1	0
122	Bw	1	Total Mg 1 1	0

• Molecule 123 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
123	A 1	1	Total K	0
120		Ĩ	1 1	
123	A3	1	Total K	0
123	A4	2	10tal M	0
			Total K	-
123	Α7	4	4 4	0
102	10	F	Total K	
123	A8	Э	5 5	0
123	Aa	1	Total K	0
120	110	Ĩ	1 1	
123	Ab	1	Total K	0
			I I Total K	
123	Ah	1	10tai P	0
			Total K	
123	AC	1	1 1	0
193	R1	9	Total K	<u> </u>
120		۷	2 2	0
123	B2	1	Total K	0
123	B3	8	Total K	0
			Total k	
123	B4	3	3 3	0

• Molecule 124 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
124	AD	1	Total Zn 1 1	0

• Molecule 125 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
195	Bur	1	Total	С	Ν	Ο	Р	0
120	Dw	1	31	10	5	13	3	0

• Molecule 126 is water.

Mol	Chain	Residues	Atoms	AltConf
126	A1	15	Total O 15 15	0
126	A2	9	Total O 9 9	0
126	A3	30	Total O 30 30	0
126	A4	33	Total O 33 33	0
126	A5	9	Total O 9 9	0
126	A6	22	$\begin{array}{ccc} \text{Total} & \text{O} \\ 22 & 22 \end{array}$	0
126	A7	110	Total O 110 110	0
126	A8	70	Total O 70 70	0
126	Aa	2	Total O 2 2	0

Mol	Chain	Residues	Atoms	AltConf
126	Ab	4	Total O 4 4	0
126	Ac	1	Total O 1 1	0
126	Aj	4	Total O 4 4	0
126	AA	1	Total O 1 1	0
126	AC	1	Total O 1 1	0
126	AI	4	Total O 4 4	0
126	AK	2	Total O 2 2	0
126	Xg	1	Total O 1 1	0
126	B1	12	Total O 12 12	0
126	B2	39	Total O 39 39	0
126	B3	57	Total O 57 57	0
126	B4	69	Total O 69 69	0
126	Be	3	Total O 3 3	0
126	Bi	2	Total O 2 2	0
126	Bl	2	Total O 2 2	0
126	Bm	1	Total O 1 1	0
126	Вр	1	Total O	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain A1: 77% 23% • Molecule 2: mtLSU-2 Chain A2: 80% 20% • Molecule 3: mtLSU-3 Chain A3: 86% 14% • Molecule 4: mtLSU-4 Chain A4: 85% 15% • Molecule 5: mtLSU-5 8% Chain A5: 76% 24%
- Molecule 1: mtLSU-1

• Molecule 6: mtLSU-6

Chain A6:	81%	19%
G1 G39 A40 A41 U46 A47 A48 A48	H49 H49 G60 G60 G67 G68 G68 A10 A100 A100 A101 A103 A110 A132	
• Molecule 7:	mtLSU-7	
Chain A7:	85%	15%
A1 A2 A12 A13 A14 A14 A20 U33	G34 U35 G43 A49 C400 C103 A106 C103 A106 C123 A114 C123 A106 C123 A114 C123 A161 U169 U169 U169 U169 U169 U169 U169 U	A199 U204 A205 A205 C207 U208 C207 C207 C207 C207 C202
A29 A230 A230 A236 A236 A236 A236 C256	C257 C257 C265 C265 C265 C265 C265 C265 C265 C265	U444 U465 U465 A81 A81 U486 U486 U486
A494 A503 A504 A507 A518 A518 A519	6520 4527 4528 4539 4534 4557 655 6555 6555 6555 7557 8576	
• Molecule 8:	mtLSU-8	
Chain A8:	83%	16%
C1 C12 A13 A14 G17 A18 A18 A23	A27 C28 A36 A36 B1 B1 B1 A65 A65 C107 C107 C107 C107 C107 C107 C117 C	6136 A189 G190 U196 U200 U200
A215 A219 U252 A262 U272 U272	A274 A277 A277 A276 A289 A289 A289 A289 A306 C306 A306 A324 A346 A346 A346 A346 A346 A346 A346 A34	
• Molecule 9:	mt-5S	
Chain A9:	78%	22%
U51 U59 U59 A60 A61 U62 A63 A63 A63	C76 088 088 089 090 0104 0104 0104 0104 0104 0105 0105 0112 0128 0128 0128 0128 0128 0128	
• Molecule 10	: uL2m	
Chain Aa:	100%	
K57 K101 1145 D195 Q243	A361	
• Molecule 11	: uL3m	
Chain Ab:	100%	

M3 F1 23 F1 23	
• Molecule 18: $uL15m$	
Chain Aj:	100%
NO KZO5	
• Molecule 19: uL16m	
Chain Ak:	100%
H101 8184 8184 8184 8184 8184 8184 8184 8	
• Molecule 20: bL17m	
Chain Al:	99%
T1 R4 B93 B93 B93 C108 C172 C172 C172 C172 C172 C172 C172 C172	
• Molecule 21: uL18m	
Chain Am:	100%
P2 D41 554 A55 P56 V57 V57 V57 V57 V115	
• Molecule 22: bL19m	
Chain An:	100%
E53 A6 B172 B172 S173 B186 E201 E201 E201 E211 S212 E211 S212 E211 S212 E211 S212 E211 E217 E217 E217 E217 E217 E217 E	
• Molecule 23: bL20m	
Chain Ao:	100%
T7 B107 A119 A119 V121 E122 P123	

 \bullet Molecule 24: bL21m

Chain Ap:	100%
• Molecule 25: uL22m	
Chain Aq:	99% •
868 1120 1170 1248 ↓ ↓	
• Molecule 26: uL23m	
6%	
Chain Ar:	99% •
D52 K78 D34 E103 K163 C185 C185 C185 C185 K212 K212	
• Molecule 27: bL24m	
Chain As:	100%
P10 L11 D12 113 Q14 R17 R17 R17 R17 P14 P41 P41 P41 P41 P41 P41 P41	R60 P78 Q83 Q83 Q83 Q83 Q83 Q83 Q83 Q8
\bullet Molecule 28: bL25m	
6% Cl. :	
Chain At:	100%
Q35 E40 E40 E163 ♦ E163 ♦ P211 ♦ K217 ♦ K219 C219 ♦ G220 ♦	R250 ♦ 1253 ♦ 12772 ♦ A275 ♦ C280 ♦ E287 ♦
\bullet Molecule 29: bL27m	
Chain Au:	99%
080 K301 K301	
• Molecule 30: bL28m	
Chain Av:	100%
Q43 Q44 E112 ← D134 ← Q170 ← K171 ←	

• Molecule 31: uL29m		
Chain Aw:	98%	·
D50 R69 D124 P125 P155 F156 K159 K159 F160 K161	► • • • • • • • • • • • • • • • • • • •	
\bullet Molecule 32: uL30m		
Chain Ax:	100%	
E4 491 492 893 197 197 197 197 197		
\bullet Molecule 33: bL31m		
Chain Ay:	100%	
L0 A25 A27 A27 A27 A27 A27 A27 A27 A27 A27 A27	N57 158 760 763 863 863 863 863 863 863 863 863 863 8	
\bullet Molecule 34: bL32m		
Chain Az:	93%	7%
A76 8133 P134 P136 A136 K137 K144 K137 C147		
\bullet Molecule 35: bL33m		
Chain AA:	100%	
R2 1		
\bullet Molecule 36: bL34m		
Chain AB:	100%	
There are no outlier residu	ues recorded for this chain.	
• Molecule 37: bL35m		
Chain AC:	99%	·
V66 E69 E72 E72 P72 R73 Q74 K172 K172 K172 K172 K193 R193		

• Molecule 38: bL36m		
Chain AD:	98%	
M7 H10 H27 A28 A28 A28 A28 A28 A28 A28 A28 A28 A28		
• Molecule 39: mL40		
Chain AE:	100%	•
E61 G62 N63 T64 R65 G67 G67 G67 F66 G67 F75 F75 F75 F75 F75 F75 F75 F75 F75 F7		
• Molecule 40: mL41		
Chain AF:	100%	-
V0 180 882 892 892		
• Molecule 41: mL43		
Chain AG:	100%	-
A8 R59 0124 L128		
• Molecule 42: mL46		
Chain AH:	99%	
R1 L8 E18 Y31 Y31 F33 G34 G35 G35 G59 G59 G59 G59 F73 F73 F73	A81 882 882 883 884 985 186 884 186 A111 1112 A111 7110 A111 7112 6113 7112 6113 7112 8112 8113 7133 7134 7135 8134 8135 8134 8135 8134 8135 8135 8135 8135 8135 8135 8135 8135	D146 E149 V150 R151 E155 S156 C155 A155 C157 A156 E159 D160
S174		
• Molecule 43: mL63		
Chain AI:	100%	
• Molecule 44: mL64		

L:173

 \bullet Molecule 66: uS3m

• Molecule 91: mS37	0/					
Chain BB:	%	100%				
P1 1 V27 V27 V28 P29 P29 S30 K31 K31 K35 C34 K35 C34 K35 C34 C34 C34 C34 C34 C34 C34 C34 C34 C34	R45 R46 N47 F48 S49 G50 G51 A52 C51	D54 G54 M57 M57 R58 B59 E59	R65 Q69 R70 K77 T78 S79 S79	K80 G81 E82 I83 L87	K95 R96 G98 F99	
\bullet Molecule 92: mS45						
Chain BC:	63%	100%				
P45 846 V47 N48 N48 N48 P49 P49 S52 S55 S55 S55 S57 S55 S57 S55 S57 S55 S57 S55 S57 S55 S57 S55 S57 S57	R61 C62 A63 A63 V65 L66 A67 E68 E68 C69	A70 A71 L72 P73 G74 G75 G76	A77 A78 A80 A81 G82 G82 T83 F84 F84	L85 P86 H87 E88 L89 P90 T91	A92 193 294 196 196 196 897 897	L99 D100 F101 E102 A103 E104
M105 K106 L107 E108 Q109 M110 A112 M112 M113 K115 L117 C117 C117 C115 C116 C116 C116 C116 C1117 C1117 C1112 C1117 C1112 C1112 C1112 C1112 C1112 C1112 C110C C10C	N120 N121 E122 E123 E124 N125 E126 V127 C128	1120 (1130 (1130 (1131 (1133 (1133 (1135	L136 K137 L138 S139 G140 H165 P166 F167	R168	A187 G188 R189 G194	E210
V217 D218 Q219 T220 T221 K227 R235 M240 K246 K245 K245	1252 0253 M254 V255 0256 2265 2266 2266 2268	260 W260 P262 V263 Q264 G265 V266	L267 S268 A269 N270 L271 R272 S273 S273	L275 D276 R277 P278 L279 V280	D283	Y294 P294 K296
F297 V298 A299 E300 V301 D302 G303 G303 T304 F305 R305 R305 R305 R305 R305 R305 R305 R	E312 R313 A314 Y315 Q316 A317 K318 R319 R319	K320 P321 G322 P323 R324 L325 M329	R330 R334 K335 E336 E337 L338			
• Molecule 93: mS38						
Chain BD:		100%				
I118 K1355 R136						
• Molecule 94: mS106		99%				
Chain BE:		100%				
177 Å 78 Å 78 P 79 S80 Q81 L82 K84 K84 K84 K84 K84 K87 K84 K87 K87 V89 V89 V91	R92 P93 P94 P94 P94 P94 P95 P94 P94 P96 P96 P96 P96 P997 P98 P998 P998 P998 P998 P998 P999 P999	E100 D101 T102 K103 Q104 A105 T105 S107	S108 V109 T110 D111 N112 E113 G114	K116 K117 C118 C118 D120 D120	F122 L123 T124 N125 H126 A127 A127	q129 T130 V131 V132 G133 K134 H135 E135
131 132 134 134 134 134 134 134 134 134	55 56 57 59 59 59 59	66 65 64 65 65 65 65 65 65 65 65 65 65 65 65 65	167 168 170 172 173 173 173	175 177 79 80 80	81 88 85 85 85 87 87 87 87 87 87 87 87 87 87 87 87 87	88 190 191 193 193 194
Y Y W Y G G G G G G G G G G G G G G G G		NE ING SA				
V197 L198 L199 V200 G201 S202 C203 V206 V206 V206 V206 E210 F209 F209	L212 A213 A214 A215 V216 R217 T218 A219	L220 E221 A222 H223 E224 K225 A226	Q227 E228 G229 M230 A231 E232 A233 A233 L234	A235 K236 V237 Q238 K239 Y240	R241 E242 A243 L244 D245 R246 R246 L247	

 \bullet Molecule 95: mS107

 \bullet Molecule 97: mS108

														_						84	%																						
Cł	าอ	ir	1	Ył):																	9	98%	6																	•		
+	•	•	•	•	•	•	•	•	•	•	•	•	•	••	٠	-		1	•	+	•	••	•	•	•	••	•	•	••	•	•	+	•	•	•	•	+	+	•	••	••	•	
H37	R38	F39	R40	N41	N42	K43	F44	L45	R46	L47	E48	P49	D50	L51	D52	P53	K54	05.8	TEQ	L62	Q63	K64	Q65	V66	D67	D68	N69	F70	S71	L72 L73	L74	A75	K76	H7.7	R78	L79	D80	M8 1	K82	A83	A84	A85	A86

 \bullet Molecule 98: mS109

 \bullet Molecule 106: mS116

	98%	
Chain Yk:	100%	
G8 P9 L10 P11 E12 E12 D13 V14 F15 V14 F15 V17 V17 V17 V17 V17 V17	 A24 A24 A24 A25 A24 A24 A39 A30 A40 A40	V50 L51 D53 L54 C52 S55 K56 K58 K58 K58 K58 K58 K58 K58 K63 K63 K63 K63 K63 K63 K63 V62 V62 V62 V62 V62 V62 V62 V62 V62 V62
L100 W101 E102 A103 A103 V105 L106 A105 A105 E107 A109 E110 A111 A111	R413	
• Molecule 107: uS7m-2	2	
Chain Yl:	6 100%	-
T0 V1 V2 L3 A4 A4 P5 S5 S10 911 Q11 C112 C112 C112	114 P15 114 126 126 126 126 126 126 127 126 127 126 123 124 124 124 124 124 124 124 124 124 127 128 138 1	
• Molecule 108: P-site	tRNA	
Chain C1:	59% 41%	-
A1 A2 A2 A2 A3 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	U20 421 421 422 425 425 442 443 443 443 443 443 443 443	
• Molecule 109: mRNA		
Chain C3:	75% 25%	-
A32 A33 034 035 035		
• Molecule 110: mL105		
Chain Ub:	50% 95%	5%
R103 D104 E105 E105 T106 K108 K108 E111 S112 S112 S112 S112 S112 D115	M116 0117 V119 0117 V119 0120 V121 V122 M124 C125 C125 C126 V126 C126 C126 C126 C126 C126 C126 C130 C130 C130 C130 C130 C130 C130 C130	M161 M161 1169 8170 L173 L173 L173 L173 L173 L173 L173 M179 M179 M179 M179 T180
V181 C185 C185 C185 C185 D187 D187 L189 L189 R193 R201 T202 C203	F217 F220 F220 S222 S224 F225 F226 F228 F228 Y230 Y231 Y230	
• Molecule 111: Unknow	wn	
Chain Ua:	59%	-
X1 X7 X8 X9 X10 X112 X112 X112 X113 X15 X15 X15 X15 X15 X15	X19 X21 X22 X25 X26 X26 X27 X31 X32 X32	
• Molecule 112: Unknow	wn	

	86%	
Chain Ud:	100%	
****	* * * * * * * * * * * * * * * * * * * *	
X1 X2 X3 X3 X5 X5 X5 X7 X8 X8 X8	X10 X11 X11 X11 X11 X11 X15 X15 X16 X12 X12 X20 X20 X20 X20 X20 X20 X20 X20 X20 X2	
• Molecule 113	B: Unknown	
Chain Ue:	100%	
*******		• • • •
X1 X2 X3 X3 X5 X5 X5 X6 X7 X8	X9 X11 X11 X11 X112 X113 X115 X115 X116 X116 X116 X116 X121 X226 X226 X226	X47 X47
• Molecule 114	l: Unknown	
Chain Uf.	95%	
Chain UI:	100%	
X1 X2 X4 X4 X5 X5 X7 X7 X7 X7	 A.S. X.10 X.11 X.12 X.14 X.15 X.15 X.15 X.16 X.16 X.16 X.16 X.16 X.16 X.16 X.16 X.16 X.17 X.16 X.16 X.17 X.16 X.16 X.17 X.18 X.18 X.19 X.19 X.14 X.14<td>X47 X48 X49 X50 X50 X51 X52 X53 X53 X55 X55 X55 X55 X55 X55 X55 X55</td>	X47 X48 X49 X50 X50 X51 X52 X53 X53 X55 X55 X55 X55 X55 X55 X55 X55
******	• • • •	
X70 X71 X72 X72 X73 X74 X76 X76	X78 X80 X81	
• Molecule 115	5: Unknown	
	68%	
Chain Ug:	100%	
**** * *	▲ 바 바 다 한 한 것 같 것 것 것 같 것 것 같 것 것 한 것 것 것 것 것 것	
X X X X X X X X X X X		X 5 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 7
• Molecule 116	6: Unknown	
Chain Uh:	100%	
•••••	••••••	••••
X1 X2 X3 X3 X5 X5 X5 X7 X8 X8	X0 X11 X11 X11 X11 X11 X11 X11 X11 X11 X	X455 X476 X48 X48
• Molecule 117	7: Unknown	
Chain Ui:	31%	
•••• • • •	◆◆	
X1 X2 X3 X3 X4 X11 X11 X23 X24	X25 X26	
• Molecule 118	8: Unknown	
Chair II.	89%	
Unain Uj:	100%	

• Molecule 119: Unknown

	87%
Chain Uk:	100%
X1 X2 X3 X4 X5 X6 X6 X10 X11 X11 X11 X11 X112 X113 X113 X114 X115 X115 X115	X18 X19 X20 *X21 *X22 *X23
• Molecule 120: Unknown	
	100%
Chain Ul:	100%
X1 X2 X3 X4 X6 X5 X15 X10 X11 X11 X11 X114 X12 X13 X15 X15 X16 X16	
• Molecule 121: Unknown	
	55%
Chain Um:	100%
XI X7 X8 X9 X10 X11	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	59000	Depositor
Resolution determination method	OTHER	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	30	Depositor
Minimum defocus (nm)	400	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	130000	Depositor
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.048	Depositor
Minimum map value	-0.018	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.002	Depositor
Recommended contour level	0.01	Depositor
Map size (Å)	592.2, 592.2, 592.2	wwPDB
Map dimensions	700, 700, 700	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.846, 0.846, 0.846	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG, ATP, K

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles			
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	A1	0.21	0/2632	0.67	0/4101		
2	A2	0.24	0/1938	0.68	0/3016		
3	A3	0.23	0/4942	0.69	0/7693		
4	A4	0.27	0/1764	0.70	1/2749~(0.0%)		
5	A5	0.16	0/3239	0.66	0/5036		
6	A6	0.22	0/2619	0.67	0/4075		
7	A7	0.21	0/12753	0.67	0/19862		
8	A8	0.21	0/8336	0.68	1/12985~(0.0%)		
9	A9	0.19	0/1637	0.66	0/2545		
10	Aa	0.24	0/2439	0.43	0/3287		
11	Ab	0.24	0/2483	0.42	0/3369		
12	Ac	0.24	0/2431	0.41	0/3290		
13	Ad	0.24	0/1574	0.40	0/2136		
14	Ae	0.24	0/1982	0.40	0/2683		
15	Af	0.23	0/437	0.42	0/589		
16	Ah	0.23	0/1555	0.40	0/2098		
17	Ai	0.24	0/972	0.43	0/1303		
18	Aj	0.24	0/1643	0.43	0/2220		
19	Ak	0.23	0/1389	0.43	0/1869		
20	Al	0.23	0/1438	0.39	0/1938		
21	Am	0.24	0/931	0.40	0/1258		
22	An	0.24	0/1420	0.40	0/1914		
23	Ao	0.23	0/981	0.38	0/1314		
24	Ap	0.24	0/1600	0.44	0/2176		
25	Aq	0.24	0/1566	0.41	0/2106		
26	Ar	0.24	0/1309	0.41	0/1759		
27	As	0.24	0/938	0.39	0/1263		
28	At	0.23	0/2041	0.41	0/2755		
29	Au	0.24	0/1182	0.41	0/1596		
30	Av	0.22	0/1073	0.39	0/1443		
31	Aw	0.22	0/1043	0.37	$0/1\overline{401}$		
32	Ax	0.23	0/1508	0.40	0/2028		

Mal	Chain	Bond	lengths	B	ond angles
IVI01	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	Ay	0.24	0/610	0.38	0/827
34	Az	0.39	0/484	0.61	1/652~(0.2%)
35	AA	0.24	0/426	0.40	0/572
36	AB	0.22	0/432	0.45	0/568
37	AC	0.23	0/1217	0.40	0/1639
38	AD	0.23	0/379	0.43	0/500
39	AE	0.23	0/790	0.34	0/1066
40	AF	0.24	0/782	0.39	0/1053
41	AG	0.24	0/1019	0.41	0/1373
42	AH	0.24	0/1444	0.42	0/1945
43	AI	0.23	0/515	0.38	0/696
44	AJ	0.23	0/1023	0.35	0/1370
45	AK	0.24	0/1206	0.36	0/1635
46	AL	0.23	0/3152	0.37	0/4271
47	AM	0.23	0/3345	0.37	0/4532
48	AN	0.24	0/3349	0.37	0/4537
49	AO	0.23	0/2941	0.37	0/4000
50	Xa	0.23	0/1600	0.36	0/2178
51	Xb	0.23	0/1999	0.37	0/2701
52	Xc	0.23	0/509	0.40	0/684
53	Xd	0.23	0/3305	0.37	0/4478
54	Xe	0.23	0/3748	0.38	0/5096
55	Xf	0.24	0/1659	0.38	0/2253
56	Xg	0.24	0/3018	0.37	0/4098
57	Xh	0.24	0/1169	0.39	0/1578
58	Xi	0.23	0/209	0.34	0/273
59	Xj	0.25	0/596	0.39	0/802
60	B1	0.19	0/2419	0.66	0/3765
61	B2	0.19	0/5020	0.68	0/7818
62	B3	0.20	0/9069	0.67	0/14130
63	B4	0.18	0/8046	0.66	0/12527
64	Ba	0.23	0/1967	0.40	0/2662
65	Bb	0.23	0/1920	0.37	0/2615
66	Bc	0.24	0/2340	0.40	0/3182
67	Bd	0.23	0/1825	0.40	0/2459
68	Be	0.24	0/1863	0.41	0/2521
69	Bf	0.24	0/989	0.39	0/1334
70	Bg	0.22	0/898	0.36	0/1205
71	Bh	0.23	0/3109	0.38	0/4215
72	Bi	0.24	0/2317	0.39	0/3119
73	Bj	0.24	0/3243	0.37	0/4384
74	Bk	0.24	0/882	0.45	0/1193
75	Bl	0.23	0/977	0.42	0/1303

Mal	Chain	Bond	lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
76	Bm	0.22	0/910	0.39	0/1223	
77	Bn	0.24	0/995	0.42	0/1336	
78	Bo	0.24	0/963	0.38	0/1284	
79	Bp	0.23	0/1046	0.41	0/1414	
80	Bq	0.23	0/1068	0.39	0/1434	
81	Br	0.22	0/754	0.39	0/1009	
82	Bs	0.24	0/754	0.40	0/1019	
83	Bt	0.23	0/630	0.36	0/840	
84	Bu	0.24	0/1395	0.36	0/1878	
85	Bv	0.22	0/1372	0.35	0/1835	
86	Bw	0.24	0/2804	0.39	0/3791	
87	Bx	0.25	0/4813	0.43	7/6545~(0.1%)	
88	By	0.25	0/655	0.38	0/883	
89	Bz	0.23	0/1030	0.37	0/1400	
90	BA	0.23	0/1405	0.39	0/1907	
91	BB	0.23	0/673	0.36	0/896	
92	BC	0.24	0/2207	0.38	0/2977	
93	BD	0.21	0/280	0.36	0/365	
94	BE	0.23	0/1328	0.35	0/1805	
95	BF	0.23	0/3039	0.36	0/4111	
96	Ya	0.23	0/1466	0.38	0/1979	
97	Yb	0.34	0/419	0.50	0/562	
98	Yc	0.23	0/1328	0.39	0/1799	
99	Yd	0.23	0/797	0.39	0/1069	
100	Ye	0.25	0/887	0.40	0/1191	
101	Yf	0.23	0/1276	0.37	0/1735	
102	Yg	0.24	0/560	0.37	0/744	
103	Yh	0.23	0/543	0.36	0/730	
104	Yi	0.24	0/1096	0.38	0/1470	
105	Yj	0.23	0/2911	0.35	0/3966	
106	Yk	0.26	0/721	0.37	0/982	
107	Yl	0.24	0/680	0.39	0/911	
108	C1	0.20	0/1723	0.75	0/2681	
109	C3	0.16	0/97	0.60	0/149	
110	Ub	1.00	0/1110	0.94	7/1490~(0.5%)	
111	Ua	0.25	0/10	0.38	0/11	
All	All	0.24	0/205350	0.51	17/291087~(0.0%)	

There are no bond length outliers.

The worst 5 of 17 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
110	Ub	221	ARG	NE-CZ-NH2	-9.79	115.40	120.30
34	Az	140	PRO	CA-N-CD	-9.16	98.67	111.50
110	Ub	126	ARG	NE-CZ-NH2	-7.62	116.49	120.30
87	Bx	59	VAL	CG1-CB-CG2	7.35	122.66	110.90
110	Ub	138	ARG	NE-CZ-NH2	-6.96	116.82	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
10	Aa	304/306~(99%)	293~(96%)	11 (4%)	0	100	100
11	Ab	304/306~(99%)	298 (98%)	6 (2%)	0	100	100
12	Ac	301/303~(99%)	301 (100%)	0	0	100	100
13	Ad	191/193~(99%)	187 (98%)	4 (2%)	0	100	100
14	Ae	236/242~(98%)	235~(100%)	1 (0%)	0	100	100
15	Af	54/56~(96%)	54 (100%)	0	0	100	100
16	Ah	182/186~(98%)	178 (98%)	4 (2%)	0	100	100
17	Ai	119/121~(98%)	117 (98%)	2 (2%)	0	100	100
18	Aj	204/206~(99%)	201 (98%)	3 (2%)	0	100	100
19	Ak	164/166~(99%)	161 (98%)	3 (2%)	0	100	100
20	Al	171/173~(99%)	169 (99%)	2 (1%)	0	100	100
21	Am	112/114~(98%)	111 (99%)	1 (1%)	0	100	100

α \cdots 1	C		
Continued	trom	previous	page
	J	<i>P</i> · · · · · · · · · · · · · · · · · · ·	r ~g ~ · · ·

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
22	An	168/170~(99%)	165 (98%)	3 (2%)	0	100	100
23	Ao	115/117~(98%)	115 (100%)	0	0	100	100
24	Ap	198/200~(99%)	197 (100%)	1 (0%)	0	100	100
25	Aq	186/188~(99%)	186 (100%)	0	0	100	100
26	Ar	151/155~(97%)	151 (100%)	0	0	100	100
27	As	109/115~(95%)	109 (100%)	0	0	100	100
28	At	251/253~(99%)	251 (100%)	0	0	100	100
29	Au	140/142~(99%)	140 (100%)	0	0	100	100
30	Av	127/129~(98%)	126 (99%)	1 (1%)	0	100	100
31	Aw	121/123~(98%)	119 (98%)	2 (2%)	0	100	100
32	Ax	174/176~(99%)	174 (100%)	0	0	100	100
33	Ay	70/72~(97%)	70 (100%)	0	0	100	100
34	Az	55/59~(93%)	53 (96%)	2 (4%)	0	100	100
35	AA	48/50~(96%)	48 (100%)	0	0	100	100
36	AB	48/50~(96%)	48 (100%)	0	0	100	100
37	AC	137/139~(99%)	136 (99%)	1 (1%)	0	100	100
38	AD	44/47~(94%)	43 (98%)	1 (2%)	0	100	100
39	AE	88/92~(96%)	88 (100%)	0	0	100	100
40	AF	91/93~(98%)	91 (100%)	0	0	100	100
41	AG	119/121~(98%)	117 (98%)	2 (2%)	0	100	100
42	AH	172/176~(98%)	167 (97%)	4 (2%)	1 (1%)	25	59
43	AI	62/64~(97%)	62 (100%)	0	0	100	100
44	AJ	118/122~(97%)	118 (100%)	0	0	100	100
45	AK	137/139~(99%)	137 (100%)	0	0	100	100
46	AL	390/394~(99%)	385 (99%)	5 (1%)	0	100	100
47	AM	417/419~(100%)	414 (99%)	3 (1%)	0	100	100
48	AN	418/420 (100%)	415 (99%)	3 (1%)	0	100	100
49	AO	371/377~(98%)	366 (99%)	5 (1%)	0	100	100
50	Xa	197/199~(99%)	193 (98%)	4 (2%)	0	100	100
51	Xb	242/244~(99%)	239 (99%)	3 (1%)	0	100	100
52	Xc	55/57~(96%)	54 (98%)	1 (2%)	0	100	100

<i>a</i> 1	e		
Continued	trom	nremous	naae
Contracta	110110	proceeduo	pagom

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
53	Xd	411/413~(100%)	400 (97%)	11 (3%)	0	100	100
54	Xe	479/483~(99%)	476 (99%)	3 (1%)	0	100	100
55	Xf	199/201~(99%)	197~(99%)	2 (1%)	0	100	100
56	Xg	379/410~(92%)	377~(100%)	2 (0%)	0	100	100
57	Xh	139/143~(97%)	138 (99%)	1 (1%)	0	100	100
58	Xi	22/24~(92%)	22 (100%)	0	0	100	100
59	Xj	69/71~(97%)	69 (100%)	0	0	100	100
64	Ba	240/242~(99%)	236 (98%)	4 (2%)	0	100	100
65	Bb	232/236~(98%)	228 (98%)	4 (2%)	0	100	100
66	Bc	285/289~(99%)	284 (100%)	1 (0%)	0	100	100
67	Bd	219/221~(99%)	218 (100%)	1 (0%)	0	100	100
68	Be	226/228~(99%)	223 (99%)	3 (1%)	0	100	100
69	Bf	117/119~(98%)	117 (100%)	0	0	100	100
70	Bg	110/112~(98%)	109 (99%)	1 (1%)	0	100	100
71	Bh	370/374~(99%)	367~(99%)	3 (1%)	0	100	100
72	Bi	276/282~(98%)	271 (98%)	5 (2%)	0	100	100
73	Bj	395/401~(98%)	388~(98%)	7 (2%)	0	100	100
74	Bk	114/116~(98%)	111 (97%)	3 (3%)	0	100	100
75	Bl	121/123~(98%)	118 (98%)	3 (2%)	0	100	100
76	Bm	111/113~(98%)	107 (96%)	4 (4%)	0	100	100
77	Bn	116/118~(98%)	115 (99%)	1 (1%)	0	100	100
78	Bo	113/167~(68%)	111 (98%)	2 (2%)	0	100	100
79	Bp	121/123~(98%)	119 (98%)	2 (2%)	0	100	100
80	Bq	128/130~(98%)	127 (99%)	1 (1%)	0	100	100
81	Br	88/90~(98%)	88 (100%)	0	0	100	100
82	Bs	90/92~(98%)	90 (100%)	0	0	100	100
83	Bt	73/75~(97%)	73 (100%)	0	0	100	100
84	Bu	165/167~(99%)	165 (100%)	0	0	100	100
85	Bv	162/164~(99%)	162 (100%)	0	0	100	100
86	Bw	347/349~(99%)	342 (99%)	5 (1%)	0	100	100
87	Bx	613/621 (99%)	604 (98%)	9 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
88	By	76/80~(95%)	75~(99%)	1 (1%)	0	100	100
89	Bz	117/119~(98%)	116 (99%)	1 (1%)	0	100	100
90	BA	174/176~(99%)	170 (98%)	4 (2%)	0	100	100
91	BB	80/84~(95%)	79~(99%)	1 (1%)	0	100	100
92	BC	266/270~(98%)	264 (99%)	2 (1%)	0	100	100
93	BD	29/31~(94%)	29 (100%)	0	0	100	100
94	BE	169/171~(99%)	169 (100%)	0	0	100	100
95	BF	366/370~(99%)	360 (98%)	6 (2%)	0	100	100
96	Ya	178/180~(99%)	175 (98%)	3 (2%)	0	100	100
97	Yb	48/50~(96%)	48 (100%)	0	0	100	100
98	Yc	157/159~(99%)	156 (99%)	1 (1%)	0	100	100
99	Yd	93/95~(98%)	90 (97%)	3 (3%)	0	100	100
100	Ye	102/106~(96%)	100 (98%)	2 (2%)	0	100	100
101	Yf	148/150~(99%)	147 (99%)	1 (1%)	0	100	100
102	Yg	65/67~(97%)	64 (98%)	1 (2%)	0	100	100
103	Yh	63/65~(97%)	63 (100%)	0	0	100	100
104	Yi	130/132~(98%)	126 (97%)	4 (3%)	0	100	100
105	Yj	382/386~(99%)	376 (98%)	6 (2%)	0	100	100
106	Yk	88/92~(96%)	88 (100%)	0	0	100	100
107	Yl	80/84~(95%)	80 (100%)	0	0	100	100
110	Ub	128/130 (98%)	127 (99%)	1 (1%)	0	100	100
111	Ua	1/32~(3%)	1 (100%)	0	0	100	100
All	All	16831/17200~(98%)	16637 (99%)	193 (1%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
42	AH	161	TYR

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
10	Aa	248/248~(100%)	248~(100%)	0	100	100
11	Ab	261/261~(100%)	260 (100%)	1 (0%)	91	96
12	Ac	259/259~(100%)	259 (100%)	0	100	100
13	Ad	176/176~(100%)	175 (99%)	1 (1%)	86	94
14	Ae	211/211 (100%)	211 (100%)	0	100	100
15	Af	47/47~(100%)	46 (98%)	1 (2%)	53	79
16	Ah	161/161 (100%)	159 (99%)	2 (1%)	71	88
17	Ai	103/103~(100%)	103 (100%)	0	100	100
18	Aj	172/172~(100%)	172 (100%)	0	100	100
19	Ak	146/146~(100%)	146 (100%)	0	100	100
20	Al	150/150~(100%)	149 (99%)	1 (1%)	84	93
21	Am	102/102~(100%)	102 (100%)	0	100	100
22	An	157/157~(100%)	157 (100%)	0	100	100
23	Ao	101/101~(100%)	101 (100%)	0	100	100
24	Ар	177/177~(100%)	176 (99%)	1 (1%)	86	94
25	Aq	161/161 (100%)	160 (99%)	1 (1%)	86	94
26	Ar	142/142~(100%)	141 (99%)	1 (1%)	84	93
27	As	105/105~(100%)	105 (100%)	0	100	100
28	At	223/223~(100%)	223 (100%)	0	100	100
29	Au	121/121 (100%)	120 (99%)	1 (1%)	81	92
30	Av	120/120~(100%)	120 (100%)	0	100	100
31	Aw	110/110 (100%)	108 (98%)	2 (2%)	59	82
32	Ax	$161/161\ (100\%)$	161 (100%)	0	100	100
33	Ay	66/66~(100%)	66 (100%)	0	100	100
34	Az	51/51~(100%)	48 (94%)	3 (6%)	19	50
35	AA	47/47~(100%)	47 (100%)	0	100	100
36	AB	45/45~(100%)	45 (100%)	0	100	100
37	AC	125/125~(100%)	123~(98%)	2 (2%)	62	84
38	AD	42/42~(100%)	42 (100%)	0	100	100
39	AE	84/84~(100%)	84 (100%)	0	100	100

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
40	AF	82/82~(100%)	82 (100%)	0	100	100
41	AG	109/109~(100%)	109 (100%)	0	100	100
42	AH	155/155~(100%)	155 (100%)	0	100	100
43	AI	57/57~(100%)	57 (100%)	0	100	100
44	AJ	104/104 (100%)	104 (100%)	0	100	100
45	AK	117/117 (100%)	117 (100%)	0	100	100
46	AL	332/332~(100%)	329 (99%)	3 (1%)	78	91
47	AM	$351/351\ (100\%)$	350 (100%)	1 (0%)	92	96
48	AN	$351/351\ (100\%)$	350 (100%)	1 (0%)	92	96
49	AO	293/293~(100%)	291 (99%)	2 (1%)	84	93
50	Xa	173/173~(100%)	172 (99%)	1 (1%)	86	94
51	Xb	217/217~(100%)	217 (100%)	0	100	100
52	Xc	54/54~(100%)	54 (100%)	0	100	100
53	Xd	339/339~(100%)	337 (99%)	2 (1%)	86	94
54	Xe	385/385~(100%)	385 (100%)	0	100	100
55	Xf	$172/172\ (100\%)$	172 (100%)	0	100	100
56	Xg	$312/312\ (100\%)$	308 (99%)	4 (1%)	69	87
57	Xh	127/127~(100%)	127 (100%)	0	100	100
58	Xi	21/21 (100%)	21 (100%)	0	100	100
59	Xj	62/62~(100%)	62 (100%)	0	100	100
64	Ba	220/220~(100%)	216 (98%)	4 (2%)	59	82
65	Bb	214/214 (100%)	213 (100%)	1 (0%)	88	94
66	Bc	247/247~(100%)	245 (99%)	2 (1%)	81	92
67	Bd	196/196~(100%)	195 (100%)	1 (0%)	88	94
68	Be	196/196~(100%)	189 (96%)	7 (4%)	35	67
69	Bf	103/103 (100%)	103 (100%)	0	100	100
70	Bg	97/97~(100%)	95 (98%)	2 (2%)	53	79
71	Bh	327/327 (100%)	326 (100%)	1 (0%)	92	96
72	Bi	242/242~(100%)	242 (100%)	0	100	100
73	Bj	334/334~(100%)	333 (100%)	1 (0%)	92	96
74	Bk	95/95~(100%)	95 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
75	Bl	104/104~(100%)	104 (100%)	0	100	100
76	Bm	100/100~(100%)	99 (99%)	1 (1%)	76	90
77	Bn	106/106~(100%)	106 (100%)	0	100	100
78	Bo	104/104~(100%)	104 (100%)	0	100	100
79	Bp	107/107~(100%)	107 (100%)	0	100	100
80	Bq	113/113 (100%)	113 (100%)	0	100	100
81	Br	81/81 (100%)	81 (100%)	0	100	100
82	Bs	77/77~(100%)	77 (100%)	0	100	100
83	Bt	66/66~(100%)	66 (100%)	0	100	100
84	Bu	142/142~(100%)	142 (100%)	0	100	100
85	Bv	140/140~(100%)	139 (99%)	1 (1%)	84	93
86	Bw	298/298~(100%)	298 (100%)	0	100	100
87	Bx	481/481 (100%)	469 (98%)	12 (2%)	47	75
88	By	69/69~(100%)	69 (100%)	0	100	100
89	Bz	107/107~(100%)	107 (100%)	0	100	100
90	BA	143/143~(100%)	143 (100%)	0	100	100
91	BB	72/72~(100%)	72 (100%)	0	100	100
92	BC	225/225~(100%)	224 (100%)	1 (0%)	91	96
93	BD	30/30~(100%)	30 (100%)	0	100	100
94	BE	136/136~(100%)	136 (100%)	0	100	100
95	BF	326/326~(100%)	325 (100%)	1 (0%)	92	96
96	Ya	$161/161\ (100\%)$	160 (99%)	1 (1%)	86	94
97	Yb	44/44 (100%)	43 (98%)	1 (2%)	50	77
98	Yc	140/140~(100%)	140 (100%)	0	100	100
99	Yd	88/88 (100%)	88 (100%)	0	100	100
100	Ye	91/91~(100%)	89 (98%)	2 (2%)	52	78
101	Yf	132/132~(100%)	132 (100%)	0	100	100
102	Yg	60/60~(100%)	60 (100%)	0	100	100
103	Yh	54/54~(100%)	54 (100%)	0	100	100
104	Yi	112/112~(100%)	110 (98%)	2 (2%)	59	82
105	Yj	278/278~(100%)	278 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
106	Yk	74/74~(100%)	74 (100%)	0	100	100
107	Yl	76/76~(100%)	76~(100%)	0	100	100
110	Ub	122/122~(100%)	122 (100%)	0	100	100
111	Ua	$1/1 \ (100\%)$	1 (100%)	0	100	100
All	All	14618/14618 (100%)	14546 (100%)	72~(0%)	89	94

 $5~{\rm of}~72$ residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
87	Bx	116	LEU
104	Yi	112	LEU
87	Bx	232	PHE
95	BF	82	HIS
50	Xa	107	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	Res	Type
20	Al	128	GLN
87	Bx	75	HIS
100	Ye	82	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	A1	108/109~(99%)	25~(23%)	0
108	C1	72/73~(98%)	29 (40%)	2(2%)
109	C3	3/4~(75%)	1 (33%)	0
2	A2	80/81~(98%)	16 (20%)	1 (1%)
3	A3	205/207~(99%)	29 (14%)	1 (0%)
4	A4	72/73~(98%)	9(12%)	1 (1%)
5	A5	132/136~(97%)	32 (24%)	0
6	A6	106/109~(97%)	21 (19%)	0
60	B1	101/102~(99%)	22 (21%)	0
61	B2	208/210~(99%)	40 (19%)	0
62	B3	378/379~(99%)	49 (12%)	2 (0%)
63	B4	334/337~(99%)	47 (14%)	0
7	A7	532/534~(99%)	80 (15%)	1 (0%)

	J	1		
Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
8	A8	349/350~(99%)	58 (16%)	0
9	A9	67/69~(97%)	15 (22%)	0
All	All	2747/2773~(99%)	473 (17%)	8 (0%)

5 of 473 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	A1	5	А
1	A1	9	U
1	A1	17	U
1	A1	18	А
1	A1	34	U

5 of 8 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
108	C1	20	U
108	C1	16	С
62	B3	177	А
7	A7	192	А
62	B3	275	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 145 ligands modelled in this entry, 144 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Type	Chain	Dog	Link	Bo	ond leng	ths	B	ond ang	les
	туре		nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
125	ATP	Bw	502	122	26,33,33	0.89	1 (3%)	31,52,52	1.53	5 (16%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
125	ATP	Bw	502	122	-	6/18/38/38	0/3/3/3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
125	Bw	502	ATP	C5-C4	2.20	1.46	1.40

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
125	Bw	502	ATP	PA-O3A-PB	-3.80	119.80	132.83
125	Bw	502	ATP	N3-C2-N1	-3.60	123.04	128.68
125	Bw	502	ATP	PB-O3B-PG	-3.36	121.29	132.83
125	Bw	502	ATP	C3'-C2'-C1'	2.43	104.64	100.98
125	Bw	502	ATP	C4-C5-N7	-2.07	107.24	109.40

There are no chirality outliers.

5 of 6 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
125	Bw	502	ATP	C5'-O5'-PA-O1A
125	Bw	502	ATP	C5'-O5'-PA-O3A
125	Bw	502	ATP	O4'-C4'-C5'-O5'
125	Bw	502	ATP	C3'-C4'-C5'-O5'
125	Bw	502	ATP	PA-O3A-PB-O1B

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is

within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
56	Xg	4
	0	

Mol	Chain	Number of breaks
5	A5	3
87	Bx	3
27	As	2
72	Bi	2
6	A6	2
73	Bj	2
49	AO	2
63	B4	2
14	Ae	2
42	AH	1
66	Bc	1
57	Xh	1
71	Bh	1
65	Bb	1
92	BC	1
105	Yj	1
9	A9	1
107	Yl	1
26	Ar	1
39	AE	1
91	BB	1
61	B2	1
115	Ug	1
3	A3	1
114	Uf	1
34	Az	1
95	BF	1
100	Ye	1
7	A7	1
16	Ah	1
106	Yk	1
46	AL	1
44	AJ	1
54	Xe	1

Continued	from	nrevious	naae
Continuea	jrom	previous	page

The worst 5 of 49 chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	Xg	165:PHE	С	206:LYS	Ν	58.01
1	As	92:PRO	С	151:GLY	Ν	44.12
1	Bi	223:GLN	С	243:ALA	Ν	41.07
1	A6	114:A	O3'	127:A	Р	35.38
1	Bj	297:SER	С	426:ALA	Ν	32.85

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-15576. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 350

Y Index: 350

Z Index: 350

6.2.2 Raw map

X Index: 350

Y Index: 350

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 369

Z Index: 320

6.3.2 Raw map

X Index: 368

Y Index: 326

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.01. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{15576}msk_{1.map}$ (i) 6.5.1

Y

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1137 nm^3 ; this corresponds to an approximate mass of 1027 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA}^{-1}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	Other
Reported by author	-	-	-	3.10
Author-provided FSC curve	-	-	-	-
Unmasked-calculated*	4.05	8.26	4.29	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-15576 and PDB model 8APN. Per-residue inclusion information can be found in section 3 on page 29.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.01 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.01).

9.4 Atom inclusion (i)

At the recommended contour level, 60% of all backbone atoms, 64% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.01) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.6364	0.3990
A1	0.8641	0.4340
A2	0.8850	0.4750
A3	0.9199	0.4480
A4	0.9539	0.4800
A5	0.7903	0.2850
A6	0.9040	0.4510
A7	0.9163	0.4720
A8	0.9040	0.4660
A9	0.8868	0.4630
AA	0.8157	0.4400
AB	0.8617	0.4430
AC	0.7849	0.4460
AD	0.6923	0.4160
AE	0.5955	0.3730
AF	0.7483	0.4170
AG	0.7778	0.4420
AH	0.5494	0.3590
AI	0.7871	0.4530
AJ	0.5992	0.3790
AK	0.7998	0.4430
AL	0.4757	0.3130
AM	0.4818	0.3360
AN	0.5313	0.3460
AO	0.4929	0.3570
Aa	0.8253	0.4740
Ab	0.7780	0.4690
Ac	0.7464	0.4130
Ad	0.6053	0.4130
Ae	0.6263	0.3740
Af	0.5681	0.3680
Ah	0.7892	0.4520
Ai	0.7511	0.4810
Aj	0.8034	0.4390
Ak	0.8000	0.4770

 $Continued \ on \ next \ page...$

Continued from previous page...

Chain	Atom inclusion	Q-score
Al	0.7832	0.4390
Am	0.6842	0.4160
An	0.6865	0.4520
Ao	0.7696	0.4420
Ap	0.7557	0.4460
Aq	0.8053	0.4520
Ar	0.7418	0.4260
As	0.5619	0.3300
At	0.7055	0.4470
Au	0.8079	0.4560
Av	0.7129	0.4380
Aw	0.7042	0.4150
Ax	0.7474	0.4380
Ay	0.4880	0.3800
Az	0.7379	0.4470
B1	0.7018	0.4240
B2	0.7659	0.4270
B3	0.8872	0.4720
B4	0.8455	0.4590
BA	0.3990	0.3750
BB	0.4806	0.3790
BC	0.3365	0.3570
BD	0.6768	0.4280
BE	0.0499	0.1750
BF	0.3224	0.3130
Ba	0.4308	0.3250
Bb	0.5881	0.3980
Bc	0.3996	0.3980
Bd	0.5092	0.4360
Be	0.6535	0.4510
Bf	0.6649	0.4220
Bg	0.6605	0.4540
Bh	0.6005	0.3950
Bi	0.5246	0.3970
Bj	0.2378	0.2710
Bk	0.7347	0.4670
Bl	0.4350	0.4220
Bm	0.5400	0.4120
Bn	0.6952	0.4650
Bo	0.7807	0.4240
Bp	0.4287	0.3740
Bq	0.6960	0.3960

Continued on next page...

Continued	from	nrevious	naae
Commuea	from	previous	page

Chain	Atom inclusion	Q-score
Br	0.6574	0.3970
Bs	0.4092	0.3820
Bt	0.6899	0.4250
Bu	0.4512	0.3430
Bv	0.5030	0.3350
Bw	0.4004	0.3570
Bx	0.1650	0.2390
By	0.4686	0.3930
Bz	0.1713	0.2490
C1	0.6725	0.3880
C3	0.8736	0.5100
Ua	0.4268	0.4340
Ub	0.4021	0.2340
Ud	0.1907	0.2400
Ue	0.0128	0.2430
Uf	0.0795	0.1570
Ug	0.3111	0.3790
Uh	0.0000	0.1200
Ui	0.6077	0.4120
Uj	0.1556	0.3870
Uk	0.2000	0.2990
Ul	0.0500	0.2060
Um	0.5273	0.3200
Xa	0.4791	0.3520
Xb	0.5904	0.3960
Xc	0.6909	0.4040
Xd	0.6083	0.3930
Xe	0.6952	0.4140
Xf	0.7194	0.4420
Xg	0.6171	0.4010
Xh	0.5752	0.3860
Xi	0.7538	0.4040
Xj	0.5852	0.3830
Ya	0.3348	0.3640
Yb	0.2134	0.2880
Yc	0.4183	0.3790
Yd	0.2605	0.3300
Ye	0.6440	0.4740
Yf	0.4771	0.4040
Yg	0.2871	0.3360
Yh	0.4671	0.3920
Yi	0.0754	0.2610

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
Yj	0.1022	0.1840
Yk	0.0632	0.2030
Yl	0.4826	0.3880

