

Full wwPDB X-ray Structure Validation Report (i)

Jan 2, 2024 – 11:03 am GMT

PDB ID : 5APY

Title: Sequence MATKDDIAN inserted between GCN4 adaptors - Structure T9(9)

Authors: Hartmann, M.D.; Mendler, C.T.; Lupas, A.N.; Hernandez Alvarez, B.

Deposited on : 2015-09-17

Resolution : 2.00 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467 Xtriage (Phenix) : 1.13

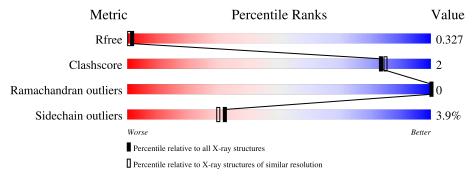
EDS: 2.36

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Refmac : 5.8.0158

CCP4 : 7.0.044 (Gargrove) roteins) : Engh & Huber (2001)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\ DIFFRACTION$

The reported resolution of this entry is 2.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
Metric	$(\# \mathrm{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
R_{free}	130704	8085 (2.00-2.00)
Clashscore	141614	9178 (2.00-2.00)
Ramachandran outliers	138981	9054 (2.00-2.00)
Sidechain outliers	138945	9053 (2.00-2.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain				
1	A	95	61%	·	35%		
1	В	95	56%	8% •	35%		
1	С	95	60%		36%		

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 1584 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called GENERAL CONTROL PROTEIN GCN4.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	Λ	62	Total	С	N	О	S	0	1	0
1	A	02	501	320	84	95	2	0	1	0
1	D	62	Total	С	N	О	S	0	1	0
1	В	02	488	311	82	93	2	U	1	U
1	С	61	Total	С	N	О	S	0	0	0
1		01	482	308	79	93	2		U	U

There are 111 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	-25	MET	-	expression tag	UNP P03069
A	-24	LYS	-	expression tag	UNP P03069
A	-23	HIS	-	expression tag	UNP P03069
A	-22	HIS	-	expression tag	UNP P03069
A	-21	HIS	-	expression tag	UNP P03069
A	-20	HIS	-	expression tag	UNP P03069
A	-19	HIS	-	expression tag	UNP P03069
A	-18	HIS	-	expression tag	UNP P03069
A	-17	PRO	-	expression tag	UNP P03069
A	-16	MET	-	expression tag	UNP P03069
A	-15	SER	-	expression tag	UNP P03069
A	-14	ASP	-	expression tag	UNP P03069
A	-13	TYR	-	expression tag	UNP P03069
A	-12	ASP	-	expression tag	UNP P03069
A	-11	ILE	-	expression tag	UNP P03069
A	-10	PRO	-	expression tag	UNP P03069
A	-9	THR	-	expression tag	UNP P03069
A	-8	THR	-	expression tag	UNP P03069
A	-7	GLU	-	expression tag	UNP P03069
A	-6	ASN	-	expression tag	UNP P03069
A	-5	LEU	-	expression tag	UNP P03069
A	-4	TYR	-	expression tag	UNP P03069
A	-3	PHE	_	expression tag	UNP P03069

 $Continued\ from\ previous\ page...$

Chain	Residue	Modelled Modelled	Actual	Comment	Reference
A	-2	GLN	-	expression tag	UNP P03069
A	-1	GLY	-	expression tag	UNP P03069
A	0	HIS	-	expression tag	UNP P03069
A	15	VAL	ASN	engineered mutation	UNP P03069
A	29	MET	-	linker	UNP P03069
A	30	ALA	_	linker	UNP P03069
A	31	THR	_	linker	UNP P03069
A	32	LYS	-	linker	UNP P03069
A	33	ASP	-	linker	UNP P03069
A	34	ASP	-	linker	UNP P03069
A	35	ILE	_	linker	UNP P03069
A	36	ALA	-	linker	UNP P03069
A	37	ASN	_	linker	UNP P03069
A	52	VAL	ASN	engineered mutation	UNP P03069
В	-25	MET	_	expression tag	UNP P03069
В	-24	LYS	_	expression tag	UNP P03069
В	-23	HIS	-	expression tag	UNP P03069
В	-22	HIS	-	expression tag	UNP P03069
В	-21	HIS	-	expression tag	UNP P03069
В	-20	HIS	-	expression tag	UNP P03069
В	-19	HIS	-	expression tag	UNP P03069
В	-18	HIS	-	expression tag	UNP P03069
В	-17	PRO	-	expression tag	UNP P03069
В	-16	MET	-	expression tag	UNP P03069
В	-15	SER	-	expression tag	UNP P03069
В	-14	ASP	-	expression tag	UNP P03069
В	-13	TYR	-	expression tag	UNP P03069
В	-12	ASP	-	expression tag	UNP P03069
В	-11	ILE	-	expression tag	UNP P03069
В	-10	PRO	-	expression tag	UNP P03069
В	-9	THR	-	expression tag	UNP P03069
В	-8	THR	_	expression tag	UNP P03069
В	-7	GLU	-	expression tag	UNP P03069
В	-6	ASN	-	expression tag	UNP P03069
В	-5	LEU	-	expression tag	UNP P03069
В	-4	TYR	-	expression tag	UNP P03069
В	-3	PHE	-	expression tag	UNP P03069
В	-2	GLN	-	expression tag	UNP P03069
В	-1	GLY	-	expression tag	UNP P03069
В	0	HIS	-	expression tag	UNP P03069
В	15	VAL	ASN	engineered mutation	UNP P03069
В	29	MET	-	linker	UNP P03069

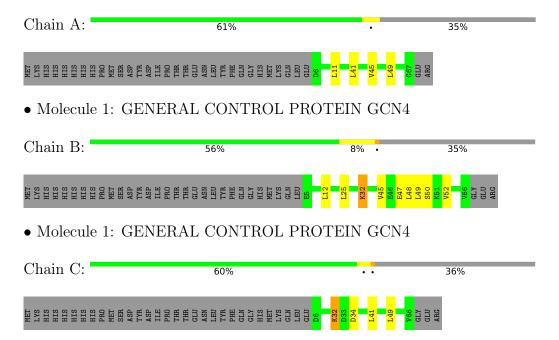
 $Continued\ from\ previous\ page...$

Chain	Residue	Modelled	Actual	Comment	Reference
В	30	ALA	-	linker	UNP P03069
В	31	THR	-	linker	UNP P03069
В	32	LYS	-	linker	UNP P03069
В	33	ASP	-	linker	UNP P03069
В	34	ASP	-	linker	UNP P03069
В	35	ILE	-	linker	UNP P03069
В	36	ALA	-	linker	UNP P03069
В	37	ASN	-	linker	UNP P03069
В	52	VAL	ASN	engineered mutation	UNP P03069
С	-25	MET	-	expression tag	UNP P03069
С	-24	LYS	-	expression tag	UNP P03069
С	-23	HIS	-	expression tag	UNP P03069
С	-22	HIS	-	expression tag	UNP P03069
С	-21	HIS	-	expression tag	UNP P03069
С	-20	HIS	-	expression tag	UNP P03069
С	-19	HIS	-	expression tag	UNP P03069
С	-18	HIS	_	expression tag	UNP P03069
С	-17	PRO	-	expression tag	UNP P03069
С	-16	MET	-	expression tag	UNP P03069
С	-15	SER	_	expression tag	UNP P03069
С	-14	ASP	-	expression tag	UNP P03069
С	-13	TYR	-	expression tag	UNP P03069
С	-12	ASP	-	expression tag	UNP P03069
С	-11	ILE	-	expression tag	UNP P03069
С	-10	PRO	-	expression tag	UNP P03069
С	-9	THR	-	expression tag	UNP P03069
С	-8	THR	-	expression tag	UNP P03069
С	-7	GLU	-	expression tag	UNP P03069
С	-6	ASN	-	expression tag	UNP P03069
С	-5	LEU	-	expression tag	UNP P03069
С	-4	TYR	-	expression tag	UNP P03069
С	-3	PHE	-	expression tag	UNP P03069
С	-2	GLN	-	expression tag	UNP P03069
С	-1	GLY	-	expression tag	UNP P03069
С	0	HIS	-	expression tag	UNP P03069
С	15	VAL	ASN	engineered mutation	UNP P03069
С	29	MET	-	linker	UNP P03069
C	30	ALA	-	linker	UNP P03069
С	31	THR	-	linker	UNP P03069
С	32	LYS	-	linker	UNP P03069
С	33	ASP	-	linker	UNP P03069
С	34	ASP	-	linker	UNP P03069

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
С	35	ILE	-	linker	UNP P03069
С	36	ALA	-	linker	UNP P03069
С	37	ASN	-	linker	UNP P03069
С	52	VAL	ASN	engineered mutation	UNP P03069

• Molecule 2 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	A	45	Total O 45 45	0	0
2	В	31	Total O 31 31	0	0
2	С	37	Total O 37 37	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: GENERAL CONTROL PROTEIN GCN4

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	60.77Å 35.09Å 112.19Å	Depositor
a, b, c, α , β , γ	90.00° 100.39° 90.00°	Depositor
Resolution (Å)	19.52 - 2.00	Depositor
Resolution (A)	19.52 - 2.00	EDS
% Data completeness	98.8 (19.52-2.00)	Depositor
(in resolution range)	98.5 (19.52-2.00)	EDS
R_{merge}	0.04	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.10 (at 2.01Å)	Xtriage
Refinement program	REFMAC 5.8.0049	Depositor
R, R_{free}	0.211 , 0.255	Depositor
it, it free	0.260 , 0.327	DCC
R_{free} test set	797 reflections (4.99%)	wwPDB-VP
Wilson B-factor (Å ²)	37.0	Xtriage
Anisotropy	0.287	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.35 , 33.7	EDS
L-test for twinning ²	$< L > = 0.57, < L^2> = 0.43$	Xtriage
Estimated twinning fraction	$\begin{array}{c} 0.118 \text{ for } 1/2*\text{h}+3/2*\text{k},1/2*\text{h}-1/2*\text{k},-1/2*\text{h}-1/2*\text{k},-1/2*\text{h}-1/2*\text{k},-1/2*\text{h}-1/2*\text{k},-1/2*\text{h}-1/2*\text{k},-1/2*\text{h}-1/2*\text{k},-1/2*\text{h}-1/2*\text{k}-1/$	Xtriage
Reported twinning fraction	0.291 for H, K, L 0.350 for 1/2H+3/2K, 1/2H-1/2K, -1/2H-1/2K-L 0.359 for 1/2H-3/2K, -1/2H-1/2K, -1/2H+1/2K-L	Depositor
Outliers	3 of 15987 reflections (0.019%)	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	1584	wwPDB-VP
Average B, all atoms (Å ²)	43.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 17.13% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	A	0.28	0/507	0.46	0/678
1	В	0.28	0/494	0.43	0/665
1	С	0.28	0/485	0.37	0/651
All	All	0.28	0/1486	0.42	0/1994

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	501	0	522	3	0
1	В	488	0	491	6	0
1	С	482	0	494	3	0
2	A	45	0	0	0	0
2	В	31	0	0	0	0
2	С	37	0	0	0	0
All	All	1584	0	1507	7	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (7) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	${ m distance}({ m \AA})$	overlap (Å)
1:A:11:LEU:HD21	1:B:12:LEU:HD23	1.49	0.92
1:B:48:LEU:HD21	1:C:49:LEU:HD23	1.60	0.82
1:B:48:LEU:O	1:B:52:VAL:HG23	2.08	0.54
1:A:45:VAL:HG21	1:C:41:LEU:HD11	1.95	0.49
1:B:32:LYS:CG	1:C:32:LYS:HB3	2.50	0.41
1:A:41:LEU:HD11	1:B:45:VAL:HG21	2.03	0.41
1:B:49:LEU:HD12	1:B:50:SER:N	2.36	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	$_{ m ntiles}$
1	A	61/95~(64%)	61 (100%)	0	0	100	100
1	В	61/95~(64%)	61 (100%)	0	0	100	100
1	С	59/95~(62%)	59 (100%)	0	0	100	100
All	All	181/285 (64%)	181 (100%)	0	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	A	54/89 (61%)	53 (98%)	1 (2%)	57 61

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	В	51/89 (57%)	47 (92%)	4 (8%)	12 8
1	С	52/89 (58%)	50 (96%)	2 (4%)	33 31
All	All	157/267 (59%)	150 (96%)	7 (4%)	32 24

All (7) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	49	LEU
1	В	25	LEU
1	В	32	LYS
1	В	47[A]	GLU
1	В	47[B]	GLU
1	С	32	LYS
1	С	34	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such sidechains are listed below:

Mol	Chain	Res	Type
1	A	57	ASN
1	В	57	ASN
1	С	54	HIS
1	С	57	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

