

Full wwPDB X-ray Structure Validation Report (i)

Aug 14, 2023 – 02:26 pm BST

PDB ID	:	8A29
Title	:	Apo 1-deoxy-D-xylulose 5-phosphate synthase from Pseudomonas aeruginosa
Authors	:	Hamid, R.; Adam, S.; Lacour, A.; Monjas, L.; Hirsch, A.
Deposited on	:	2022-06-02
Resolution	:	2.10 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	Similar resolution		
WIEUTIC	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$		
R_{free}	130704	5197 (2.10-2.10)		
Clashscore	141614	5710 (2.10-2.10)		
Ramachandran outliers	138981	5647 (2.10-2.10)		
Sidechain outliers	138945	5648 (2.10-2.10)		
RSRZ outliers	127900	5083 (2.10-2.10)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	Δ	622	5%	60/	1.0%
	11	022	4%	0 76	10%
1	В	622	84%	6%	9%
1	С	622	86%	<u> </u>	10%
			8%		
1	D	622	81%	8%	11%
1	Е	622	84%	6%	10%

Mol	Chain	Length	Quality of chain		
1	Г	COO	3%		
	F	622	85%	5%	11%

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 53080 atoms, of which 25331 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Atoms						AltConf	Trace
1	Δ	557	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
	А	557	8442	2684	4197	735	805	21	0	0	0
1	В	563	Total	С	Η	Ν	0	S	0	2	0
	B	505	8569	2719	4267	748	814	21	0	2	0
1	С	559	Total	С	Η	Ν	0	S	0	2	0
1	U		8524	2707	4240	748	809	20		2	0
1	D	554	Total	С	Η	Ν	0	S	0	0	0
1	D		8393	2669	4171	734	799	20	0	0	
1	F	560	Total	С	Η	Ν	0	S	0	0	0
1		500	8451	2698	4187	739	806	21	0	0	0
1	Б	556	Total	С	Η	Ν	0	S	0	0	0
I F	556	8452	2685	4205	738	804	20	0	U	U	

• Molecule 1 is a protein called 1-deoxy-D-xylulose-5-phosphate synthase.

There are 204 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	1	MET	-	initiating methionine	UNP B7V7R4
А	2	GLY	-	expression tag	UNP B7V7R4
А	3	SER	-	expression tag	UNP B7V7R4
А	4	SER	-	expression tag	UNP B7V7R4
А	5	HIS	-	expression tag	UNP B7V7R4
А	6	HIS	-	expression tag	UNP B7V7R4
A	7	HIS	-	expression tag	UNP B7V7R4
А	8	HIS	-	expression tag	UNP B7V7R4
А	9	HIS	-	expression tag	UNP B7V7R4
А	10	HIS	-	expression tag	UNP B7V7R4
А	11	SER	-	expression tag	UNP B7V7R4
А	12	SER	-	expression tag	UNP B7V7R4
А	13	GLY	-	expression tag	UNP B7V7R4
A	14	LEU	-	expression tag	UNP B7V7R4
A	15	VAL	-	expression tag	UNP B7V7R4
A	16	PRO	-	expression tag	UNP B7V7R4
A	17	ARG	-	expression tag	UNP B7V7R4

Chain	Residue	Modelled	Actual	Comment	Reference
А	18	GLY	-	expression tag	UNP B7V7R4
А	19	SER	-	expression tag	UNP B7V7R4
А	20	MET	-	expression tag	UNP B7V7R4
A	21	GLU	-	expression tag	UNP B7V7R4
А	22	ASN	_	expression tag	UNP B7V7R4
А	23	LEU	_	expression tag	UNP B7V7R4
A	24	TYR	-	expression tag	UNP B7V7R4
А	25	PHE	-	expression tag	UNP B7V7R4
А	26	GLN	-	expression tag	UNP B7V7R4
А	27	SER	-	expression tag	UNP B7V7R4
А	28	HIS	-	expression tag	UNP B7V7R4
А	235	GLY	-	linker	UNP B7V7R4
А	236	GLY	-	linker	UNP B7V7R4
А	237	GLY	-	linker	UNP B7V7R4
А	238	GLY	-	linker	UNP B7V7R4
А	239	GLY	-	linker	UNP B7V7R4
А	240	GLY	-	linker	UNP B7V7R4
В	1	MET	-	initiating methionine	UNP B7V7R4
В	2	GLY	-	expression tag	UNP B7V7R4
В	3	SER	-	expression tag	UNP B7V7R4
В	4	SER	-	expression tag	UNP B7V7R4
В	5	HIS	-	expression tag	UNP B7V7R4
В	6	HIS	-	expression tag	UNP B7V7R4
В	7	HIS	-	expression tag	UNP B7V7R4
В	8	HIS	_	expression tag	UNP B7V7R4
В	9	HIS	-	expression tag	UNP B7V7R4
В	10	HIS	-	expression tag	UNP B7V7R4
В	11	SER	-	expression tag	UNP B7V7R4
B	12	SER	-	expression tag	UNP B7V7R4
B	13	GLY	-	expression tag	UNP B7V7R4
B	14	LEU	-	expression tag	UNP B7V7R4
B	15	VAL	-	expression tag	UNP B7V7R4
B	16	PRO	-	expression tag	UNP B7V7R4
B	17	ARG	-	expression tag	UNP B7V7R4
B	18	GLY	-	expression tag	UNP B7V7R4
B	19	SER	-	expression tag	UNP B7V7R4
B	20	MET	-	expression tag	UNP B7V7R4
B	21	GLU	-	expression tag	UNP B7V7R4
B	22	ASN	-	expression tag	UNP B7V7R4
B	23	LEU	-	expression tag	UNP B7V7R4
B	24	TYR	-	expression tag	UNP B7V7R4
B	25	PHE	-	expression tag	UNP B7V7R4

Chain	Residue	Modelled	Actual	Comment	Reference
В	26	GLN	-	expression tag	UNP B7V7R4
В	27	SER	_	expression tag	UNP B7V7R4
В	28	HIS	-	expression tag	UNP B7V7R4
В	235	GLY	_	linker	UNP B7V7R4
В	236	GLY	-	linker	UNP B7V7R4
В	237	GLY	-	linker	UNP B7V7R4
В	238	GLY	-	linker	UNP B7V7R4
В	239	GLY	-	linker	UNP B7V7R4
В	240	GLY	-	linker	UNP B7V7R4
С	1	MET	-	initiating methionine	UNP B7V7R4
С	2	GLY	-	expression tag	UNP B7V7R4
С	3	SER	-	expression tag	UNP B7V7R4
С	4	SER	-	expression tag	UNP B7V7R4
С	5	HIS	-	expression tag	UNP B7V7R4
С	6	HIS	-	expression tag	UNP B7V7R4
С	7	HIS	-	expression tag	UNP B7V7R4
С	8	HIS	-	expression tag	UNP B7V7R4
С	9	HIS	-	expression tag	UNP B7V7R4
С	10	HIS	-	expression tag	UNP B7V7R4
C	11	SER	-	expression tag	UNP B7V7R4
C	12	SER	-	expression tag	UNP B7V7R4
C	13	GLY	-	expression tag	UNP B7V7R4
C	14	LEU	-	expression tag	UNP B7V7R4
C	15	VAL	-	expression tag	UNP B7V7R4
C	16	PRO	-	expression tag	UNP B7V7R4
C	17	ARG	-	expression tag	UNP B7V7R4
C	18	GLY	-	expression tag	UNP B7V7R4
С	19	SER	-	expression tag	UNP B7V7R4
С	20	MET	-	expression tag	UNP B7V7R4
C	21	GLU	-	expression tag	UNP B7V7R4
C	22	ASN	-	expression tag	UNP B7V7R4
C	23	LEU	-	expression tag	UNP B7V7R4
C	24	TYR	-	expression tag	UNP B7V7R4
C	25	PHE	-	expression tag	UNP B7V7R4
C	26	GLN	-	expression tag	UNP B7V7R4
C	27	SER	-	expression tag	UNP B7V7R4
C	28	HIS	-	expression tag	UNP B7V7R4
C	235	GLY	-	linker	UNP B7V7R4
C	236	GLY	-	linker	UNP B7V7R4
C	237	GLY	-	linker	UNP B7V7R4
C	238	GLY	-	linker	UNP B7V7R4
C	239	GLY	-	linker	UNP B7V7R4

Chain	Residue	Modelled	Actual	Comment	Reference
С	240	GLY	-	linker	UNP B7V7R4
D	1	MET	-	initiating methionine	UNP B7V7R4
D	2	GLY	-	expression tag	UNP B7V7R4
D	3	SER	-	expression tag	UNP B7V7R4
D	4	SER	-	expression tag	UNP B7V7R4
D	5	HIS	-	expression tag	UNP B7V7R4
D	6	HIS	-	expression tag	UNP B7V7R4
D	7	HIS	-	expression tag	UNP B7V7R4
D	8	HIS	-	expression tag	UNP B7V7R4
D	9	HIS	-	expression tag	UNP B7V7R4
D	10	HIS	-	expression tag	UNP B7V7R4
D	11	SER	-	expression tag	UNP B7V7R4
D	12	SER	-	expression tag	UNP B7V7R4
D	13	GLY	-	expression tag	UNP B7V7R4
D	14	LEU	-	expression tag	UNP B7V7R4
D	15	VAL	_	expression tag	UNP B7V7R4
D	16	PRO	_	expression tag	UNP B7V7R4
D	17	ARG	-	expression tag	UNP B7V7R4
D	18	GLY	-	expression tag	UNP B7V7R4
D	19	SER	-	expression tag	UNP B7V7R4
D	20	MET	-	expression tag	UNP B7V7R4
D	21	GLU	-	expression tag	UNP B7V7R4
D	22	ASN	_	expression tag	UNP B7V7R4
D	23	LEU	-	expression tag	UNP B7V7R4
D	24	TYR	-	expression tag	UNP B7V7R4
D	25	PHE	-	expression tag	UNP B7V7R4
D	26	GLN	-	expression tag	UNP B7V7R4
D	27	SER	-	expression tag	UNP B7V7R4
D	28	HIS	-	expression tag	UNP B7V7R4
D	235	GLY	-	linker	UNP B7V7R4
D	236	GLY	-	linker	UNP B7V7R4
D	237	GLY	-	linker	UNP B7V7R4
D	238	GLY	-	linker	UNP B7V7R4
D	239	GLY	-	linker	UNP B7V7R4
D	240	GLY	-	linker	UNP B7V7R4
Е	1	MET	-	initiating methionine	UNP B7V7R4
Е	2	GLY	-	expression tag	UNP B7V7R4
E	3	SER	-	expression tag	UNP B7V7R4
E	4	SER	-	expression tag	UNP B7V7R4
E	5	HIS	-	expression tag	UNP B7V7R4
Е	6	HIS	-	expression tag	UNP B7V7R4
Е	7	HIS	-	expression tag	UNP B7V7R4

Chain	Residue	Modelled	Actual	Comment	Reference
Е	8	HIS	-	expression tag	UNP B7V7R4
Е	9	HIS	-	expression tag	UNP B7V7R4
Е	10	HIS	-	expression tag	UNP B7V7R4
Е	11	SER	-	expression tag	UNP B7V7R4
Е	12	SER	-	expression tag	UNP B7V7R4
Е	13	GLY	-	expression tag	UNP B7V7R4
E	14	LEU	-	expression tag	UNP B7V7R4
E	15	VAL	-	expression tag	UNP B7V7R4
E	16	PRO	-	expression tag	UNP B7V7R4
E	17	ARG	-	expression tag	UNP B7V7R4
E	18	GLY	-	expression tag	UNP B7V7R4
E	19	SER	-	expression tag	UNP B7V7R4
E	20	MET	-	expression tag	UNP B7V7R4
E	21	GLU	-	expression tag	UNP B7V7R4
E	22	ASN	-	expression tag	UNP B7V7R4
E	23	LEU	-	expression tag	UNP B7V7R4
E	24	TYR	-	expression tag	UNP B7V7R4
E	25	PHE	-	expression tag	UNP B7V7R4
E	26	GLN	-	expression tag	UNP B7V7R4
E	27	SER	-	expression tag	UNP B7V7R4
E	28	HIS	-	expression tag	UNP B7V7R4
E	235	GLY	-	linker	UNP B7V7R4
E	236	GLY	-	linker	UNP B7V7R4
E	237	GLY	-	linker	UNP B7V7R4
E	238	GLY	-	linker	UNP B7V7R4
E	239	GLY	-	linker	UNP B7V7R4
E	240	GLY	-	linker	UNP B7V7R4
F	1	MET	-	initiating methionine	UNP B7V7R4
F	2	GLY	-	expression tag	UNP B7V7R4
F	3	SER	-	expression tag	UNP B7V7R4
F	4	SER	-	expression tag	UNP B7V7R4
F	5	HIS	-	expression tag	UNP B7V7R4
F	6	HIS	-	expression tag	UNP B7V7R4
F	7	HIS	-	expression tag	UNP B7V7R4
F	8	HIS	-	expression tag	UNP B7V7R4
F	9	HIS	-	expression tag	UNP B7V7R4
F	10	HIS	-	expression tag	UNP B7V7R4
F	11	SER	-	expression tag	UNP B7V7R4
F	12	SER	-	expression tag	UNP B7V7R4
F	13	GLY	-	expression tag	UNP B7V7R4
F	14	LEU	-	expression tag	UNP B7V7R4
F	15	VAL	-	expression tag	UNP B7V7R4

Chain	Residue	Modelled	Actual Comment		Reference
F	16	PRO	-	expression tag	UNP B7V7R4
F	17	ARG	-	expression tag	UNP B7V7R4
F	18	GLY	-	expression tag	UNP B7V7R4
F	19	SER	-	expression tag	UNP B7V7R4
F	20	MET	-	expression tag	UNP B7V7R4
F	21	GLU	-	expression tag	UNP B7V7R4
F	22	ASN	-	expression tag	UNP B7V7R4
F	23	LEU	-	expression tag	UNP B7V7R4
F	24	TYR	-	expression tag	UNP B7V7R4
F	25	PHE	-	expression tag	UNP B7V7R4
F	26	GLN	-	expression tag	UNP B7V7R4
F	27	SER	-	expression tag	UNP B7V7R4
F	28	HIS	-	expression tag	UNP B7V7R4
F	235	GLY	-	linker	UNP B7V7R4
F	236	GLY	-	linker	UNP B7V7R4
F	237	GLY	-	linker	UNP B7V7R4
F	238	GLY	-	linker	UNP B7V7R4
F	239	GLY	-	linker	UNP B7V7R4
F	240	GLY	-	linker	UNP B7V7R4

• Molecule 2 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total C H O 14 3 8 3	0	0
2	D	1	Total C H O 14 3 8 3	0	0

Continued from previous page...

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
0	F	1	Total	С	Η	0	0	0
	Ľ	1	14	3	8	3	0	0
2	F	1	Total	С	Н	0	0	0
	Ľ	1	14	3	8	3	0	0
2	F	1	Total	С	Η	Ο	0	0
	Г	1	14	3	8	3	0	0
2	F	1	Total	С	Η	Ο	0	0
	Г	1	14	3	8	3	0	0
2	F	1	Total	С	Η	Ο	0	0
2	Ľ	I	14	3	8	3	0	0
2	F	1	Total	С	Η	0	0	0
	Ľ	1	14	3	8	3	0	0

• Molecule 3 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	2	Total Mg 2 2	0	0
3	В	4	Total Mg 4 4	0	0
3	С	2	Total Mg 2 2	0	0
3	D	1	Total Mg 1 1	0	0
3	Ε	2	Total Mg 2 2	0	0
3	F	2	Total Mg 2 2	0	0

• Molecule 4 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total Cl 1 1	0	0
4	В	1	Total Cl 1 1	0	0

• Molecule 5 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	1	Total Na 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	С	1	Total Na 1 1	0	0
5	D	1	Total Na 1 1	0	0
5	Е	1	Total Na 1 1	0	0
5	F	1	Total Na 1 1	0	0

• Molecule 6 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	2	Total Ca 2 2	0	0
6	В	1	Total Ca 1 1	0	0
6	С	1	Total Ca 1 1	0	0
6	D	4	Total Ca 4 4	0	0
6	Е	2	Total Ca 2 2	0	0
6	F	2	Total Ca 2 2	0	0

• Molecule 7 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	326	Total O 326 326	0	0
7	В	384	Total O 384 384	0	0
7	С	311	Total O 311 311	0	0
7	D	337	Total O 337 337	0	0
7	Е	356	Total O 356 356	0	0
7	F	391	Total O 391 391	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 1-deoxy-D-xylulose-5-phosphate synthase

666 617 696 ASIN 521 ASIN 521 ASIN 521 LUNS 526 CLY 533 CLY 541 LUNS 556 CLY 556 CLY 551 LUNS 551 CLY 552 CLY 552 CLY 552 CLY 553 CLY 554 CLY 555 CLY 556 CLY 557 CLY 558 CLY 559<

• Molecule 1: 1-deoxy-D-xylulose-5-phosphate synthase

Chain D:	81%	8%	11%
MET GLY SER HIS HIS HIS HIS HIS	SER 1151 1151 1151 1151 1151 1151 1151 11	L45 L46 D47 R48 A49 D52	L55 L58 163 165 165
D68 E69 L70 R71 Y73 V73 L74 L74 T77	VT8 195 195 196 198 198 198 198 198 113 113 113 113 113 113 113 113 113 11	D217 MET SER ILE SER HIS ACW	VAL VAL GLY GLY GLY SER SER ASN TYR LEU ALA
LYS ILE GLY GLY GLY GLY GLY GLY F22 2342	T243 1244 1244 1266 1266 1266 1266 1266 1268 1268 1268	1303 1304 K305 L306 GLU GLU	Ervo GLY SER PRO LYS LYS LYS LYS K347
L352 Y363 V366 A367 L366 A367	A373 V374 V374 V374 F395 F395 F395 F406 F440 F440 F440 F440 F440 F440 F440	E571 L578 R621 Q622	
• Molecule 1:	1-deoxy-D-xylulose-5-phosphate synthase		
4%			
Chain E:	84%	6%	10%
MET GLY SER HIS HIS HIS HIS HIS HIS HIS	SER SER CLEU VAL PROC ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	V101 F102 Y118 P119	1150 1192 1192 1192 1192 1192 1192 1192
D217 MET SER ILE SER HTS ASN VAL CLY GLY	LEU LEU ALA ALA ALA ALA ALA ALA C240 C240 C240 C240 C240 C240 C240 C240	L130 <mark>6</mark> GLU ALA PRO GLY CTR	ALA ALA PRO LYS LYS LYS C317 E361 E361 E361 E361
V366 A367 A369 A369 A373 L376	M380 1331 1331 1335 1395 1395 1395 1404 1418 1404 1418 1418 1418 1418 1418	E579 D620 ARG GLN	
• Molecule 1:	1-deoxy-D-xylulose-5-phosphate synthase		
Chain F:	85%	5%	11%
MET GLY SER SER HIS HIS HIS HIS HIS	SER SER CLL CLEU CLEU CLEU ASIG ASIG ASIG ASIG ASIG ASIG ASIG ASIG	V110 V113 A117 Y118	L133 T152 S158 A192 N216
D217 MET SER SER ILLE SER HIS ASN VAL CLY GLY	LEU TYR ASR ASR ASR LEU LEU LUS CLY GLY GLY GLY GLY CLA CLY CLA CLY CLA CLY CLA CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	PRO GLY SER ALA PRO LYS	THR G317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317 C317

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	116.44Å 137.63Å 232.08Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$Percelution(\hat{\lambda})$	48.59 - 2.10	Depositor
Resolution (A)	48.59 - 2.10	EDS
% Data completeness	99.9 (48.59-2.10)	Depositor
(in resolution range)	99.9 (48.59-2.10)	EDS
R_{merge}	0.06	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.93 (at 2.10Å)	Xtriage
Refinement program	PHENIX 1.20.1_4487, PHENIX 1.20.1_4487	Depositor
D D.	0.171 , 0.224	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.171 , 0.224	DCC
R_{free} test set	10811 reflections (4.99%)	wwPDB-VP
Wilson B-factor $(Å^2)$	27.3	Xtriage
Anisotropy	0.533	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.44, 51.2	EDS
L-test for twinning ²	$< L >=0.50, < L^2>=0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	53080	wwPDB-VP
Average B, all atoms $(Å^2)$	32.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 18.87% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CL, MG, NA, GOL, CA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mal Chain		Bond lengths		ond angles
WIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.51	0/4329	0.70	0/5869
1	В	0.54	0/4390	0.70	0/5951
1	С	0.53	0/4372	0.70	0/5926
1	D	0.54	0/4305	0.68	0/5837
1	Е	0.52	0/4350	0.70	2/5899~(0.0%)
1	F	0.55	0/4331	0.70	0/5872
All	All	0.53	0/26077	0.70	2/35354~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	F	0	1

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Е	453	ASP	CB-CG-OD1	6.29	123.96	118.30
1	Е	531	ASP	CB-CG-OD2	-5.39	113.45	118.30

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	F	618	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4245	4197	4210	24	0
1	В	4302	4267	4274	20	0
1	С	4284	4240	4257	13	0
1	D	4222	4171	4194	32	0
1	Е	4264	4187	4236	23	0
1	F	4247	4205	4214	17	0
2	А	6	8	8	0	0
2	D	6	8	8	0	0
2	Е	12	16	16	0	0
2	F	24	32	31	0	0
3	А	2	0	0	0	0
3	В	4	0	0	0	0
3	С	2	0	0	0	0
3	D	1	0	0	0	0
3	Е	2	0	0	0	0
3	F	2	0	0	0	0
4	А	1	0	0	0	0
4	В	1	0	0	0	0
5	А	1	0	0	0	0
5	С	1	0	0	0	0
5	D	1	0	0	0	0
5	Е	1	0	0	0	0
5	F	1	0	0	0	0
6	А	2	0	0	0	0
6	В	1	0	0	0	0
6	С	1	0	0	0	0
6	D	4	0	0	0	0
6	Е	2	0	0	0	0
6	F	2	0	0	0	0
7	А	326	0	0	3	0
7	В	384	0	0	1	0
7	С	311	0	0	2	0
7	D	337	0	0	2	0
7	Е	356	0	0	0	0
7	F	391	0	0	1	0
All	All	27749	25331	25448	127	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (1	127)	close	$\operatorname{contacts}$	within	the	same	asymmetric	unit	are	listed	below,	sorted	by	their	clash
magn	itude	э.													

Atom_1	Atom_2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:256:ILE:HD11	1:D:282:VAL:HG22	1.48	0.93	
1:A:33:LEU:O	1:A:33:LEU:HD23	1.71	0.91	
1:B:39:GLU:OE1	7:B:801:HOH:O	2.00	0.79	
1:A:38:ARG:HH12	1:A:307:GLU:HB2	1.48	0.78	
1:A:509:LEU:HD21	1:A:546:LEU:HD13	1.80	0.64	
1:D:256:ILE:CD1	1:D:282:VAL:HG22	2.27	0.64	
1:E:271:MET:HA	1:E:274:MET:HE3	1.79	0.64	
1:D:530:VAL:HG21	1:D:546:LEU:HD11	1.84	0.60	
1:E:45:LEU:HD21	1:E:62:ASP:HB3	1.85	0.59	
1:B:45:LEU:HD21	1:B:62:ASP:HB3	1.85	0.58	
1:C:353:VAL:O	1:C:357:GLU:HG3	2.04	0.58	
1:B:190:LEU:HD12	1:B:213:LEU:HD13	1.87	0.56	
1:F:530:VAL:HG21	1:F:546:LEU:HD11	1.88	0.55	
1:D:68:ASP:O	1:D:72:GLN:HG2	2.07	0.55	
1:A:38:ARG:NH1	1:A:307:GLU:HB2	2.17	0.55	
1:B:118:TYR:CZ	1:B:133:LEU:HD21	2.43	0.54	
1:A:260:ASP:OD2	1:A:263:THR:OG1	2.21	0.54	
1:E:208:ASP:OD2	1:E:275:LYS:HE3	2.08	0.53	
1:F:60:GLU:OE1	1:F:269:ARG:NH1	2.31	0.53	
1:B:354:ALA:O	1:B:358:ARG:HG3	2.09	0.53	
1:D:502:ARG:NH1	7:D:809:HOH:O	2.41	0.53	
1:F:216:ASN:O	1:F:217:ASP:HB3	2.08	0.53	
1:A:215:ASP:OD1	1:A:219:SER:HB2	2.09	0.52	
1:A:33:LEU:HD23	1:A:33:LEU:C	2.30	0.52	
1:B:366:VAL:O	1:B:367:ALA:HB3	2.10	0.52	
1:D:509:LEU:N	1:D:509:LEU:HD12	2.25	0.51	
1:A:244:LEU:HD11	1:A:248:LEU:HD11	1.92	0.50	
1:A:85:PHE:HB3	1:A:300:TYR:O	2.12	0.50	
1:C:521:VAL:HG12	1:C:525:LEU:HD12	1.92	0.49	
1:B:455:ASP:OD2	1:B:459:LYS:HE2	2.11	0.49	
1:A:502:ARG:NH2	7:A:806:HOH:O	2.45	0.49	
1:D:164:ALA:O	1:D:168:MET:HG3	2.13	0.49	
1:F:113:VAL:CG2	1:F:158:SER:HB2	2.44	0.48	
1:A:45:LEU:HD21	1:A:62:ASP:HB3	1.96	0.48	
1:E:361:GLU:HG2	1:E:362:ARG:HG3	1.94	0.48	
1:A:366:VAL:O	1:A:367:ALA:HB3	2.13	0.47	
1:A:258:GLY:O	1:A:264:LEU:HD11	2.15	0.47	

		Interatomic	Clash		
Atom-1	Atom-2	distance $(Å)$	overlap (Å)		
1:F:260:ASP:OD2	1:F:262:PRO:HD2	2.13	0.47		
1:C:509:LEU:HD12	1:C:509:LEU:N	2.30	0.47		
1:D:256:ILE:HD11	1:D:282:VAL:CG2	2.34	0.46		
1:A:576:GLU:HB2	1:A:578:LEU:HG	1.98	0.46		
1:D:270:ASN:O	1:D:274:MET:HE2	2.16	0.46		
1:F:421:ALA:HB1	1:F:474:ABG:CZ	2.46	0.46		
1:D:95:THR:HG22	1:D:123:LEU:HD12	1.99	0.45		
1:A:33:LEU:O	1:A:33:LEU:CD2	2.56	0.45		
1:D:291:ALA:O	1:D:295:LEU:HD12	2.15	0.45		
1:E:118:TYR:HB2	1:E:119:PRO:HD3	1.97	0.45		
1.D.36.ILE:HG21	1.D.306.LEU.HD11	1.97	0.45		
1:E:291:ALA:HB3	1:E:292:PRO:HD3	1.99	0.45		
1:B:70:LEU:CD1	1:B:122:ILE:HG21	2.47	0.45		
1:A:436:ASP:HA	1:A:439:TYR:CE2	2.52	0.45		
1:A:611:ILE:O	1:A:615:VAL:HG23	2.16	0.45		
1·D·621·ARG·HH11	1.D.621.ABG.HG3	1.82	0.45		
1:A:579:GLU:OE2	1:E:579:GLU:HG3	2.17	0.44		
1·B·259·HIS·CE1	1·B·288·LYS·HG2	2.52	0.44		
1:C:185:ILE:CG1	1:C:189:ALA:HB3	2.48	0.44		
1:E:376:LEU:O	1:E:380:MET:HG3	2.17	0.44		
1:C:185:ILE:HG13	1:C:189:ALA:HB3	1.99	0.44		
1:D:70:LEU:HD23	1:D:70:LEU:O	2.18	0.44		
1:F:68:ASP:N	1:F:68:ASP:OD1	2.50	0.44		
1:D:94:LEU:O	1:D:98:LEU:HD23	2.18	0.44		
1:B:32:THR:HG22	1:B:33:LEU:HD22	1.99	0.44		
1:B:509:LEU:HD21	1:B:546:LEU:HD13	2.00	0.44		
1:E:366:VAL:O	1:E:367:ALA:HB3	2.18	0.44		
1:C:271:MET:HA	1:C:274:MET:CE	2.48	0.44		
1:B:335:GLN:HA	1:B:335:GLN:NE2	2.33	0.43		
1:F:117:ALA:HA	7:F:954:HOH:O	2.17	0.43		
1:F:366:VAL:O	1:F:367:ALA:HB3	2.18	0.43		
1:A:517:GLU:OE2	1:A:520:LYS:NZ	2.47	0.43		
1:B:43:THR:HB	1:B:46:LEU:HB3	2.00	0.43		
1:B:111:TRP:O	1:B:155:VAL:HG11	2.18	0.43		
1:E:366:VAL:HG21	1:E:373:ALA:HB2	2.01	0.43		
1:A:423:LEU:HD13	1:A:600:MET:HB3	2.01	0.43		
1:F:509:LEU:HD12	1:F:509:LEU:N	2.34	0.43		
1:E:261:LEU:O	1:E:265:VAL:HG23	2.18	0.43		
1:F:113:VAL:HG22	1:F:158:SER:HB2	2.00	0.43		
1:D:391:ILE:O	1:D:418:ILE:HA	2.19	0.43		
1:E:118:TYR:CZ	1:E:133:LEU:HD21	2.54	0.43		

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:D:118:TYB:CZ	1:D:133:LEU:HD21	2.54	0.42		
1:D:494:ILE:HA	1:D:534:PHE:CZ	2.54	0.42		
1:F:64:GLU:O	1:F:68:ASP:OD1	2.37	0.42		
1:F:436:ASP:HA	1:F:439:TYR:CE2	2.54	0.42		
1:C:421:ALA:HB1	1:C:474:ARG:CZ	2.49	0.42		
1:D:211:VAL:HG23	1:D:250:TRP:CZ3	2.53	0.42		
1:C:106:ASP:O	1:C:179:ARG:HD3	2.19	0.42		
1:E:70:LEU:HD23	1:E:70:LEU:O	2.18	0.42		
1:E:530:VAL:HG21	1:E:546:LEU:HD11	2.01	0.42		
7:A:995:HOH:O	1:E:563:GLY:HA3	2.19	0.42		
1:B:421:ALA:HB1	1:B:474:ARG:CZ	2.49	0.42		
1:E:52:PRO:HG2	1:E:150:TYR:CE1	2.55	0.42		
1:F:110:VAL:HG22	1:F:152:THR:OG1	2.20	0.42		
1:B:185:ILE:HG13	1:B:189:ALA:HB3	2.01	0.42		
1:D:578:LEU:O	7:D:801:HOH:O	2.21	0.42		
1:E:271:MET:CA	1:E:274:MET:HE3	2.48	0.42		
1:E:252:TYR:O	1:E:253:ILE:HD13	2.20	0.42		
1:D:114:GLY:HA3	1:D:143:PRO:HD2	2.01	0.42		
1:D:352:LEU:HD12	1:D:352:LEU:N	2.34	0.42		
1:E:70:LEU:HD23	1:E:70:LEU:C	2.40	0.42		
1:D:436:ASP:HA	1:D:439:TYR:CE2	2.55	0.42		
1:A:421:ALA:HB1	1:A:474:ARG:CZ	2.49	0.42		
1:B:504:GLY:O	1:B:505:ARG:HB3	2.20	0.41		
1:A:200:ASN:OD1	1:A:248:LEU:HD22	2.19	0.41		
1:B:164:ALA:O	1:B:168:MET:HG3	2.20	0.41		
1:C:149:GLU:HG2	7:C:1017:HOH:O	2.21	0.41		
1:C:506:VAL:HG11	1:C:619:LEU:HD11	2.03	0.41		
1:D:451:PRO:HB3	1:D:460:LEU:HD12	2.02	0.41		
1:D:366:VAL:O	1:D:367:ALA:HB3	2.19	0.41		
1:D:509:LEU:N	1:D:509:LEU:CD1	2.83	0.41		
1:F:339:LEU:HD23	1:F:339:LEU:C	2.41	0.41		
1:D:106:ASP:O	1:D:179:ARG:HD3	2.21	0.41		
1:B:489:LEU:HD23	1:B:489:LEU:HA	1.93	0.41		
1:C:366:VAL:HG21	1:C:373:ALA:HB2	2.03	0.41		
1:D:256:ILE:C	1:D:256:ILE:HD12	2.41	0.41		
1:E:451:PRO:HB3	1:E:460:LEU:HD12	2.02	0.41		
1:F:118:TYR:CZ	1:F:133:LEU:HD21	2.56	0.41		
1:F:243:THR:HG22	1:F:245:PHE:H	1.86	0.41		
1:D:211:VAL:HG23	1:D:250:TRP:CH2	2.57	0.41		
1:D:347:LYS:HB2	1:D:363:TYR:OH	2.21	0.41		
1:E:63:LEU:HB3	1:E:261:LEU:HD13	2.02	0.41		

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:E:391:ILE:O	1:E:418:ILE:HA	2.21	0.41
1:B:567:SER:OG	1:D:571:GLU:OE1	2.21	0.40
1:A:514:GLN:HB2	7:A:801:HOH:O	2.21	0.40
1:C:613:LYS:O	1:C:617:GLN:HG3	2.21	0.40
1:E:102:PHE:CE2	1:E:272:ARG:HG3	2.56	0.40
1:A:347:LYS:HB2	1:A:363:TYR:OH	2.22	0.40
1:C:62:ASP:OD2	7:C:801:HOH:O	2.22	0.40
1:D:366:VAL:HG21	1:D:373:ALA:HB2	2.03	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	551/622~(89%)	534 (97%)	16 (3%)	1 (0%)	47	49
1	В	559/622~(90%)	540 (97%)	19 (3%)	0	100	100
1	С	555/622~(89%)	540 (97%)	14 (2%)	1 (0%)	47	49
1	D	548/622~(88%)	531 (97%)	17 (3%)	0	100	100
1	Е	554/622~(89%)	537 (97%)	17 (3%)	0	100	100
1	F	550/622~(88%)	532 (97%)	18 (3%)	0	100	100
All	All	3317/3732~(89%)	3214 (97%)	101 (3%)	2 (0%)	51	54

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	С	526	ASP
1	А	218	MET

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	440/490~(90%)	435~(99%)	5 (1%)	73	79
1	В	446/490 (91%)	443 (99%)	3 (1%)	84	88
1	С	444/490~(91%)	441 (99%)	3 (1%)	84	88
1	D	437/490~(89%)	432 (99%)	5 (1%)	73	79
1	Ε	442/490~(90%)	440 (100%)	2~(0%)	88	92
1	F	440/490 (90%)	436 (99%)	4 (1%)	78	84
All	All	2649/2940~(90%)	2627~(99%)	22 (1%)	81	86

All (22) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	38	ARG
1	А	80	GLN
1	А	219	SER
1	А	474	ARG
1	А	488	ASP
1	В	57	ARG
1	В	255	PRO
1	В	305	LYS
1	С	320	LYS
1	С	470	PRO
1	С	505	ARG
1	D	178	GLU
1	D	179	ARG
1	D	213	LEU
1	D	244	LEU
1	D	305	LYS
1	Е	474	ARG
1	Е	524	SER
1	F	68	ASP
1	F	158	SER
1	F	273	ASP
1	F	307	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	490	GLN
1	Е	135	GLN
1	Е	617	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 40 ligands modelled in this entry, 32 are monoatomic - leaving 8 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tinle	B	ond leng	gths	E	Bond ang	gles
	Type	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	GOL	Е	702	-	5,5,5	1.46	0	$5,\!5,\!5$	0.42	0
2	GOL	А	701	-	5,5,5	1.00	0	5,5,5	0.90	0
2	GOL	Е	701	-	5,5,5	0.95	0	5,5,5	0.97	0
2	GOL	F	702	-	5,5,5	1.17	1 (20%)	5,5,5	0.86	0
2	GOL	D	701	-	5,5,5	0.95	0	5,5,5	1.00	0
2	GOL	F	701	-	5,5,5	1.33	1 (20%)	5,5,5	0.80	0
2	GOL	F	703	-	5,5,5	2.43	1 (20%)	5,5,5	0.80	0
2	GOL	F	704	-	5,5,5	2.56	3 (60%)	5,5,5	0.90	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GOL	E	702	-	-	4/4/4/4	-
2	GOL	А	701	-	-	0/4/4/4	-
2	GOL	E	701	-	-	2/4/4/4	-
2	GOL	F	702	-	-	1/4/4/4	-
2	GOL	D	701	-	-	2/4/4/4	-
2	GOL	F	701	-	-	4/4/4/4	-
2	GOL	F	703	-	-	2/4/4/4	_
2	GOL	F	704	-	-	2/4/4/4	-

All (6) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	F	703	GOL	O2-C2	-4.99	1.28	1.43
2	F	704	GOL	O2-C2	3.97	1.55	1.43
2	F	704	GOL	C3-C2	2.75	1.63	1.51
2	F	701	GOL	C1-C2	2.11	1.60	1.51
2	F	702	GOL	O2-C2	-2.10	1.37	1.43
2	F	704	GOL	C1-C2	-2.03	1.43	1.51

There are no bond angle outliers.

There are no chirality outliers.

All (17) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	Е	702	GOL	C1-C2-C3-O3
2	D	701	GOL	C1-C2-C3-O3
2	Е	701	GOL	C1-C2-C3-O3
2	F	701	GOL	O1-C1-C2-C3
2	F	701	GOL	C1-C2-C3-O3
2	F	703	GOL	O1-C1-C2-C3
2	Е	702	GOL	O2-C2-C3-O3
2	D	701	GOL	O2-C2-C3-O3
2	Е	701	GOL	O2-C2-C3-O3
2	F	703	GOL	O1-C1-C2-O2
2	F	701	GOL	O1-C1-C2-O2
2	F	704	GOL	O1-C1-C2-O2

Mol	Chain	Res	Type	Atoms
2	Е	702	GOL	O1-C1-C2-C3
2	F	704	GOL	O1-C1-C2-C3
2	Е	702	GOL	O1-C1-C2-O2
2	F	701	GOL	O2-C2-C3-O3
2	F	702	GOL	O1-C1-C2-C3

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q < 0.9
1	А	557/622~(89%)	0.28	28 (5%) 28	34	19, 29, 49, 88	0
1	В	563/622~(90%)	0.23	24 (4%) 35	41	17, 26, 43, 90	0
1	С	559/622~(89%)	0.25	22 (3%) 39	45	17, 28, 47, 79	0
1	D	554/622~(89%)	0.52	52 (9%) 8 1	11	17, 29, 57, 90	0
1	Ε	560/622~(90%)	0.28	23 (4%) 37	43	18, 27, 46, 83	0
1	F	556/622~(89%)	0.26	16 (2%) 51	57	16, 25, 44, 71	0
All	All	3349/3732~(89%)	0.30	165 (4%) 29	35	16, 27, 49, 90	0

All (165) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	621	ARG	5.7
1	D	75	LEU	5.2
1	F	307	GLU	4.9
1	D	306	LEU	4.8
1	А	219	SER	4.8
1	D	295	LEU	4.6
1	В	316	THR	4.6
1	А	33	LEU	4.3
1	В	32	THR	4.1
1	А	34	HIS	4.1
1	D	63	LEU	3.9
1	F	38	ARG	3.9
1	D	48	ARG	3.8
1	D	217	ASP	3.7
1	D	298	ILE	3.5
1	D	297	PRO	3.5
1	D	46	LEU	3.5
1	F	439	TYR	3.5
1	F	306	LEU	3.5

3.4	
3.3	
3.3	
3.3	
3.3	
3.3	
3.3	
3.2	
3.2	

Continued from previous page...

Mol Chain Res Type RSRZ

1	D	439	TYR	3.5
1	D	38	ARG	3.4
1	D	316	THR	3.4
1	D	303	ILE	3.4
1	D	100	TYR	3.4
1	Е	240	GLY	3.4
1	Е	369	ALA	3.3
1	В	484	PRO	3.3
1	Е	100	TYR	3.3
1	А	403	LEU	3.3
1	С	306	LEU	3.3
1	D	74	LEU	3.3
1	С	621	ARG	3.2
1	D	78	VAL	3.2
1	D	400	TYR	3.2
1	А	619	LEU	3.2
1	Е	400	TYR	3.2
1	С	521	VAL	3.2
1	А	504	GLY	3.1
1	А	488	ASP	3.1
1	С	33	LEU	3.1
1	D	41	PRO	3.1
1	D	68	ASP	3.1
1	А	400	TYR	3.1
1	С	400	TYR	3.1
1	С	38	ARG	3.0
1	D	45	LEU	3.0
1	С	617	GLN	3.0
1	В	308	ALA	3.0
1	D	42	ALA	3.0
1	В	400	TYR	2.9
1	D	49	ALA	2.9
1	D	272	ARG	2.9
1	F	400	TYR	2.9
1	В	306	LEU	2.9
1	D	268	LEU	2.9
1	С	579	GLU	2.9
1	С	622	GLN	2.9
1	Е	298	ILE	2.8
1	А	399	ALA	2.8
1	А	176	GLY	2.8

Mol	Chain	Res	Type	RSRZ
1	F	273	ASP	2.8
1	С	36	ILE	2.8
1	С	316	THR	2.8
1	В	176	GLY	2.8
1	D	65	THR	2.8
1	D	58	LEU	2.7
1	F	399	ALA	2.7
1	D	52	PRO	2.7
1	D	43	THR	2.7
1	D	304	THR	2.7
1	D	267	THR	2.7
1	D	36	ILE	2.7
1	F	55	LEU	2.7
1	А	522	ALA	2.7
1	Е	373	ALA	2.7
1	В	403	LEU	2.7
1	А	620	ASP	2.6
1	С	442	CYS	2.6
1	А	404	ILE	2.6
1	В	34	HIS	2.6
1	А	523	GLU	2.6
1	В	620	ASP	2.6
1	Е	253	ILE	2.6
1	Е	295	LEU	2.6
1	Е	399	ALA	2.5
1	F	272	ARG	2.5
1	В	33	LEU	2.5
1	А	484	PRO	2.5
1	С	403	LEU	2.5
1	D	291	ALA	2.5
1	D	399	ALA	2.5
1	Е	192	ALA	2.5
1	В	487	PRO	2.5
1	D	261	LEU	2.5
1	Е	396	LEU	2.4
1	A	442	CYS	2.4
1	В	490	GLN	2.4
1	В	404	ILE	2.4
1	В	399	ALA	2.4
1	Е	34	HIS	2.4
1	Е	395	PHE	2.4
1	D	369	ALA	2.3

Mol

1

1

1

1

1

1

1

1

1

1

1

А	306	LEU	2.3
D	178	GLU	2.3
D	73	TYR	2.2
А	526	ASP	2.2
А	616	ARG	2.2
D	55	LEU	2.2
D	76	TYR	2.2
D	292	PRO	2.2
F	268	LEU	2.2
D	260	ASP	2.2
В	401	ASP	2.2
F	369	ALA	2.2
А	36	ILE	2.2
А	485	ILE	2.2
В	617	GLN	2.2
В	488	ASP	2.2
С	399	ALA	2.2
С	404	ILE	2.1
Е	36	ILE	2.1
-			~ .

Continued from previous page...

 Res

35

396

34

307

39

439

395

442

220

Type

GLU

LEU

HIS

GLU

GLU

TYR

PHE

CYS

ILE

RSRZ

2.3

2.3

2.3

2.3

2.3

2.3

2.3

2.3

2.3

Chain

А

F

С

В

D

Е

D

В

В

D 1 А 1 A 1 1 Γ Γ 1 Γ 1 F 1 Γ 1 Е 1 F 1 А 1 A 1 Е 1 1 Е C 1 C 1 F 1 1 D 293ALA 2.11 А 38 ARG 2.1С 1 ARG 2.1 505 1 А 243 THR 2.11 D 440 LEU 2.1MET 2.1 1 D 194 В 439 TYR 1 2.135 GLU 1 В 2.1LEU 1 А 489 2.1Е LEU 2.1 1 403 С VAL 1 3742.1F VAL 1 3742.1263 THR 2.1 1 D 1 D 270 ASN 2.1Continued on next page...

Mol	Chain	Res	Type	RSRZ
1	С	526	ASP	2.1
1	Е	273	ASP	2.1
1	С	244	LEU	2.1
1	F	270	ASN	2.1
1	С	398	ARG	2.1
1	Е	402	GLN	2.1
1	F	395	PHE	2.1
1	С	620	ASP	2.0
1	Е	272	ARG	2.0
1	Е	194	MET	2.0
1	F	192	ALA	2.0
1	А	178	GLU	2.0
1	А	579	GLU	2.0
1	Е	404	ILE	2.0
1	D	374	VAL	2.0
1	А	398	ARG	2.0
1	D	289	GLY	2.0
1	D	72	GLN	2.0
1	Е	401	ASP	2.0
1	Е	274	MET	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
2	GOL	А	701	6/6	0.69	0.31	52,62,67,72	0
2	GOL	D	701	6/6	0.74	0.26	48,57,64,66	0
2	GOL	Е	701	6/6	0.75	0.22	59,73,83,87	0

Conti	Continued from previous page									
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9		
2	GOL	E	702	6/6	0.75	0.22	$29,\!46,\!55,\!66$	0		
2	GOL	F	701	6/6	0.77	0.26	35,50,66,66	0		
2	GOL	F	703	6/6	0.81	0.18	32,40,60,60	0		
3	MG	С	701	1/1	0.82	0.13	40,40,40,40	0		
3	MG	В	703	1/1	0.83	0.35	37,37,37,37	0		
2	GOL	F	704	6/6	0.83	0.17	19,40,48,48	0		
6	CA	А	707	1/1	0.83	0.11	66,66,66,66	0		
5	NA	D	703	1/1	0.85	0.05	54,54,54,54	0		
6	CA	А	706	1/1	0.86	0.14	61,61,61,61	0		
4	CL	В	705	1/1	0.89	0.14	$65,\!65,\!65,\!65$	0		
6	CA	С	704	1/1	0.91	0.18	67,67,67,67	0		
3	MG	F	706	1/1	0.93	0.30	39,39,39,39	0		
3	MG	А	702	1/1	0.93	0.23	34,34,34,34	0		
3	MG	В	701	1/1	0.93	0.12	28,28,28,28	0		
3	MG	D	702	1/1	0.94	0.22	43,43,43,43	0		
3	MG	Е	703	1/1	0.94	0.27	37,37,37,37	0		
5	NA	F	707	1/1	0.95	0.08	37,37,37,37	0		
3	MG	F	705	1/1	0.95	0.11	$35,\!35,\!35,\!35$	0		
5	NA	А	705	1/1	0.95	0.17	29,29,29,29	0		
4	CL	А	704	1/1	0.95	0.15	$50,\!50,\!50,\!50$	0		
6	CA	F	709	1/1	0.95	0.20	50,50,50,50	0		
6	CA	D	704	1/1	0.96	0.07	54,54,54,54	0		
6	CA	D	705	1/1	0.96	0.25	49,49,49,49	0		
6	CA	F	708	1/1	0.96	0.06	39,39,39,39	0		
3	MG	В	702	1/1	0.96	0.13	26,26,26,26	0		
6	CA	В	706	1/1	0.97	0.05	63,63,63,63	0		
6	CA	D	706	1/1	0.97	0.14	69,69,69,69	0		
6	CA	D	707	1/1	0.97	0.06	38,38,38,38	0		
6	CA	E	706	1/1	0.97	0.20	49,49,49,49	0		
6	CA	E	707	1/1	0.97	0.20	$47,\!47,\!47,\!47$	0		
5	NA	Е	705	1/1	0.97	0.07	24,24,24,24	0		
3	MG	А	703	1/1	0.97	0.22	26,26,26,26	0		
5	NA	С	703	1/1	0.98	0.10	26,26,26,26	0		
3	MG	E	704	1/1	0.98	0.14	33,33,33,33	0		
2	GOL	F	702	6/6	0.98	0.10	23,36,44,53	0		
3	MG	С	702	1/1	0.98	0.14	22,22,22,22	0		
3	MG	В	704	1/1	0.99	0.50	51,51,51,51	0		

Other polymers (i) 6.5

There are no such residues in this entry.

