

wwPDB EM Validation Summary Report (i)

Dec 18, 2022 - 05:45 am GMT

PDB ID	:	7A01
EMDB ID	:	EMD-11590
Title	:	The Halastavi arva virus intergenic region IRES promotes translation by the
		simplest possible initiation mechanism
Authors	:	Abaeva, I.; Vicens, Q.; Bochler, A.; Soufari, H.; Simonetti, A.; Pestova, T.V.;
		Hashem, Y.; Hellen, C.U.T.
Deposited on	:	2020-08-05
Resolution	:	3.60 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain						
1	E1	153	84% 27% 68%	5%					
2	e2	3825	5% 67%	31% •					
3	h2	156	• 69%	29% •					
4	d2	120	82%	18%					
5	p2	69	6% 						
6	k2	131	• 100%						
7	12	63	5%						
8	m2	119	• 99%						

Continued from previous page...

Mol	Chain	Length	Quality of chain
9	o2	134	99%
10	q2	147	100%
11	r2	75	19% 99%
12	t2	362	100%
13	u2	107	100%
14	v2	128	99%
15	w2	199	99%
16	x2	109	99%
17	y2	114	6%
18	92	244	99%
19	A2	122	100%
20	B2	102	100%
21	C2	86	100%
22	D2	50	98% .
23	E2	52	98% .
24	F2	104	5% 99%
25	G2	292	99%
26	H2	153	100%
27	I2	91	100%
28	J2	125	100%
29	K2	198	100%
30	L2	102	98% .
31	M2	163	93%
32	R2	35	100%
33	S2	187	100%

Mol	Chain	Length	Quality of chain
34	T2	201	9%
35	U2	225	99%
36	V2	241	9%
37	W2	190	98%
38	X2	102	100%
39	Y2	169	100%
40	02	138	99% ·
41	12	203	100%
42	22	135	99%
43	32	180	99% ·
44	42	217	98%
45	52	394	99%
46	62	175	98%
47	72	159	98% •
48	82	99	100%
49	K3	1801	55% 43% ·
50	s3	43	98%
51	13	94	100%
52	Q3	188	32% • 66%
53	G3	153	98% •
54	G5	137	98% ···
55	a3	313	100%
56	a5	136	99% ·
57	A3	127	99% •
58	Т3	141	99% .

Continued from previous page...

Mol	Chain	Length	Quality of chain
59	U3	208	52%
	L VO	210	48%
60	V3	213	100%
61	W3	218	100%
62	X3	23	100%
63	V3	997	63%
00	10	221	99% ·
64	j3	262	100%
65	J5	129	98% •
66	N3	191	99%
67	h?	027	57%
07	00	237	70%
68	B3	141	99% .
69	f3	64	100%
70	F3	150	99%
71		206	46%
(1	<u>cə</u>	200	100%
72	C3	129	99%
73	d3	185	99%
74	D3	83	49%
	20	104	83%
75	e3	124	95% · ·
76	E3	98	99% •
77	H3	53	100%
78	H5	141	61%
	110	111	59%
79	P3	189	98% ·
80	I3	104	97% ·
81	I5	126	100%
80	ТЗ	83	41%
02	гэ	00	81%
83	M3	75	100%

 $Continued \ from \ previous \ page...$

Continued from previous page...

Mol	Chain	Length	Quality of chain
84	O3	98	32%
85	a7	210	9%

2 Entry composition (i)

There are 86 unique types of molecules in this entry. The entry contains 224880 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called INTERNAL RIBOSOME ENTRY SITE.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	E1	153	Total 3208	C 1443	N 529	O 1083	Р 153	0	0

• Molecule 2 is a RNA chain called 28S RIBOSOMAL RNA.

Mol	Chain	Residues			AltConf	Trace			
2	e2	3825	Total 81951	C 36501	N 14984	O 26650	Р 3816	0	0

• Molecule 3 is a RNA chain called 5.8S RIBOSOMAL RNA.

Mol	Chain	Residues		Α	AltConf	Trace			
3	h2	156	Total 3314	C 1480	N 585	O 1094	Р 155	0	0

• Molecule 4 is a RNA chain called 5S RIBOSOMAL RNA.

Mol	Chain	Residues		A	AltConf	Trace			
4	d2	120	Total 2558	C 1141	N 456	0 842	Р 119	0	0

• Molecule 5 is a protein called Uncharacterized protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	p2	69	Total 568	C 364	N 103	O 100	S 1	0	0

• Molecule 6 is a protein called eL14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	k2	131	Total 979	C 618	N 184	0 172	${f S}{5}$	0	0

• Molecule 7 is a protein called Ribosomal protein L24.

Mol	Chain	Residues		Ate	AltConf	Trace			
7	12	63	Total	C	N 102	0	S	0	0
			529	337	103	86	3		

• Molecule 8 is a protein called Uncharacterized protein.

Mol	Chain	Residues		At	AltConf	Trace			
8	m2	119	Total 976	C 624	N 183	0 168	S 1	0	0

• Molecule 9 is a protein called Ribosomal protein L26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	02	134	Total 1116	C 700	N 226	0 187	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called uL15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	q2	147	Total 1162	С 734	N 239	0 185	${S \atop 4}$	0	0

• Molecule 11 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
11	r2	75	Total 610	C 378	N 130	O 99	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called uL4.

Mol	Chain	Residues		At	AltConf	Trace			
12	t2	362	Total 2884	C 1812	N 577	0 481	S 14	0	0

• Molecule 13 is a protein called eL31.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	u2	107	Total 889	$\begin{array}{c} \mathrm{C} \\ 560 \end{array}$	N 171	0 156	${S \over 2}$	0	0

• Molecule 14 is a protein called eL32.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	v2	128	Total 1054	$\begin{array}{c} \mathrm{C} \\ 667 \end{array}$	N 216	O 166	${ m S}{ m 5}$	0	0

• Molecule 15 is a protein called 60S RIBOSOMAL PROTEIN UL13.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	w2	199	Total 1630	C 1051	N 319	O 255	${f S}{5}$	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
w2	174	LEU	ILE	variant	UNP G5B8P1
w2	194	ASP	GLU	variant	UNP G5B8P1

• Molecule 16 is a protein called eL33.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	x2	109	Total 876	$\begin{array}{c} \mathrm{C} \\ 555 \end{array}$	N 174	0 143	$\frac{S}{4}$	0	0

• Molecule 17 is a protein called eL34.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	y2	114	Total 907	C 566	N 187	0 148	S 6	0	0

• Molecule 18 is a protein called Uncharacterized protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	92	244	Total 1869	C 1171	N 382	0 310	S 6	0	0

• Molecule 19 is a protein called uL29.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	A2	122	Total 1013	C 640	N 204	0 168	S 1	0	0

• Molecule 20 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	B2	102	Total 831	$\begin{array}{c} \mathrm{C} \\ 520 \end{array}$	N 176	0 130	${ m S}{ m 5}$	0	0

• Molecule 21 is a protein called Ribosomal protein L37.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	C2	86	Total 706	C 434	N 155	0 112	${ m S}{ m 5}$	0	0

• Molecule 22 is a protein called ribosomal protein eL39.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
22	D2	50	Total 444	C 281	N 98	0 64	S 1	0	0

• Molecule 23 is a protein called 60S RIBOSOMAL PROTEIN EL40.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
23	E2	52	Total 429	C 266	N 90	O 67	S 6	0	0

• Molecule 24 is a protein called eL42.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	F2	104	Total 852	C 533	N 174	O 139	S 6	0	0

• Molecule 25 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		At	AltConf	Trace			
25	G2	292	Total 2387	C 1509	N 437	0 427	S 14	0	0

• Molecule 26 is a protein called uL22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	H2	153	Total 1243	C 777	N 241	0 216	S 9	0	0

• Molecule 27 is a protein called ribosomal protein eL43.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
27	I2	91	Total 708	$\begin{array}{c} \mathrm{C} \\ 445 \end{array}$	N 136	O 120	${ m S} 7$	0	0

• Molecule 28 is a protein called Uncharacterized protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	J2	125	Total 1002	C 621	N 206	O 169	S 6	0	0

• Molecule 29 is a protein called 60S acidic ribosomal protein P0.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	K2	198	Total 1524	C 969	N 265	0 281	S 9	0	0

• Molecule 30 is a protein called Ribosomal protein L10 (Predicted).

Mol	Chain	Residues		At	oms			AltConf	Trace
30	L2	102	Total 834	C 527	N 161	0 137	S 9	0	0

• Molecule 31 is a protein called Uncharacterized protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	M2	156	Total 1183	C 738	N 221	0 219	${ m S}{ m 5}$	0	0

• Molecule 32 is a protein called Ribosomal_L6e_N domain-containing protein.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
32	R2	35	Total 285	C 179	N 59	O 45	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 33 is a protein called 60S RIBOSOMAL PROTEIN EL18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	S2	187	Total 1513	С 944	N 314	O 250	${ m S}{ m 5}$	0	0

• Molecule 34 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		At	AltConf	Trace			
34	Τ2	201	Total 1614	C 1039	N 301	O 273	S 1	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
T2	224	GLN	LYS	variant	UNP G1SKF7
T2	231	LYS	GLN	variant	UNP G1SKF7

• Molecule 35 is a protein called uL30.

Mol	Chain	Residues		Ate	AltConf	Trace			
35	U2	225	Total 1875	C 1205	N 358	O 303	${ m S} 9$	0	0

• Molecule 36 is a protein called 60S RIBOSOMAL PROTEIN EL8.

Mol	Chain	Residues		At	AltConf	Trace			
36	V2	241	Total 1932	C 1231	N 371	O 326	${S \atop 4}$	0	0

• Molecule 37 is a protein called Uncharacterized protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	W2	190	Total 1517	C 954	N 284	0 273	S 6	0	0

• Molecule 38 is a protein called Ribosomal protein L10 (Predicted).

Mol	Chain	Residues		At	oms			AltConf	Trace
38	X2	102	Total 822	C 524	N 158	0 136	$\frac{S}{4}$	0	0

• Molecule 39 is a protein called Ribosomal protein L11.

Mol	Chain	Residues		At	oms		AltConf	Trace	
39	Y2	169	Total 1354	C 855	N 252	0 241	S 6	0	0

• Molecule 40 is a protein called Ribosomal protein L14.

Mol	Chain	Residues		At	oms		AltConf	Trace	
40	02	138	Total 1138	С 727	N 221	O 183	${f S}$ 7	0	0

• Molecule 41 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		Ate	AltConf	Trace			
41	12	203	Total 1701	C 1072	N 359	O 266	$\frac{S}{4}$	0	0

• Molecule 42 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	22	135	Total 1107	С 714	N 208	0 182	${ m S} { m 3}$	0	0

• Molecule 43 is a protein called 60S RIBOSOMAL PROTEIN EL19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	32	180	Total 1509	C 933	N 328	O 239	S 9	0	0

• Molecule 44 is a protein called Ribosomal protein.

Mol	Chain	Residues		Ate		AltConf	Trace		
44	42	217	Total 1744	C 1114	N 314	O 307	${ m S} 9$	0	0

• Molecule 45 is a protein called uL3.

Mol	Chain	Residues		At	AltConf	Trace			
45	52	394	Total 3173	C 2020	N 597	0 543	S 13	0	0

• Molecule 46 is a protein called 60S RIBOSOMAL PROTEIN EL20.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
46	62	175	Total 1453	C 925	N 283	0 235	S 10	0	0

• Molecule 47 is a protein called eL21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
47	72	159	Total 1298	C 823	N 252	O 217	S 6	0	0

• Molecule 48 is a protein called Ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
48	82	99	Total 809	C 518	N 141	0 148	${S \over 2}$	0	0

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
82	32	GLY	ARG	variant	UNP G1TSG1
82	36	ALA	GLU	variant	UNP G1TSG1
82	39	PHE	SER	variant	UNP G1TSG1
82	54	GLY	ARG	variant	UNP G1TSG1
82	60	VAL	ALA	variant	UNP G1TSG1
82	97	ARG	HIS	variant	UNP G1TSG1

• Molecule 49 is a RNA chain called 18S RIBOSOMAL RNA.

Mol	Chain	Residues		I		AltConf	Trace		
49	K3	1801	Total 38409	C 17147	N 6888	O 12577	Р 1797	0	0

• Molecule 50 is a protein called 40S RIBOSOMAL PROTEIN ES30.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
50	s3	43	Total 351	C 215	N 80	O 55	S 1	0	0

• Molecule 51 is a protein called Ribosomal protein L30.

Mol	Chain	Residues		At	oms			AltConf	Trace
51	13	94	Total 733	C 464	N 130	0 133	${ m S}{ m 6}$	0	0

• Molecule 52 is a protein called 40S ribosomal protein S27a.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
52	Q3	63	Total 527	C 336	N 99	O 86	S 6	0	0

• Molecule 53 is a protein called Ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
53	G3	153	Total 1248	C 793	N 234	0 215	S 6	0	0

• Molecule 54 is a protein called ribosomal protein uS13.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	G5	137	Total 1140	С 714	N 231	0 194	S 1	0	0

• Molecule 55 is a protein called ribosomal protein RACK1.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
55	a3	313	Total 2437	C 1535	N 424	O 466	S 12	0	0

• Molecule 56 is a protein called Uncharacterized protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
56	a5	136	Total 1016	C 621	N 199	0 190	S 6	0	0

• Molecule 57 is a protein called ribosomal protein uS19.

Mol	Chain	Residues		At	oms			AltConf	Trace
57	A3	127	Total 1061	C 673	N 201	0 180	S 7	0	0

• Molecule 58 is a protein called Ribosomal protein S23.

Mol	Chain	Residues		At	oms			AltConf	Trace
58	T3	141	Total 1099	C 693	N 219	0 184	${ m S} { m 3}$	0	0

 $\bullet\,$ Molecule 59 is a protein called 40S_SA_C domain-containing protein.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
59	U3	208	Total 1645	C 1046	N 289	0 302	S 8	0	0

• Molecule 60 is a protein called 40S ribosomal protein S3a.

Mol	Chain	Residues		At	oms			AltConf	Trace
60	V3	213	Total 1730	C 1098	N 309	O 309	S 14	0	0

• Molecule 61 is a protein called S5 DRBM domain-containing protein.

Mol	Chain	Residues		At	Atoms					
61	W3	218	Total 1691	C 1094	N 289	O 298	S 10	0	0	

• Molecule 62 is a protein called 60s ribosomal protein 141.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
62	X3	23	Total 223	C 134	N 61	O 26	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 63 is a protein called Ribosomal protein S3.

Mol	Chain	Residues		At	AltConf	Trace			
63	Y3	227	Total 1765	C 1124	N 317	0 316	S 8	0	0

• Molecule 64 is a protein called 40S ribosomal protein S4,40S ribosomal protein S4.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
64	j3	262	Total 2075	C 1324	N 384	O 358	S 9	0	0

• Molecule 65 is a protein called Ribosomal protein S15a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
65	J5	129	Total 1034	C 659	N 193	0 176	S 6	0	0

• Molecule 66 is a protein called Ribosomal protein S5.

Mol	Chain	Residues		At	AltConf	Trace			
66	N3	191	Total 1509	C 943	N 286	0 273	S 7	0	0

• Molecule 67 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		At	oms			AltConf	Trace
67	b3	237	Total 1924	C 1200	N 387	O 330	${ m S} 7$	0	0

• Molecule 68 is a protein called Uncharacterized protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
68	B3	141	Total 1124	C 715	N 212	0 194	${ m S} { m 3}$	0	0

• Molecule 69 is a protein called ribosomal protein eS28.

Mol	Chain	Residues		Ate	oms		Atoms					
69	f3	64	Total 507	C 308	N 102	O 95	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0			

• Molecule 70 is a protein called ribosomal protein uS15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	F3	150	Total 1208	C 773	N 229	O 205	S 1	0	0

• Molecule 71 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		At	oms			AltConf	Trace
71	c3	206	Total 1687	C 1058	N 332	0 292	$\frac{S}{5}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
c3	47	ARG	GLY	variant	UNP G1TJW1

• Molecule 72 is a protein called Uncharacterized protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
72	C3	129	Total 1048	C 658	N 193	0 192	${ m S}{ m 5}$	0	0

• Molecule 73 is a protein called Ribosomal protein S9 (Predicted).

Mol	Chain	Residues		At	oms	AltConf	Trace		
73	d3	185	Total 1526	C 969	N 306	O 249	${ m S} { m 2}$	0	0

• Molecule 74 is a protein called 40S RIBOSOMAL PROTEIN ES21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
74	D3	83	Total 631	C 387	N 118	0 121	${f S}5$	0	0

There are 5 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D3	3	SER	ASN	variant	UNP A0A1Z5KTU7
D3	4	ASN	ASP	variant	UNP A0A1Z5KTU7
D3	33	PRO	GLN	variant	UNP A0A1Z5KTU7
D3	50	SER	PHE	variant	UNP A0A1Z5KTU7
D3	76	HIS	ASP	variant	UNP A0A1Z5KTU7

• Molecule 75 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	AltConf	Trace			
75	e3	124	Total 958	C 600	N 170	O 179	S 9	0	0

• Molecule 76 is a protein called S10_plectin domain-containing protein.

Mol	Chain	Residues		At	Atoms						
76	E3	98	Total 828	C 539	N 148	0 135	S 6	0	0		

• Molecule 77 is a protein called ribosomal protein uS14.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
77	H3	53	Total 445	C 278	N 90	0 72	${ m S}{ m 5}$	0	0

• Molecule 78 is a protein called Uncharacterized protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
78	H5	141	Total 1113	C 701	N 213	0 196	${ m S} { m 3}$	0	0

• Molecule 79 is a protein called 40S RIBOSOMAL PROTEIN ES7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
79	P3	189	Total 1522	C 969	N 280	0 272	S 1	0	0

• Molecule 80 is a protein called Ribosomal_S10 domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
80	I3	104	Total 822	C 514	N 156	0 148	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 81 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
81	I5	126	Total 1024	C 646	N 200	0 173	${ m S}{ m 5}$	0	0

• Molecule 82 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
82	L3	83	Total 651	C 408	N 121	0 115	S 7	0	0

• Molecule 83 is a protein called ribosomal protein eS25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
83	M3	75	Total 599	C 382	N 111	0 105	S 1	0	0

• Molecule 84 is a protein called 40S RIBOSOMAL PROTEIN ES26.

Mol	Chain	Residues	Atoms			AltConf	Trace		
84	O3	98	Total 782	C 486	N 161	0 130	${ m S}{ m 5}$	0	0

• Molecule 85 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues	Atoms			AltConf	Trace		
85	a7	210	Total 1702	C 1065	N 354	0 279	$\frac{S}{4}$	0	0

There are 9 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
a7	47	ALA	-	insertion	UNP G1TPV0
a7	48	PRO	-	insertion	UNP G1TPV0
a7	49	ARG	-	insertion	UNP G1TPV0
a7	50	PRO	-	insertion	UNP G1TPV0
a7	51	ALA	-	insertion	UNP G1TPV0
a7	52	ALA	-	insertion	UNP G1TPV0
a7	53	GLY	-	insertion	UNP G1TPV0
a7	54	PRO	-	insertion	UNP G1TPV0
a7	55	ILE	-	insertion	UNP G1TPV0

 $\bullet\,$ Molecule 86 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
86	C2	1	Total Zn 1 1	0
86	E2	1	Total Zn 1 1	0
86	F2	1	Total Zn 1 1	0
86	I2	1	Total Zn 1 1	0
86	H3	1	Total Zn 1 1	0
86	O3	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: INTERNAL RIBOSOME ENTRY SITE

(2471 A.2472 A.2472 A.2472 1/2485 (2488 (2488 (2489 (2481 (2482 (2482 (2499 (2490 (2491 (2491 (2491 (2491 (2512 (2513 (2513 (2549 (2554 (2554 (2554 (2554 (2554 (2555 (2554 (2555 (2556 (2557 (2556 (2556 (2556 (2556 (2557 (2556 (2556 (2557 (2556 (2557 (2558 (2558 (2558 (2558 (2558 (2558 (25619 (2558 (2558 (25619
C2627 U2531 U2531 C2653 C2653 C2653 C2653 C2653 C2653 C2653 C2653 C2655 C2656 C2655 C2655 C2655 C2657 C2776
C2770 C2778 A2788 A2796 C2796 C2796 C2796 C2796 C2796 C2796 C2796 C2814 A2876 C2865
U3606 U3606 U3615 U3615 U3615 U3615 C3817 C3816 C3817 C3817 C3817 C3818 C3817 C3822 C3823 C3825 C3825 C3825 C3825 C3825 C3825 C3825 C3825 C3856 A3642 A3642 A3645 A3655 C3856 C3859 C3850 C3850 C3850 C3850 C3850 <
(3753 (3755 (3755 (3755 (3755 (3756) (3756) (3756) (3756) (3756) (3766) (3775 (3775)
G3889 G3889 A33800 A3380 A33801 U3882 U38821 U3882 U38821 G3887 G3887 G3895 G3887 G3895 G3895 G3895 G3895 G3897 G3895 G3897 G3895 G3896 G3895 G3897 G3895 G3895 G389
G3983 C39843 C39845 C39845 C39855 C39856 C39856 C39856 C39857 C39856 C39859 C39856 C39859 C39895 C39859 C39991 C39991 C39995 C39992 C39991 C39993 C40010 C39995 C40012 C40012 C40012 C40012 C40013 C4013 C4014 C4014 C4015 C4015 C4016 C4016 C4017 C4017 C4018 C4018 C4012 C4019 C4015 C4012 C4028 C4013 C4028 C4028 C4028 C4028 C4028 C4028 C4028 C4038 C4038 C4038 C4038 C4038 C4038 C4038 C4038 C4038 C4038
C4043 C4045 C4045 A4046 A4055 A4055 C4061 C4065 A4065 C4065 A4065 A4065 A4065 C4065 A4065 A4065 A4056 C4063 A4057 C4064 A4055 A4056 C40051 C40052 C40051 C40051 C40052 C40051 C40051 C40051 C40051 C40051 C40051 C40052 C4105 C4105 C4105 C4105
A4127 A4127 A4127 C4140 C4140 C4140 C4140 C4141 C4141 C4141 C4141 C4141 C4141 C4141 C4141 C4141 C4141 C4141 C4141 C4165 C4255 C4555 C4555 C4555 C4555 C4555 C4555 C4555 C4555 C4555 C4555 C45555 C4555 C4555 C45555 C45555 C45555 C455555 C45555 C455555 C455555
04 04 14265 14265 14265 14266 14256 14256 14256 14256 14256 14256 14256 14256 14256 14256 14250 14250 14230 14230 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14335 14336 14335 14336 14336 14336 14336 14338 14336 14386 14386 14386
G4331 G4332 G4332 G4333 A4336 G4333 C4401 C4402 C4413 C4432 C4442 C4443 C4443 C4443 C4446 C4443 C4446 C4443 C4447 C4448 C4448 C4452 C4451 C4448 C4476 C4448 C4476 C4448 C4476 C4486 C4476 C4452 C4476 C4452 C4476 C4452 C4476 C4452 C4452 C4452 C4452 C4452 C4452 C4452 C4452 C4452 C4529 C4529 C4529
64545 A4545 A4556 64550 64550 64550 64550 64550 64550 64571 94575 64570 64570 94577 64573 64573 64573 64575 64575 64575 64575 64560 94556 94558 94559 94559 94559 94556 94556 94556 94556 94558 94558 94558 94558 94558 94558 94558 94558 94558 94558 94558 94558 94558 94558 94571 94572 94558 94572 </td
U4709 U4709 C4715 C4715 C4715 C4716 C4715 C4723 C4723 C4723 C4723 C4723 C4723 C4723 C4773 C4733 C4773 C4733 C4773 C4733 C4774 C4756 C4756 C4756 C4775 C4776 C4776 C4776 C4776 C4776 C4776 C4776 C4776 C4776 C4776 C4776 C4866 C4866 C4866 C4866 C4776 C4776 C4866 C4866 C4866
649.68 648.68 648.71 648.77 648.77 648.77 648.77 648.77 648.77 648.77 648.77 648.77 648.77 648.77 648.77 648.77 648.77 648.76 648.87 648.84 648.94 649.05 649.95 649.96 649.95 649.91 649.91 649.91 649.91 649.91 649.91 649.91 649.92 649.91 649.93 649.91 649.94 649.91 649.93 649.91 649.94 649.91 649.95 649.93 649.94 649.94 649.94 649.94 649.95 649.95 649.94 649.94 649.95 649.95 649.95 649.95 649.95 649.95 649.95 649.95 649.95
PROTEIN DATA BANK

• Molecule 9: Ribosomal protein L26

Chain o2:	99%
M N108 0112 0113 0114 K134	
• Molecule 10: uL15	
Chain q2:	100%
P2 N93 K94 195 A148	
• Molecule 11: 60S ribosomal protein	L29
Chain r2:	99% .
A2 T8 T21 121 825 826 825 826 861 862 868 868 868 868 868 868 868 868 868	
• Molecule 12: uL4	
Chain t2:	100%
12 1306 1308 1008 1	
• Molecule 13: eL31	
Chain u2:	100%
M18 M54 E94 E124	
• Molecule 14: eL32	
Chain v2:	99%
<mark>42</mark> 1130 ●	

• Molecule 15: 60S RIBOSOMAL PROTEIN UL13

Chain w2: 99%
• Molecule 16: eL33
Chain x2: 99%
83 11 11 11 11 10 11 10 11 10 10 11 10 10
• Molecule 17: eL34
Chain y2: 100%
V2 A84 K855 A84 C114 C114 C114 C114 C114 C114 C114 C1
• Molecule 18: Uncharacterized protein
Chain 92: 99% .
22 N 15 N 16
• Molecule 19: uL29
Chain A2:
K3 E96 A123 A123
• Molecule 20: 60S ribosomal protein L36
Chain B2: 100%
A2 111 111 111 111 111 111 111 1
• Molecule 21: Ribosomal protein L37
Chain C2: 100%
There are no outlier residues recorded for this chain.

• Molecule 22: ribosomal protein eL39

Chain D2:	98% .
R 83	
• Molecule 23: 60S RIBOSOMAL PROT	ΓΕΙΝ EL40
Chain E2:	98%
R106 K128	
• Molecule 24: eL42	
Chain F2:	99%
V2 832 133 102 4102 4102	
• Molecule 25: 60S ribosomal protein L5)
Chain G2:	99%
F3 G87 8134 4151 4151 4265 12	
• Molecule 26: uL22	
Chain H2:	100%
There are no outlier residues recorded for	r this chain.
• Molecule 27: ribosomal protein eL43	
Chain I2:	100%
A2 191 192 192	
• Molecule 28: Uncharacterized protein	
Chain J2:	100%
S2 814 135 135 135 135	

 \bullet Molecule 29: 60S acidic ribosomal protein P0

• Molecule 34: 60S ribosomal protein L6	5
Chain T2:	99%
V91 L92 A93 V95 V95 V95 V25 K222 K222 K222 K222 K222 K223 K233	E239 E241 K240 E241 E244 F291
• Molecule 35: uL30	
Chain U2:	99%
N23 R46 K220 N247 N247	
• Molecule 36: 60S RIBOSOMAL PROT	FEIN EL8
Chain V2:	100%
K26 V27 L114 L115 A122 A122 A122 A122 A122 G126 G126 G126 C126 C126 C126 C126 C126 C126 C126 C	T263 K264 C266 C2666 C266 C2666 C266 C266 C266 C266 C266 C266 C2666 C266 C266 C2666 C266 C26 C2
• Molecule 37: Uncharacterized protein	
Chain W2:	98% .
M12 833 H5 1 H5 1 A2 01 A2 01 A2 01	
• Molecule 38: Ribosomal protein L10 (1	Predicted)
Chain X2:	100%
1113 6114 AD11 S214 S214	
• Molecule 39: Ribosomal protein L11	
Chain Y2:	100%
89 8122 0177	
• Molecule 40: Ribosomal protein L14	
Chain 02:	99% •

• Molecule 41: Ribosomal protein L15

Chain 12:		100%		•	
G2 Y30 Q32 S34 R204 R204					
• Molecule 42: 60S ribe	osomal protein L2	7			
Chain 22:		99%			
¹³³ 133 133 133 133 133					
• Molecule 43: 60S RIE	BOSOMAL PROT	TEIN EL19			
Chain 32:		99%			
S2 M130 A161 A161 K165 K165 A165 A165 A165 A165	K171 L177 Q178 A179 K180 K181				
• Molecule 44: Riboson	nal protein				
Chain 42:	75%	98%	- .		
M1 82 83 85 85 85 86 71 19 110 110 113 113 113	114 R15 E16 V17 L18 H19 K24 K24 K24 K24 L24	q35 136 537 L38 K39 Y41 P42 P43 P43	K45 R48 F49 S50 G51 T52 V53 K54 L55	K56 S57 T58 P59 P61 P61 K62 F63	S64 Ve5 C66 V67 L68 L68 L68 D70 D70
972 H73 C74 D75 E76 A77 K78 K78 K78 K78 V80 V80 V80 V80 V81 V81 V81 V82 V82 V81 V82 V82 V82 V82 V82 V82 V83 V82 V82 V82 V82 V82 V82 V82 V82 V82 V82	M85 187 187 888 888 489 193 K91 K92 L93 N94	K95 N96 K97 K97 K98 K98 L99 K100 K101 K102 L103 A104	K105 K106 Y107 A107 A109 F110 A112 A112 S113 S113 S113	L116 L116 1117 P120 P121 G127	A131 G132 K133 F134 P135 S136 L137 L137 L138
T139 H140 N141 N144 V145 V145 V148 V148 V149 V151 V151 V152	1155 K156 F157 Q158 Q158 M159 K161 V162 K161 V162 C164	L165 A166 V167 A168 V169 V169 V172 K173 M174 T175	D176	V187 V187 F189 F189 V191 S192 L193	L194 K195 K196 Q199 N200 V201 R202
A203 F204 Y205 Q211 Q214 R215 L216 Y217					
• Molecule 45: uL3					
Chain 52:		99%			

• Molecule 46: 60S RIBOSOMAL PROTEIN EL20

Chain 62:	98%		i.
K2 P20 K21 K138 H163 F176			
• Molecule 47: eL21			
Chain 72:	98%	·	н. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
12 P18 K81 R81 R81 R81 A160			
• Molecule 48: Ribosomal J	protein L22		
Chain 82:	100%		
017 NG66 F115			
• Molecule 49: 18S RIBOS	OMAL RNA		
Chain K3:	55%	43%	
U1 A2 A2 C4 C4 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C30 C35 C33 C33 C35 C35 C35 C34 C33 C37 C37 C44 C44 C44 C44 C45 C48 C46 C46 C46 C46 C46 C46 C46 C46 C46 C46	662 065 066 066 066 069 070 070 077	CT3 CT4 CT4 CT6 NT7 AT7 AT7 AT9
G80 U81 082 082 088 088 088 088 088 088	C106 M111 0112 0113 0113 0113 0113 0113 0128 0128 0128 0128 0128 0128 0128 0128	C135 C135 C135 C135 C136 C138 C138 C138 C138 C138 C138 C138 C143 C143 C143	U144 A147 A148 A149 A150 C151 C151 C152
1154 0155 0155 0156 0160 0160 0170 0173 0176 0176 0176 0176 0176 0176 0176 0176 0176 0176 0176	C179 A181 A181 C182 C182 C183 C188 C188 C199 C199 C199 C198 C199 C198 C198	C201 C202 C203 C203 C204 C204 C205 C205 C206 C206 C206 C206 C206 C206 C206 C206	C211 C212 C213 C214 C216 C216 A217 A217 A217
C225 A226 U227 A228 A230 A231 A231 A231 A235 A235 A235 C234 C234 C238 C238 C238 C238 C238 C238 C238 C238	C243 A244 A244 C245 C246 C247 C248 C248 C248 C248 C270 C270 C271 C271 C274 C273 C274 C275 C274 C275 C274 C277 C277 C277 C277 C277 C277 C278 C276 C276 C276 C276 C276 C276 C276 C276	C279 C281 C281 C281 C281 C282 C283 C283 U285 U285 C288 C288 C288	U290 C291 A292 A297 A297 A297 A297 C298 A302 C303 C303 C305 C306
q307 4307 q308 4308 q309 9308 q301 6319 q311 6313 q311 4313 q312 4313 q312 4313 q312 4313 q312 4313 q313 4313 q314 4313 q315 6321 q322 6323 q323 6323 q324 6323 q325 6322	0327 0327 0329 0329 0329 0332 0335 0333 0335 0333 0335 0334 0335 0334 0335 0334 0335 0334 0335 0334 0341 0341 0342 0342 0341 0341 0345 0342 0346 0341	U352 U355 C356 C357 C356 C361 A363 A364 A365 A365 C365 C365 C365 U366	U368 ← C369 ← 6370 ← 4371 ← 0373 C379 C379 C379 C379 C379 C379 C379 C379 C379 C379 C379 C379 C379 C379 C379 C379 C379 C376 C377 C376 C377 C37

• Molecule 53: Ribosomal protein S11

• Molecule 57: ribosomal protein uS19

• Molecule 61: S5 DRBM domain-containing protein

Chain j3:

100%

• Molecule 72: Uncharacterized protein

D3 T4 T6 T7 T6 77 17 022 M23 M23 M23 M23 M24 F41 E42 K43 K43 K46 K46	T5 1 F5 2 F5 3 F5 4 F5 6 F5 6 F5 6 F5 6 F5 6 F5 6 G6 6 G6 6 G6 6 G6 7 F5 6 G6 7 F5 8 G8 6 G8 6 G8 6 G8 6 G8 6 G8 7 F3 8 G8 7 F3 8 G8 6 G8 6 G8 7 G8 7	K108 E109 R110
K111 M112 K115 K115 K115 0119 G119 A121 A122 A122 A122 A122 A125 G126 G126		
• Molecule 82: 40S ribosomal pr	otein S27	
Chain L3:	100%	
P2 L3 A4 H9 H9 P10 F14 E15 K16 K13 K13 K13 K13 K13 K13 K13 K13 K13 K13	K36 K36 C40 K42 K42 K42 C46 C56 C56 C56 C58 C58 C58 C58 C58 C58 C58 C58	
• Molecule 83: ribosomal protein	eS25	
Chain M3:	81%	
R41 C42 K43 K43 K45 K45 K46 C49 F50 F50 F51 K53 F55 F55 F55 F55 F55 F55 F55 F55 F55 F	K60 E61 P63 P63 P63 P65 P65 F65 F75 F75 F75 F75 F75 F75 F75 F75 F75 F7	
1108 Y109 K111 N112 K111 K113 G115		
• Molecule 84: 40S RIBOSOMA	L PROTEIN ES26	
Chain O3: 32%	100%	
12 M1 12 121 236 239 836 836 846 847 847	V50 153 S57 S57 S57 V58 A61 V63 A61 V63 A61 V63 A61 V63 A61 V63 A61 V63 A61 V63 A61 V63 A61 A61 A61 A61 A61 A61 A61 A61	
• Molecule 85: 60S ribosomal pr	otein L13	
Chain a7:	98%	
A2 H15 D17 A21 V22 V22 A23 A23 A23 A23 A23 A23 A23 A23 A23 A	N159 E164 A202 V207 K210 K211	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	42135	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON II $(4k \ge 4k)$	Depositor
Maximum map value	0.123	Depositor
Minimum map value	-0.073	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.008	Depositor
Recommended contour level	0.018	Depositor
Map size (Å)	396.0, 396.0, 396.0	wwPDB
Map dimensions	360, 360, 360	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.1, 1.1, 1.1	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	E1	0.38	0/3579	1.07	19/5560~(0.3%)	
2	e2	0.77	2/91668~(0.0%)	1.07	279/143010~(0.2%)	
3	h2	0.78	0/3701	1.03	8/5766~(0.1%)	
4	d2	0.69	0/2858	0.95	2/4455~(0.0%)	
5	p2	0.41	0/574	0.55	0/761	
6	k2	0.44	0/993	0.60	0/1332	
7	12	0.39	0/542	0.55	0/720	
8	m2	0.37	0/993	0.51	0/1334	
9	o2	0.41	0/1133	0.54	0/1504	
10	q2	0.50	0/1191	0.59	0/1590	
11	r2	0.35	0/620	0.55	0/818	
12	t2	0.43	0/2938	0.56	0/3946	
13	u2	0.43	0/904	0.56	0/1216	
14	v2	0.45	0/1072	0.55	0/1429	
15	w2	0.46	0/1662	0.56	0/2222	
16	x2	0.49	0/895	0.63	1/1198~(0.1%)	
17	y2	0.49	0/917	0.60	0/1220	
18	92	0.46	0/1907	0.58	0/2556	
19	A2	0.37	0/1021	0.51	0/1348	
20	B2	0.36	0/842	0.51	0/1112	
21	C2	0.51	0/721	0.57	0/952	
22	D2	0.42	0/454	0.58	0/599	
23	E2	0.39	0/435	0.52	0/575	
24	F2	0.43	0/865	0.60	0/1140	
25	G2	0.41	0/2433	0.53	0/3257	
26	H2	0.50	0/1269	0.58	0/1700	
27	I2	0.45	0/718	0.57	0/953	
28	J2	0.42	$0/1\overline{018}$	0.55	$0/1\overline{364}$	
29	K2	0.30	0/1548	0.57	0/2088	
30	L2	0.50	0/853	0.54	$0/1\overline{137}$	
31	M2	0.28	$0/1\overline{198}$	0.59	$0/1\overline{611}$	
32	R2	0.38	$0/\overline{292}$	0.51	0/388	

Mal	Mol Chain _{RN}		Bond lengths		Bond angles		
			# Z > 5	RMSZ	# Z > 5		
33	S2	0.47	0/1537	0.60	0/2052		
34	Τ2	0.37	0/1646	0.60	0/2213		
35	U2	0.49	0/1911	0.59	0/2549		
36	V2	0.36	0/1965	0.52	0/2644		
37	W2	0.40	0/1536	0.55	0/2063		
38	X2	0.43	0/841	0.55	0/1123		
39	Y2	0.35	0/1377	0.55	0/1841		
40	02	0.39	0/1159	0.55	0/1547		
41	12	0.49	0/1746	0.57	0/2338		
42	22	0.40	0/1130	0.54	0/1507		
43	32	0.38	0/1525	0.54	0/2013		
44	42	0.30	0/1772	0.62	1/2375~(0.0%)		
45	52	0.46	0/3241	0.57	1/4339~(0.0%)		
46	62	0.44	0/1493	0.57	1/2003~(0.0%)		
47	72	0.46	0/1326	0.59	0/1770		
48	82	0.36	0/823	0.54	0/1103		
49	K3	0.44	0/42945	1.09	188/66942~(0.3%)		
50	s3	0.28	0/354	0.55	0/462		
51	13	0.38	0/743	0.56	0/995		
52	Q3	0.32	0/538	0.65	1/713~(0.1%)		
53	G3	0.31	0/1269	0.57	0/1696		
54	G5	0.30	0/1158	0.58	0/1548		
55	a3	0.30	0/2494	0.55	0/3394		
56	a5	0.30	0/1029	0.55	0/1380		
57	A3	0.33	0/1080	0.58	1/1437~(0.1%)		
58	T3	0.32	0/1117	0.54	0/1490		
59	U3	0.30	0/1682	0.52	0/2286		
60	V3	0.33	0/1757	0.58	0/2350		
61	W3	0.32	0/1727	0.55	0/2332		
62	X3	0.32	0/224	0.48	0/284		
63	Y3	0.31	0/1793	0.57	0/2412		
64	j3	0.29	0/2117	0.54	0/2846		
65	J5	1.97	6/1051~(0.6%)	1.69	8/1406~(0.6%)		
66	N3	0.29	0/1531	0.56	0/2059		
67	b3	0.28	$0/194\overline{7}$	0.54	$0/259\overline{0}$		
68	B3	0.29	0/1142	0.56	0/1528		
69	f3	0.29	0/509	0.58	0/680		
70	F3	0.31	$0/1\overline{232}$	0.56	$1/1656\ (0.1\%)$		
71	c3	0.31	$0/1\overline{716}$	0.56	$0/2\overline{287}$		
72	C3	0.33	$0/106\overline{1}$	0.61	$0/142\overline{1}$		
73	d3	0.47	$1/15\overline{51} \ (0.1\%)$	0.72	$3/20\overline{69}~(0.1\%)$		
74	D3	0.31	0/639	0.51	0/855		
75	e3	0.28	$0/96\overline{8}$	0.56	$0/129\overline{6}$		

Mal	Mol Chain		Bond lengths		Bond angles
			# Z > 5	RMSZ	# Z > 5
76	E3	0.29	0/852	0.52	0/1147
77	H3	0.30	0/455	0.51	0/603
78	H5	0.28	0/1133	0.49	0/1517
79	P3	0.30	0/1545	0.59	0/2068
80	I3	0.28	0/832	0.58	0/1117
81	I5	0.28	0/1041	0.54	0/1382
82	L3	0.28	0/665	0.51	0/891
83	M3	0.28	0/605	0.54	0/810
84	O3	0.35	0/795	0.56	0/1065
85	a7	0.38	0/1733	0.55	0/2316
All	All	0.59	9/241872~(0.0%)	0.93	514/355671~(0.1%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
9	o2	0	1
11	r2	0	1
24	F2	0	1
25	G2	0	2
30	L2	0	1
31	M2	0	2
34	T2	0	2
35	U2	0	2
37	W2	0	1
42	22	0	1
44	42	0	2
45	52	0	2
46	62	0	1
47	72	0	2
50	s3	0	1
52	Q3	0	1
53	G3	0	1
54	G5	0	1
56	a5	0	1
59	U3	0	1
72	C3	0	1
73	d3	0	1
74	D3	0	1
75	e3	0	4

Continued from previous page...

Mol	Chain	#Chirality outliers	#Planarity outliers
79	P3	0	3
80	I3	0	1
85	a7	0	2
All	All	0	40

The worst 5 of 9 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
65	J5	130	PHE	CD2-CE2	36.12	2.11	1.39
65	J5	130	PHE	CD1-CE1	35.40	2.10	1.39
65	J5	130	PHE	CE2-CZ	-22.43	0.94	1.37
65	J5	130	PHE	CE1-CZ	-22.30	0.94	1.37
65	J5	130	PHE	CG-CD1	-14.61	1.16	1.38

The worst 5 of 514 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
65	J5	130	PHE	CE1-CZ-CE2	-28.57	68.58	120.00
65	J5	130	PHE	CD1-CG-CD2	-23.15	88.21	118.30
65	J5	130	PHE	CG-CD2-CE2	-22.61	95.93	120.80
65	J5	130	PHE	CB-CG-CD2	22.19	136.33	120.80
65	J5	130	PHE	CG-CD1-CE1	-22.03	96.57	120.80

There are no chirality outliers.

5	of 10	nlananitar	antliana		listed	halarr
0	01.40	planamy	outners	are	nstea	below:

Mol	Chain	\mathbf{Res}	Type	Group
24	F2	32	SER	Peptide
25	G2	265	ARG	Peptide
25	G2	267	ASN	Peptide
9	o2	115	ARG	Peptide
11	r2	51	LYS	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed Favoure		Allowed	Outliers	Perce	ntiles
5	p2	67/69~(97%)	59 (88%)	8 (12%)	0	100	100
6	k2	129/131~(98%)	111 (86%)	18 (14%)	0	100	100
7	12	61/63~(97%)	55 (90%)	6~(10%)	0	100	100
8	m2	117/119~(98%)	105 (90%)	12~(10%)	0	100	100
9	02	132/134~(98%)	112 (85%)	20~(15%)	0	100	100
10	q2	145/147~(99%)	119 (82%)	26~(18%)	0	100	100
11	r2	73/75~(97%)	57 (78%)	16~(22%)	0	100	100
12	t2	360/362~(99%)	299 (83%)	60 (17%)	1 (0%)	41	75
13	u2	105/107~(98%)	89 (85%)	16 (15%)	0	100	100
14	v2	126/128~(98%)	105 (83%)	21 (17%)	0	100	100
15	w2	197/199~(99%)	177 (90%)	20 (10%)	0	100	100
16	x2	107/109~(98%)	89 (83%)	18 (17%)	0	100	100
17	y2	112/114 (98%)	101 (90%)	11 (10%)	0	100	100
18	92	242/244~(99%)	210 (87%)	31 (13%)	1 (0%)	34	71
19	A2	120/122~(98%)	109 (91%)	11 (9%)	0	100	100
20	B2	100/102~(98%)	89 (89%)	11 (11%)	0	100	100
21	C2	84/86~(98%)	69 (82%)	15~(18%)	0	100	100
22	D2	48/50~(96%)	42 (88%)	6 (12%)	0	100	100
23	E2	50/52~(96%)	45 (90%)	5 (10%)	0	100	100
24	F2	102/104~(98%)	91 (89%)	11 (11%)	0	100	100
25	G2	290/292~(99%)	250 (86%)	40 (14%)	0	100	100
26	H2	151/153~(99%)	130 (86%)	21 (14%)	0	100	100
27	I2	89/91~(98%)	81 (91%)	8 (9%)	0	100	100
28	J2	123/125~(98%)	106 (86%)	17 (14%)	0	100	100
29	K2	196/198~(99%)	157 (80%)	39~(20%)	0	100	100

<i>a</i> 1	e		
Continued	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
30	L2	100/102~(98%)	87 (87%)	13~(13%)	0	100	100
31	M2	150/163~(92%)	106 (71%)	43~(29%)	1 (1%)	22	61
32	R2	33/35~(94%)	25 (76%)	8 (24%)	0	100	100
33	S2	185/187~(99%)	153 (83%)	32 (17%)	0	100	100
34	Τ2	199/201~(99%)	155 (78%)	43 (22%)	1 (0%)	29	68
35	U2	223/225~(99%)	203 (91%)	20 (9%)	0	100	100
36	V2	239/241~(99%)	225 (94%)	14 (6%)	0	100	100
37	W2	188/190~(99%)	174 (93%)	14 (7%)	0	100	100
38	X2	100/102~(98%)	80 (80%)	20 (20%)	0	100	100
39	Y2	167/169~(99%)	147 (88%)	20 (12%)	0	100	100
40	02	136/138~(99%)	120 (88%)	16 (12%)	0	100	100
41	12	201/203~(99%)	175 (87%)	26 (13%)	0	100	100
42	22	133/135~(98%)	112 (84%)	21 (16%)	0	100	100
43	32	178/180~(99%)	172 (97%)	6 (3%)	0	100	100
44	42	215/217~(99%)	152 (71%)	62 (29%)	1 (0%)	29	68
45	52	392/394~(100%)	338 (86%)	53 (14%)	1 (0%)	41	75
46	62	173/175~(99%)	157 (91%)	16 (9%)	0	100	100
47	72	157/159~(99%)	127 (81%)	29 (18%)	1 (1%)	25	64
48	82	97/99~(98%)	92 (95%)	5 (5%)	0	100	100
50	s3	41/43~(95%)	30 (73%)	11 (27%)	0	100	100
51	13	92/94~(98%)	87 (95%)	5 (5%)	0	100	100
52	Q3	59/188~(31%)	48 (81%)	11 (19%)	0	100	100
53	G3	151/153~(99%)	116 (77%)	35 (23%)	0	100	100
54	G5	135/137~(98%)	114 (84%)	19 (14%)	2 (2%)	10	47
55	a3	311/313~(99%)	255 (82%)	56 (18%)	0	100	100
56	a5	134/136~(98%)	109 (81%)	25 (19%)	0	100	100
57	A3	125/127~(98%)	107 (86%)	18 (14%)	0	100	100
58	Т3	139/141 (99%)	115 (83%)	24 (17%)	0	100	100
59	U3	206/208~(99%)	185 (90%)	21 (10%)	0	100	100
60	V3	211/213~(99%)	179 (85%)	32 (15%)	0	100	100
61	W3	216/218~(99%)	187 (87%)	29 (13%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
62	X3	21/23~(91%)	21 (100%)	0	0	100	100
63	Y3	225/227~(99%)	195 (87%)	30~(13%)	0	100	100
64	j3	260/262~(99%)	215 (83%)	44 (17%)	1 (0%)	34	71
65	J5	127/129~(98%)	113 (89%)	14 (11%)	0	100	100
66	N3	189/191~(99%)	165 (87%)	24 (13%)	0	100	100
67	b3	235/237~(99%)	195 (83%)	40 (17%)	0	100	100
68	B3	139/141~(99%)	122 (88%)	17 (12%)	0	100	100
69	f3	62/64~(97%)	50 (81%)	12 (19%)	0	100	100
70	F3	148/150~(99%)	123 (83%)	25 (17%)	0	100	100
71	c3	204/206~(99%)	176 (86%)	28 (14%)	0	100	100
72	C3	127/129~(98%)	102 (80%)	25~(20%)	0	100	100
73	d3	183/185~(99%)	154 (84%)	29 (16%)	0	100	100
74	D3	81/83~(98%)	72 (89%)	9 (11%)	0	100	100
75	e3	122/124~(98%)	95 (78%)	23~(19%)	4 (3%)	4	31
76	E3	96/98~(98%)	80~(83%)	15~(16%)	1 (1%)	15	55
77	H3	51/53~(96%)	47 (92%)	4 (8%)	0	100	100
78	H5	139/141~(99%)	122 (88%)	16~(12%)	1 (1%)	22	61
79	P3	187/189~(99%)	158 (84%)	29~(16%)	0	100	100
80	I3	102/104~(98%)	81 (79%)	21 (21%)	0	100	100
81	I5	124/126~(98%)	111 (90%)	13 (10%)	0	100	100
82	L3	81/83~(98%)	67 (83%)	14 (17%)	0	100	100
83	M3	73/75~(97%)	65 (89%)	8 (11%)	0	100	100
84	O3	96/98~(98%)	78 (81%)	18 (19%)	0	100	100
85	a7	$\overline{208/210} \ (99\%)$	179 (86%)	27 (13%)	2 (1%)	15	55
All	All	$11\overline{692/11990}$ (98%)	9975~(85%)	1699 (14%)	18 (0%)	50	79

Continued from previous page...

5 of 18 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
18	92	15	VAL
45	52	246	ARG
54	G5	101	ASN
64	j3	131	VAL
75	e3	117	GLU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
5	p2	64/64~(100%)	63~(98%)	1 (2%)	62	83
6	k2	101/101~(100%)	101~(100%)	0	100	100
7	12	55/55~(100%)	55 (100%)	0	100	100
8	m2	107/107~(100%)	106 (99%)	1 (1%)	78	90
9	o2	124/124~(100%)	124 (100%)	0	100	100
10	q2	119/119~(100%)	119 (100%)	0	100	100
11	r2	62/62~(100%)	62 (100%)	0	100	100
12	t2	302/302~(100%)	302 (100%)	0	100	100
13	u2	98/98~(100%)	98 (100%)	0	100	100
14	v2	114/114 (100%)	113 (99%)	1 (1%)	78	90
15	w2	171/171~(100%)	170 (99%)	1 (1%)	86	94
16	x2	88/88 (100%)	88 (100%)	0	100	100
17	y2	98/98~(100%)	98 (100%)	0	100	100
18	92	187/187~(100%)	186 (100%)	1 (0%)	88	95
19	A2	109/109~(100%)	109 (100%)	0	100	100
20	B2	86/86~(100%)	86 (100%)	0	100	100
21	C2	73/73~(100%)	73 (100%)	0	100	100
22	D2	47/47~(100%)	46 (98%)	1 (2%)	53	78
23	E2	48/48 (100%)	47 (98%)	1 (2%)	53	78
24	F2	92/92~(100%)	92 (100%)	0	100	100
25	G2	247/247~(100%)	246 (100%)	1 (0%)	91	97
26	H2	134/134~(100%)	134 (100%)	0	100	100
27	I2	74/74~(100%)	74 (100%)	0	100	100
28	J2	109/109~(100%)	109 (100%)	0	100	100
29	K2	166/166~(100%)	166 (100%)	0	100	100
30	L2	89/89~(100%)	88 (99%)	1 (1%)	73	88

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
31	M2	131/136~(96%)	130~(99%)	1 (1%)	81	91
32	R2	29/29~(100%)	29~(100%)	0	100	100
33	S2	164/164~(100%)	164 (100%)	0	100	100
34	T2	180/180~(100%)	180 (100%)	0	100	100
35	U2	196/196~(100%)	196 (100%)	0	100	100
36	V2	205/205~(100%)	205 (100%)	0	100	100
37	W2	169/169~(100%)	167 (99%)	2 (1%)	71	87
38	X2	85/85~(100%)	85 (100%)	0	100	100
39	Y2	142/142~(100%)	142 (100%)	0	100	100
40	02	117/117~(100%)	116 (99%)	1 (1%)	78	90
41	12	171/171~(100%)	170 (99%)	1 (1%)	86	94
42	22	117/117~(100%)	117 (100%)	0	100	100
43	32	159/159~(100%)	158 (99%)	1 (1%)	86	94
44	42	196/196~(100%)	196 (100%)	0	100	100
45	52	342/342~(100%)	340 (99%)	2 (1%)	86	94
46	62	156/156~(100%)	155 (99%)	1 (1%)	86	94
47	72	139/139~(100%)	139 (100%)	0	100	100
48	82	89/89~(100%)	89 (100%)	0	100	100
50	s3	35/35~(100%)	35 (100%)	0	100	100
51	13	80/80 (100%)	80 (100%)	0	100	100
52	Q3	59/154~(38%)	59 (100%)	0	100	100
53	G3	137/137~(100%)	135 (98%)	2 (2%)	65	84
54	G5	119/119~(100%)	118 (99%)	1 (1%)	81	91
55	a3	272/272~(100%)	271 (100%)	1 (0%)	91	97
56	a5	106/106~(100%)	106 (100%)	0	100	100
57	A3	116/116~(100%)	116 (100%)	0	100	100
58	Τ3	113/113 (100%)	112 (99%)	1 (1%)	78	90
59	U3	175/175~(100%)	175 (100%)	0	100	100
60	V3	194/194~(100%)	193 (100%)	1 (0%)	88	95
61	W3	184/184 (100%)	184 (100%)	0	100	100
62	X3	22/22~(100%)	22 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
63	Y3	190/190~(100%)	188 (99%)	2(1%)	73	88
64	j3	224/224~(100%)	224 (100%)	0	100	100
65	J5	112/112 (100%)	110 (98%)	2 (2%)	59	81
66	N3	161/161~(100%)	159 (99%)	2 (1%)	71	87
67	b3	207/207~(100%)	206 (100%)	1 (0%)	88	95
68	B3	117/117~(100%)	116 (99%)	1 (1%)	78	90
69	f3	57/57~(100%)	57~(100%)	0	100	100
70	F3	130/130~(100%)	130 (100%)	0	100	100
71	c3	178/178 (100%)	178 (100%)	0	100	100
72	C3	117/117~(100%)	117 (100%)	0	100	100
73	d3	161/161 (100%)	161 (100%)	0	100	100
74	D3	68/68~(100%)	68 (100%)	0	100	100
75	e3	104/104~(100%)	103~(99%)	1 (1%)	76	88
76	E3	89/89~(100%)	89 (100%)	0	100	100
77	H3	47/47~(100%)	47 (100%)	0	100	100
78	H5	113/113~(100%)	113 (100%)	0	100	100
79	P3	169/169~(100%)	169~(100%)	0	100	100
80	I3	94/94~(100%)	92~(98%)	2(2%)	53	78
81	I5	108/108~(100%)	108 (100%)	0	100	100
82	L3	75/75~(100%)	75~(100%)	0	100	100
83	M3	66/66~(100%)	66 (100%)	0	100	100
84	O3	85/85~(100%)	85 (100%)	0	100	100
85	a7	175/175~(100%)	175 (100%)	0	100	100
All	All	$10210/10310\ (99\%)$	10175 (100%)	35~(0%)	92	97

Continued from previous page...

5 of 35 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
66	N3	81	ARG
66	N3	118	ASN
75	e3	36	ARG
40	02	125	ASN
37	W2	135	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 57 such sidechains are listed below:

Mol	Chain	Res	Type
46	62	77	ASN
80	I3	92	HIS
53	G3	112	HIS
79	P3	314	GLN
70	F3	86	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	E1	152/153~(99%)	107~(70%)	13 (8%)
2	e2	3816/3825~(99%)	1178~(30%)	0
3	h2	155/156~(99%)	46 (29%)	0
4	d2	119/120~(99%)	21 (17%)	0
49	K3	1797/1801~(99%)	767~(42%)	24 (1%)
All	All	6039/6055~(99%)	2119 (35%)	37~(0%)

5 of 2119 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	E1	6278	А
1	E1	6279	А
1	E1	6281	С
1	E1	6282	А
1	E1	6283	U

5 of 37 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
49	K3	919	А
49	K3	1579	А
49	K3	1248	U
49	K3	1344	А
1	E1	6393	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 6 ligands modelled in this entry, 6 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-11590. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 180

Y Index: 180

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 179

Y Index: 158

Z Index: 212

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.018. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1960 nm^3 ; this corresponds to an approximate mass of 1770 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.278 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-11590 and PDB model 7A01. Per-residue inclusion information can be found in section 3 on page 21.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.018 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.018).

9.4 Atom inclusion (i)

At the recommended contour level, 73% of all backbone atoms, 72% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.018) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.7227	0.3700
02	0.8764	0.4520
12	0.8605	0.4890
13	0.8366	0.4510
22	0.8583	0.4430
32	0.7982	0.4470
42	0.2700	0.2610
52	0.8666	0.4770
62	0.8601	0.4850
72	0.8187	0.4820
82	0.8407	0.4270
92	0.8562	0.5050
A2	0.8284	0.4600
A3	0.4625	0.2890
B2	0.8181	0.4510
B3	0.2904	0.2470
C2	0.9050	0.5190
C3	0.3529	0.2680
D2	0.8818	0.4960
D3	0.4473	0.3090
E1	0.2154	0.2500
E2	0.8317	0.4760
E3	0.3809	0.2650
F2	0.8041	0.4810
F3	0.4420	0.3290
G2	0.8540	0.4180
G3	0.4798	0.3360
G5	0.4011	0.2980
H2	0.8641	0.4860
H3	0.5444	0.2900
H5	0.3420	0.2630
I2	0.8244	0.4900
I3	0.4582	0.2810
I5	0.4588	0.2680
J2	0.8580	0.4580

Continued from previous page...

Chain	Atom inclusion	Q-score
J5	0.4634	0.3290
K2	0.2517	0.2480
K3	0.6095	0.2730
L2	0.8211	0.4950
L3	0.4867	0.3230
M2	0.2263	0.2640
M3	0.1747	0.2390
N3	0.2595	0.2620
O3	0.5438	0.3390
P3	0.3530	0.3040
Q3	0.3086	0.2570
R2	0.8439	0.3710
S2	0.8557	0.4930
T2	0.7760	0.4050
T3	0.4776	0.3350
U2	0.8462	0.4680
U3	0.4052	0.2990
V2	0.7806	0.4220
V3	0.4365	0.3070
W2	0.8350	0.4590
W3	0.5154	0.3250
X2	0.8177	0.4550
X3	0.7178	0.4630
Y2	0.8218	0.4250
Y3	0.3287	0.2580
a3	0.2559	0.2500
a5	0.5056	0.3330
a7	0.8054	0.4340
b3	0.3702	0.2770
<u>c3</u>	0.4459	0.2780
d2	0.9590	0.4240
d3	0.5907	0.2760
e2	0.8797	0.4000
e3	0.2267	0.2400
f3	0.3511	0.2880
h2	0.9267	0.4260
j3	0.5163	0.3020
k2	0.8036	0.5040
	0.8137	0.4730
<u>m2</u>	0.8567	0.4910
02	0.8526	0.4650
p2	0.7788	0.4250

Chain	Atom inclusion	Q-score
q2	0.8812	0.4850
r2	0.7205	0.3830
s3	0.3780	0.2870
t2	0.8456	0.4820
u2	0.8357	0.4700
v2	0.8576	0.5080
w2	0.8668	0.4780
x2	0.8717	0.5050
y2	0.7966	0.4570

Continued from previous page...

