

wwPDB EM Validation Summary Report (i)

Mar 31, 2021 - 09:58 am BST

EMDB ID	:	EMD-1632		
Title	:	Structural analysis of substrate binding by the TatBC component of the twin-		
		arginine protein transport system. Tarry, M.J.; Schaefer, E.; Chen, S.; Buchanan, G.; Greene, N.P.; Lea, S.M.;		
Authors	:			
		Palmer, T.; Saibil, H.R.; Berks, B.C.		
Deposited on	:	2009-07-08		
Resolution	:	Not provided		

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

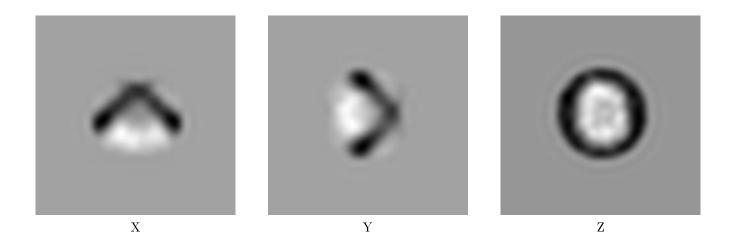
We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMMapValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis : 0.0.0.dev75 Validation Pipeline (wwPDB-VP) : 2.18

1 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	Not Provided	
Number of particles used	1358	Depositor
Resolution determination method	Not provided	
CTF correction method	phase flipping	Depositor
Microscope	FEI TECNAI 12	Depositor
Voltage (kV)	120	Depositor
Electron dose $(e^-/\text{\AA}^2)$	Not provided	
Minimum defocus (nm)	1.5	Depositor
Maximum defocus (nm)	2.0	Depositor
Magnification	42000.0	Depositor
Image detector	KODAK SO-163 FILM	Depositor
Maximum map value	3683.540	Depositor
Minimum map value	-4484.300	Depositor
Average map value	-48.430	Depositor
Map value standard deviation	366.743	Depositor
Recommended contour level	920.0	Depositor
Map size (Å)	320, 320, 320	wwPDB
Map dimensions	64, 64, 64	wwPDB
Map angles (°)	90, 90, 90	wwPDB
Pixel spacing (Å)	5, 5, 5	Depositor

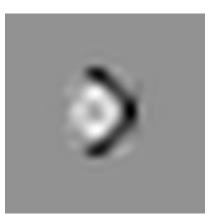

2 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-1632. These allow visual inspection of the internal detail of the map and identification of artifacts.

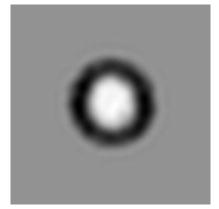
No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

2.1 Orthogonal projections (i)

2.1.1 Primary map

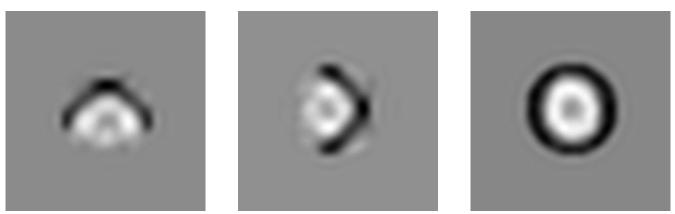

The images above show the map projected in three orthogonal directions.

2.2 Central slices (i)


2.2.1 Primary map

X Index: 32

Y Index: 32

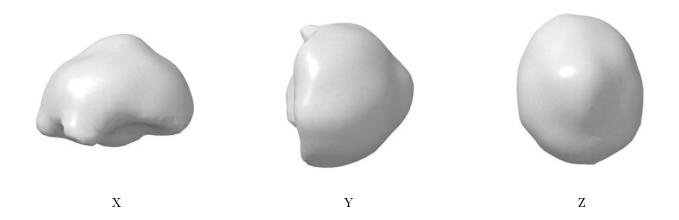

Z Index: 32

The images above show central slices of the map in three orthogonal directions.

2.3 Largest variance slices (i)

2.3.1 Primary map

X Index: 32


Y Index: 31

Z Index: 29

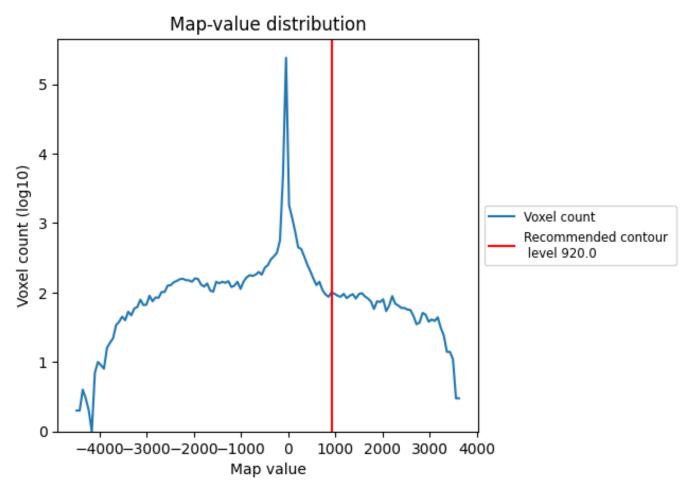
The images above show the largest variance slices of the map in three orthogonal directions.

2.4 Orthogonal surface views (i)

2.4.1 Primary map

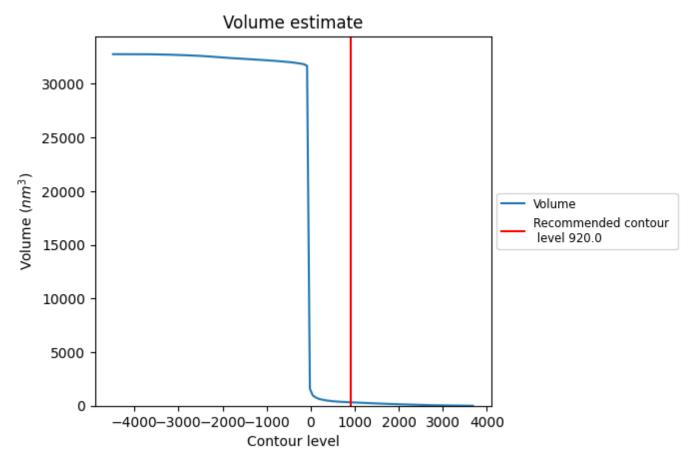
The images above show the 3D surface view of the map at the recommended contour level 920.0. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

2.5 Mask visualisation (i)


This section was not generated. No masks/segmentation were deposited.

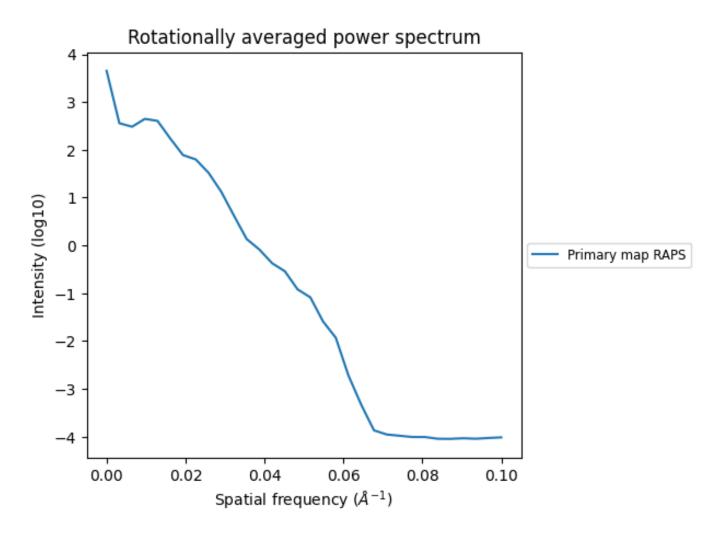
3 Map analysis (i)

This section contains the results of statistical analysis of the map.


3.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

3.2 Volume estimate (i)



The volume at the recommended contour level is 322 nm^3 ; this corresponds to an approximate mass of 291 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

3.3 Rotationally averaged power spectrum (i)

4 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

